Skip to main content

Bionanomaterials from Agricultural Wastes

  • Chapter
  • First Online:
Green Nanomaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 126))

Abstract

Agricultural biomass is the organic material left as a by-product after agricultural activities, particularly in developing countries. Present-day scenario witnesses a declined supply of raw materials which is a cause for concern. Natural fiber possesses properties that make them a suitable alternative material to be used in local timber industries for the production of value-added products. Agricultural cellulose offers many advantages because of its renewable and biodegradable properties. Cellulose fibers exhibit a unique structural hierarchy derived from their biological origin. Cellulose nanofibers (CNFs) owing to their morphology and physical properties have been proven a promising material not only in the fields of cosmetics, medicine, biocomposites and health care but are also progressing immensely to many other unlimited applications including high gas barrier packaging material, filter material and electronic devices. Depletion of natural resources, growing population and environmental concerns has increased the attention for the extreme development and use of nanomaterials from biomass. Marvelous and complex structure of bionanoparticles is helpful while understanding the chemical applications, and as a result the bionanomaterials can serve as the filler/reinforcement in polymer composites. The goal of this chapter is to discuss the properties of agricultural wastes along with its use as a bionanomaterial and its potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdul Khalil HPS, Fizree HM, Jawaid M, Alattas OS (2011) Preparation and characterization of nano-structured materials from oil palm ash: a bio-agricultural waste from oil palm mill. BioResources 64:4537–4546

    Google Scholar 

  • Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979

    Article  CAS  Google Scholar 

  • Abdul Khalil HPS, Aprilia NAS, Bhat AH, Jawaid M, Paridah MT, Dungani R (2013) A Jatropha biomass as renewable materials for biocomposites and its applications. Renew Sustain Energy Rev 2013:667–685

    Article  CAS  Google Scholar 

  • Ahmed S, Saiqa Ikram S (2015) Synthesis of gold nanoparticles using plant extract: an overview. Nano Res Appl 1:1–5

    Google Scholar 

  • Akbari B, Tavandashti MP, Zandrahimi M (2011) Particle size characterization of nanoparticles—a practical approach. Iran J Mater Sci Eng 8:48–56

    CAS  Google Scholar 

  • Akil HM, Omar MF, Mazuki AAM, Safiee S, Ishak ZAM, Bakar AA (2011) Kenaf fiber reinforced composites: a review. Mater Design 32:4107–4121

    Article  CAS  Google Scholar 

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues-wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    Article  CAS  Google Scholar 

  • Andersen TR, Yan Q, Larsen-Olsen TT, Søndergaard R, Li Q, Andreasen B et al (2012) A nanoparticle approach towards morphology controlled organic photovoltaics (OPV). Polymers 4:1242–1258

    Article  CAS  Google Scholar 

  • Aprilia NS, Davoudpour Y, Zulqarnain W, Khalil HA, Hazwan CC, Hossain MS et al (2016) Physicochemical characterization of microcrystalline cellulose extracted from kenaf bast. BioResources 11:3875–3889

    CAS  Google Scholar 

  • Ayrilmis N, Jarusombuti S, Fueangvivat V, Bauchongkol P, White R (2011) Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fibers Polym 12:919–926

    Article  CAS  Google Scholar 

  • Azeredo HMC (2013) Antimicrobial nanostructures in food packaging. Trends Food Sci Technol 30:56–69

    Article  CAS  Google Scholar 

  • Azwa Z, Yousif B, Manalo A, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibers. Mater Des 47:424–442

    Article  CAS  Google Scholar 

  • Bajwa SG, Bajwa DS, Holt G, Coffelt T, Nakayama F (2011) Properties of thermoplastic composites with cotton and guayule biomass residues as fiber fillers. Ind Crops Prod 33:747–755

    Article  CAS  Google Scholar 

  • Bartus SD, Vaidya UK, Ulven CA (2005) Design and development of a long fiber thermoplastic bus seat. Compos Struct 67:263–277

    Article  Google Scholar 

  • Bi Y, Luo R, Li J, Feng Z, Jin Z (2008) The effects of the hydraulic oil on mechanical and tribological properties of C/C composites. Mater Sci Eng, A 484:274–276

    Article  CAS  Google Scholar 

  • Chaker A, Mutjé P, Vilar MR, Boufi S (2014) Agriculture crop residues as a source for the production of nanofibrillated cellulose with low energy demand. Cellulose 21:4247–4259

    Article  CAS  Google Scholar 

  • Chand N, Prajapati SC, Singh RK (2012) Development and characterization of sisal nano fiber reinforced polyolefin composites. J Sci Res Rev 1:26–32

    CAS  Google Scholar 

  • Chen H (2014) Chemical composition and structure of natural lignocellulose. In: Chen H (ed) Biotechnology of lignocellulose. Springer, Dordrecht, pp 25–71

    Chapter  Google Scholar 

  • Chen WS, Yu HP, Liu YX, Chen P, Zhang MX, Hai YF (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811

    Article  CAS  Google Scholar 

  • Chen H, Wang W, Martin JC, Oliphant AJ, Doerr PA, Xu JF et al (2013) Extraction of lignocellulose and synthesis of porous silica nanoparticles from rice husks: a comprehensive utilization of rice husk biomass. ACS Sustain Chem Eng 1:254–259

    Article  CAS  Google Scholar 

  • Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibers by steam explosion. Carbohydr Polym 81:720–725

    Article  CAS  Google Scholar 

  • Dungani R, Islam N, Abdul Khalil HPS, Hartati S, Abdullah CK, Dewi M et al (2013) Termite resistance study of oil palm trunk lumber (OPTL) impregnated with oil palm shell meal and phenol-formaldehyde resin. BioResources 8:4937–4950

    Google Scholar 

  • Durán N, Lemes AP, Seabra AB (2012) Review of cellulose nanocrystals patents: preparation, composites and general applications. Recent Pat Nanotechnol 6:16–28

    Article  Google Scholar 

  • Fatah IYA, Abdul Khalil HPS, Hossain MdS, Aziz AA, Davoudpour Y, Dungani R et al (2014) Exploration of a chemo-mechanical technique for the isolation of nanofibrillated cellulosic fiber from oil palm empty fruit bunch as a reinforcing agent in composites materials. Polymers 6:2611–2624

    Article  CAS  Google Scholar 

  • Ghaedi M, Jahromi MN, Sajedi M, Mousavi H (2015) Comparison of modified palladium nanoparticles and homemade activated carbon derived from medlar for solid phase extraction of metal ions prior to their flame atomic absorption spectrometry determination. Environ Stud Persian Gulf 2:1–14

    Google Scholar 

  • Ghorbani F, Sanati AM, Maleki M (2015) Production of silica nanoparticles from rice husk as agricultural waste by environmental friendly technique. Environ Stud Persian Gulf 2:56–65

    Google Scholar 

  • Hariharan V, Sivakumar G (2013) Studies on synthesized nanosilica obtained from bagasse ash. Int J ChemTech Res 5:1263–1266

    CAS  Google Scholar 

  • Hill K, Swiecki B, Cregger J (2012) The bio-based materials automotive value chain. Center Automot Res 2012:23–27

    Google Scholar 

  • Hua K, Carlsson DO, Ã…lander E, Lindström T, Strømme M, Mihranyan A et al (2014) Translational study between structure and biological response of nanocellulose from wood and green algae. RSC Adv 4:2892–2903

    Article  CAS  Google Scholar 

  • Huang JL, Gray DG, Li CJ (2013) A3-Coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films. J Org Chem 9:1388–1396

    Google Scholar 

  • Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fiber reinforced polymer hybrid composites: a review. Carbohydr Polym 86:1–18

    Article  CAS  Google Scholar 

  • Jiang J, Oberdorster G, Biswas P (2009) Characterization of size, surface charge and agglomeration state of nanoparticle dispersions for toxicological studies. Nanopart Res 11:77–89

    Article  CAS  Google Scholar 

  • Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibers and nanocrystals from rice husk. Ind Crop Prod 37:93–99

    Article  CAS  Google Scholar 

  • John MJ, Thomas S (2008) Biofibers and biocomposites. Carbohydr Polym 71:343–364

    Article  CAS  Google Scholar 

  • Kalia S, Dufresne A, Cherian BM, Kaith BS, Averous L, Njuguna J et al (2011) Cellulose-based bio- and nanocomposites: a review. Inter J Polym Sci 2011:1–35

    Google Scholar 

  • Kaur M, Mehta A, Gupta R (2018) Biomedical applications of synthetic and natural biodegradable polymers. In: Shakeel Ahmed et al (eds) Green and sustainable advanced materials, vol 2. Scrivener Publishing LLC, pp 281–310

    Google Scholar 

  • Kiziltas A, Nazari B, Gardner DJ, Bousfield DW (2013) Polyamide 6-cellulose composites: effect of cellulose composition on melt rheology and crystallization behaviour. Polym Eng Sci 54:739–746

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose–its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  CAS  Google Scholar 

  • Leblanc JL (2002) Rubber–filler interactions and rheological properties in filled compounds. Prog Polym Sci 27:627–687

    Article  CAS  Google Scholar 

  • Li Z, Wang L, Wang X (2007) Cement composites reinforced with surface modified coir fibers. J Compos Mater 41:1445–1457

    Article  CAS  Google Scholar 

  • Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325

    Article  CAS  Google Scholar 

  • Liu L, Ding X, Li J, Luo Z, Hu Y, Liu J et al (2015) Enzyme responsive drug delivery system based on mesoporous silica nanoparticles for tumor therapy in vivo. Nanotechnology 26:15–24

    CAS  Google Scholar 

  • Masoodi R, El-Hajjar RF, Pillai KM, Sabo R (2012) Mechanical characterization of cellulose nanofiber and bio-based epoxy composite. Mater Des 36:570–576

    Article  CAS  Google Scholar 

  • Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262

    Article  CAS  Google Scholar 

  • Millon E, Wan WK (2006) The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res B Appl Biomater 79:245–253

    Article  CAS  Google Scholar 

  • Mollick MdMR, Rana D, Dash SK, Chattopadhyay S, Bhowmick B, Maity D et al (2016) Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arabian J Chem. https://doi.org/10.1016/j.arabjc.2015.04.033

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Namvar F, Jawaid M, Tanir PM, Mohamad R, Azizi S, Khodavandi A et al (2014) Potential use of plant fibers and their composites for biomedical applications. BioResources 9:5688–5706

    Article  Google Scholar 

  • Nisha SN, Aysha OS, Rahaman JSN, Kumar PV, Valli S, Nirmala P et al (2014) Lemon peels mediated synthesis of silver nanoparticles and its antidermatophytic activity. Spectrochim Acta Part A Mol Biomol Spectros 124:194–198

    Article  CAS  Google Scholar 

  • Ooi ZX, Ismail H, Bakar AA (2013) Optimisation of oil palm ash as reinforcement in natural rubber vulcanisation: a comparison between silica and carbon black fillers. Polym Test 32:625–630

    Article  CAS  Google Scholar 

  • Pickering K (2008) Properties and performance of natural-fiber composites. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  • Purkait BS, Ray D, Sengupta S, Kar T, Mohanty A, Misra M (2011) Isolation of cellulose nanoparticles from sesame husk. Ind Eng Chem Res 50:871–876

    Article  CAS  Google Scholar 

  • Regan BC, Aloni S, Jensen K, Ritchie RO, Zettl A (2005) Nanocrystal-powered nanomotor. Nano Lett 5:1730–1733

    Article  CAS  Google Scholar 

  • Robles E, Urruzola I, Labidi J, Serrano L (2015) Surface modified nano-cellulose as reinforcement 390 in poly(lactic acid) to conform new composites. Ind Crops Prod 71:44–53

    Article  CAS  Google Scholar 

  • Rowell RM, Han JS, Rowell JS (2000) Characterization and factors effecting fiber properties. In: Frollini E, Leao AL, Mattoso LHC (eds) Natural polymers and agrofibers composites. Embrapa Agricultural Instrumentation, San Carlos, Brazil, pp 115–134

    Google Scholar 

  • Saritha S, Nair SM, Kumar NC (2013) Nano-ordered cellulose containing Iα crystalline domains derived from the algae Chaetomorpha antennina. BioNano Sci 3:423–427

    Article  Google Scholar 

  • Sasthiryar S, Abdul Khalil HPS, Bhat AH, Ahmad ZA, Islam MdZ, Zaidon A et al (2014) Nanobioceramic composites: a study of mechanical, morphological and thermal properties. BioResources 9:861–871

    Article  Google Scholar 

  • Saurabh CK, Dungani R, Owolabi AF, Atiqah NS, Zaidon A, Aprilia NAS et al (2016) Effect of hydrolysis treatment on cellulose nanowhiskers from oil palm (Elaeis guineesis) fronds: morphology, chemical, crystallinity, and thermal characteristics. BioResources 11:6742–6755

    Article  CAS  Google Scholar 

  • Seo HJ, Kim S, Huh W, Park KW, Lee DR, Son DW et al (2015) Enhancing the flame-retardant performance of wood-based materials using carbon-based materials. J Therm Anal Calorim 123:1935–1942

    Article  CAS  Google Scholar 

  • Sheltami RM, Abdullah I, Ahmad I, Dufresne A, Kargarzadeh H (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohyd Polym 88:772–779

    Article  CAS  Google Scholar 

  • Shinoj S, Visvanathan R, Panigrahi S, Kochubabu M (2011) Oil palm fiber (OPF) and its composites: a review. Ind Crops Prod 33:7–22

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    Article  CAS  Google Scholar 

  • Siro I, Placket D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  • Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45

    Article  CAS  Google Scholar 

  • Sulaeman A, Dungani R, Islam MN, Abdul Khalil HPS, Sumardi I, Hermawan D et al (2016) Preliminary study of characterization of nanoparticles from coconut shell as filler agent in composites materials. MAYFEB J Mater Sci 1:1–9

    Google Scholar 

  • Tabatabaei S, Shukohfar A, Aghababazadeh R, Mirhabibi A (2006) Experimental study of the synthesis and characterisation of silica nanoparticles via the sol-gel method. J Phys: Conf Ser 26:371–374

    Google Scholar 

  • Tang Y, He Z, Mosseler JA, Ni Y (2014) Production of highly electro-conductive cellulosic paper via surface coating of carbon nanotube/graphene oxide nanocomposites using nanocrystalline cellulose as a binder. Cellulose 21:4569–4581

    Article  CAS  Google Scholar 

  • Thomas S, Paul SA, Pothan LA, Deepa B (2011) Cellulose fibers: bio-and nano-polymer composites. In: Kalia S, Kaith BS, Kaur I (eds) Natural fibers: structure, properties and applications. Springer, Berlin, pp 3–42

    Google Scholar 

  • Vaccaro L, Spallino L, Agnello S, Buscarino G, Cannas M (2013) Defect-related visible luminescence of silica nanoparticles. Phys Status Solidi C 10:658–661

    Article  CAS  Google Scholar 

  • Vaibhav V, Vijayalakshmi U, Mohana Roopan S (2015) Agricultural waste as a source for the production of silica nanoparticles. Spectrochim Acta, Part A 139:515–520

    Article  CAS  Google Scholar 

  • Wambua P, Ivens J, Verpoest I (2003) Natural fibers: can they replace glass in fiber reinforced plastics? Compos Sci Technol 63:1259–1264

    Article  CAS  Google Scholar 

  • Wang S, Zhang Y, Xing C (2007) Effects of strand drying methods on wood surface wettability. Holz Roh Werkst 65:437–442

    Article  CAS  Google Scholar 

  • Watcharakul N, Poompradub S, Prasassarakich P (2011) In situ silica reinforcement of methyl methacrylate grafted natural rubber by sol–gel process. J Sol-Gel Sci Technol 58:407–418

    Article  CAS  Google Scholar 

  • Wu X, Radovic LR (2006) Inhibition of catalytic oxidation of carbon/carbon composites by phosphorus. Carbon 44:141–151

    Article  CAS  Google Scholar 

  • Yahaya S, Giwa SO, Ibrahim M, Giwa A (2016) Extraction of oil from jatropha seed kernels: optimization and characterization. Int J ChemTech Res 9:758–770

    CAS  Google Scholar 

  • Zhou Y, Fan M, Chen L, Zhuang J (2015) Lignocellulosic fiber mediated rubber composites: an overview. Compos Part B 76:180–191

    Article  CAS  Google Scholar 

  • Zhu H, Fang Z, Preston C, Li Y, Hu L (2014) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci 7:269–287

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support granted to Ms. Manpreet Kaur in the form of JRF from the Council of Scientific and Industrial Research (CSIR) is thankfully acknowledged. The financial assistance from the Council of Scientific and Industrial Research (CSIR) in the form of SRF to Mr. Kamal Kumar Bhardwaj is also thankfully acknowledged.

Conflicts of Interests The author(s) declare(s) that there is no conflict of interests regarding the publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reena Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, M., Mehta, A., Bhardwaj, K.K., Gupta, R. (2020). Bionanomaterials from Agricultural Wastes. In: Ahmed, S., Ali, W. (eds) Green Nanomaterials. Advanced Structured Materials, vol 126. Springer, Singapore. https://doi.org/10.1007/978-981-15-3560-4_10

Download citation

Publish with us

Policies and ethics