Skip to main content

Frankia: A Promising N-Fixing Plant Growth Promoting Rhizobacteria (PGPR) Improved Drought Tolerance in Crops at Higher Altitude

  • Chapter
  • First Online:
Microbiological Advancements for Higher Altitude Agro-Ecosystems & Sustainability

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

The high-altitude Himalayan regions are unique micro-climatic and geographic separations that have precise agro-technical needs, which is quite different from other agro-climacteric zones of India for vegetable production. In such marginal degraded regions mainly drought stress causes significant harmful effect on survival, biomass production and yields of vegetable crops up to 70%. Since drought tolerance is quantitative and multigenic in nature, a massive challenge exists to solve this problem. The use of N-fixing growth promoting rhizobacteria (PGPR) in place of agrochemicals (pesticides and fertilizers) is a promising approach to increase the plant productivity by naturally increasing nitrogen content of soil and also not leads to deterioration of the soil micro-flora and environment. In this attempt, this chapter highlights the importance of promising indigenous Frankia sp. strains (potential N-fixing PGPR) isolated from the root nodules of Casuarina plant of Kumaon region of Uttarakhand, India. Also, the effect of bio-inoculation of isolated Frankia sp. strains has been demonstrated to improve PEG-mediated drought stress tolerance in tomato (Solanum lycopersicum L. cv. Pusa ruby) for improving sustainable hill agriculture in rain fed conditions. This successful model may be useful for improving the productivity of other crops grown in drought prone regions of Himalaya.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoco 2:875–877

    Article  CAS  Google Scholar 

  • Akkermans ADL, Hahn D, Baker DD (1991) The family FRANKIAceae. In: Balows et al (eds) The prokaryotes, vol II. Springer, Berlin, pp 1069–1084

    Google Scholar 

  • Akkermans ADL, Huss-Danell K, Roelofsen W, Blom J (1982) The carbon and nitrogen metabolism of FRANKIA in pure culture and in root nodules. Proceeding of 2nd National Symposium on Biological Nitrogen Fixation, Helsinki

    Google Scholar 

  • Arora NK, Tewari S, Singh S, Lal N, Maheshwari DK. (2012) PGPR for protection of plant health under saline conditions. In: Bacteria in agrobiology: stress management. Springer, Berlin Heidelberg, pp. 239–258

    Google Scholar 

  • Baker D, William LP, Torrey JG (1981) Immunochemical analysis of relationship among isolated FRANKIAe (Actinomycetales). Int J Syst Bacteriol 31:148–151

    Article  Google Scholar 

  • Bates LS (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–205

    Article  CAS  Google Scholar 

  • Becking JH (1970) Plant endophyte symbiosis in non-leguminous plants. 2nd Conf. global impact of applied microbiology. Addis Ababa, Ethiopia. Plant Soil 32:611–654

    Article  CAS  Google Scholar 

  • Bell DS (1979) Future potential for use of symbiotic N2 fixation in forest management. In: Gordon JC, Wheeler CT, Perry DA (eds) Symbiotic N2 fixation in the management of temperate forests. Oregon State University, Cornvallis, pp 451–466

    Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benson DR, Silvester WB (1993) Biology of Frankia strains actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:319–393

    Google Scholar 

  • Blom J (1981) Utilisation of fatty acids and NH4+ by FRANKIA AVCII. FEMS Microbiol Lett 10:143–145

    Article  CAS  Google Scholar 

  • Blom J, Harkink R (1981) Metabolic pathway for luconeogenesis and energy generation in FRANKIA Avcll. FEMS Microbiol Lett 11:221–224

    Article  CAS  Google Scholar 

  • Blom J, Roelofsen W, Akkermans ADL (1980) Growth of FRANKIA AvCll on media containing BETWEEN-80 as carbon source. FEMS Microbiol Lett 9:131–135

    Article  CAS  Google Scholar 

  • Bomar M, Hermans J, Meesters TM, van den Bos RC, Zehnder AJB (1989) Similarities among nitrogenase proteins and among nif-HDK genes of Methanosarcina barkari and of other diazotrophic bacteria. Curr Microbiol 19:35–38

    Article  CAS  Google Scholar 

  • Bond G (1983) Taxonomy and distribution of non-legume nitrogenfaxing system. In: Gorden JC, Wheeler CT (eds) Biological nitrogen fixation on forestecosystem. Foundations and Applications, The Hauge

    Google Scholar 

  • Burggraaf AJP, Shipton WA (1983) Studies on the growth of FRANKIA isolates in relation to infectivity and nitrogen fixation (acetylene reduction). Can J Bot 61:2774–2782

    Article  CAS  Google Scholar 

  • Burleigh SH, Dawson JO (1994) Desiccation tolerance and trehalose production in Frankia hyphae. Soil Biol Biochem 26:593–598

    Article  CAS  Google Scholar 

  • Campbell WH (1988) Nitrate reductase and its role in nitrate assimilation in plants. Physiol Plant 74:214–219

    Article  CAS  Google Scholar 

  • Carole S, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767

    Article  CAS  Google Scholar 

  • Chanway CP, Anand R, Yang H (2014) Nitrogen fixation outside and inside plant tissues. In: Ohyama T (ed) Advances in biology and ecology of nitrogen fixation. Tokyo University of Agriculture, Tokyo, pp 3–23

    Google Scholar 

  • Diem HG, Dommergues YR (1983) The isolation of FRANKIA from nodules of Casuarina. Can J Bot 61:2822–2825

    Article  Google Scholar 

  • Fernandez MP, Meugnier H, Grimnot PAP, Bardin R (1989) DNA relatedness in the genus FRANKIA. Int J Syst Bacteriol 39:424–429

    Article  Google Scholar 

  • Ganesh G (1997) Nitrogenase activity in novel vesicles of Frankia. Curr Sci 73:814–815

    CAS  Google Scholar 

  • Gauthier D, Diem HG, Dommergues Y (1981) In vitro N2 fixation by two actinomycete strains isolated from Casuarina nodules. Appl Environ Microbiol 41:306–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauthier D, Diem HG, Dommergues YR, Gangry F (1985) Assessment of N2 fixation by Casuarina equisetifolia inoculated with FRANKIA ORSO 21001 using N15 methods. Soil Biol Biochem 17:375–379

    Article  CAS  Google Scholar 

  • Ghodhbane-Gtari F et al (2019) The plant-growth-promoting actinobacteria of the genus Nocardia induces root nodule formation in Casuarina glauca. Antonie Van Leeuwenhoek 112(1):75–90. https://doi.org/10.1007/s10482-018-1147-0

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M (1986) Actinomycete systematics, present state and future prospects: biological, biochemical and biomedical aspects of Actinomycetes. FEMS Symposium Budapest, pp. 487–496

    Google Scholar 

  • Gtari M, Benson DR, Nouioui I, Dawson JO, Gtari FG (2019a) 19th international meeting on Frankia and Actinorhizal plants. Antonie Van Leeuwenhoek 112:1–4

    Article  PubMed  Google Scholar 

  • Gtari M, Nouioui I, Sarkar I et al (2019b) An update on the taxonomy of the genus Frankia Brunchorst, 1886, 174AL. Antonie Van Leeuwenhoek 112:5–21. https://doi.org/10.1007/s10482-018-1165-y

    Article  PubMed  Google Scholar 

  • Gueddou A, Swanson E, Hezbri K et al (2019) Draft genome sequence of the symbiotic Frankia sp. strain BMG5.30 isolated from root nodules of Coriaria myrtifolia in Tunisia. Antonie Van Leeuwenhoek 112:67–74. https://doi.org/10.1007/s10482-018-1138-1

    Article  CAS  PubMed  Google Scholar 

  • Gupta SM, Grover A, Ahmed Z (2012) Identification of abiotic stress responsive genes from Indian high-altitude Lepidium latifolium L. Def Sci J 62:315–318

    Article  CAS  Google Scholar 

  • Gupta SM, Singh S, Pandey P, Grover A, Ahmed Z (2013) Semi-quantitative analysis of transcript accumulation in response to drought stress by Lepidium latifolium seedlings. Plant Signal Behav 8:e25388

    Article  PubMed  Google Scholar 

  • Hahn D, Nickel A, Dawson J (1999) Assessing FRANKIA population in plants and soils using molecular methods. FEMS Microbiol Ecol 29:215–227

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I – kinetics and stoiciometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Henry MF (1977) Cytologie ultrasturcurale de l’ endophyte present dans les nodusites redicularies. de Myrica gale L. Bull Soc Bot Fr 124:291–300

    Article  Google Scholar 

  • Hocher V, Ngom M, Carré-Mlouka A et al (2019) Signalling in actinorhizal root nodule symbioses. Antonie Van Leeuwenhoek 112:23–29. https://doi.org/10.1007/s10482-018-1182-x

    Article  PubMed  Google Scholar 

  • Horriere F (1984) In vitro physiological approach to classfication of FRANKIA isolates of Alnus group, based on urease, protease and β-glusosidase activities. Plant Soil 78:7–13

    Article  CAS  Google Scholar 

  • Jones D, McHardy WJ, Wilson MJ, Cooper GI (1989) Scanning electron microscopy of calcium rich crystals in FRANKIA root nodules of Alnus glutinosa saplings. Micron Microsc Acta 20:33–36

    Article  Google Scholar 

  • Kalia A, Gosal SK (2011) Effect of pesticide application on soil microorganisms. Arch Agron Soil Sci 57:569–596

    Article  CAS  Google Scholar 

  • Khatri D, Durgapal A, Gupta SM (2012) Characterization of phosphate solubilizing bacteria from rhizosphere of horse gram (Macrotyloma uniflorum (Lam.) Verdc.). Biochem Cell Arch 12:303–306

    Google Scholar 

  • Krumholz GD, Chval MS, McBride MJ, Tisa LS (2003) Germination and physiological properties of FRANKIA spores. Plant Soil 254:57–67

    Article  CAS  Google Scholar 

  • Kucho KI, Tobita H, Ikebe M, Shibata M, Imaya A, Kabeya D, Morisada K (2019) Frankia communities at revegetating sites in Mt. Ontake, Japan. Antonie Van Leeuwenhoek 112(1):91–99. https://doi.org/10.1007/s10482-018-1151-4

    Article  PubMed  Google Scholar 

  • Kumar A, Pareek A, Gupta SM (2012) Biotechnology in medicine and agriculture: principles and practices. I. K. International publishing house Pvt. Ltd., New Delhi. (ISBN: 9789381141403)

    Google Scholar 

  • Kumar A, Pathak RK, Gupta SM, Gaur VS, Pandey D (2015) Systems biology for smart crops and agricultural innovation: filling the gaps between genotype and phenotype for complex traits linked with robust agricultural productivity and sustainability. OMICS J Integr Biol 19:581–601

    Article  CAS  Google Scholar 

  • Lalonde M, Simon L, Bousquet J, Seguin A (1988) Advances in taxonomy of FRANKIA. In: Bothe et al (eds) Nitrogenfixation. Gustav Fischer Verlag, FRG, Struttgart, pp 671–680

    Google Scholar 

  • Laurent L, Lalonde M (1987) Isolation and characterisation of FRANKIA strains isolated from Myrica gale. Can J Bot 65:1356–1363

    Article  Google Scholar 

  • Lechevalier MP (1983) Cataloging FRANKIA strains. Can J Microbiol 61:2964–2967

    Google Scholar 

  • Lechevalier MP, Lechevalier HA (1989) Genus Frankia Brunchorst 1886, 174 AL. In: Williams ST, Sharp ME, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, pp 2410–2417

    Google Scholar 

  • Lechevalier MP, Lechevalier HA (1984) Taxonomy of FRANKIA. In: Ortiz-Ortiz L, Bojalil LF, Yakoleff V (eds) Biological, biochemical, and biomedical aspects of Actinomycetes. Academic, New York, pp 575–582

    Chapter  Google Scholar 

  • Li CY, Lu KC, Trappe JM, Bollen WB (1972) Poria Weirii–inhibiting and other phenolic compounds in roots of red alder and Douglas – fir. Microbios 5:65–68

    CAS  PubMed  Google Scholar 

  • Ligon J, Nakas JP (1987) Isolation and characterization of FRANKIA sp. strain FaC1 genes involved in nitrogen fixation. Appl Environ Microbiol 53:2321–2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez MF, Torrey JG (1985) Enzymes of glucose metabolism in FRANKIA sp. J Bacteriol 162:110–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mort A, Normand P, Lalonde M (1982) 2-O-methyl – Dmannose, a key sugar in the taxonomy of FRANKIA. Can J Microbiol 29:993–1002

    Article  Google Scholar 

  • Muller AP, Benoist P, Diem HG, Schwencke J (1991) Age dependent changes in extracellular protein, amino peptidase and proteinase activities in FRANKIA isolates BR. J Gen Microbiol 137:2787–2796

    Article  CAS  PubMed  Google Scholar 

  • Murry MA, Zhang Z, Torrey JG (1985) Effect of O2 on vesicle formation, acetylene reduction and O2 uptake kinetics in FRANKIA sp. HFP Cc13 isolated from Casuarinacunninghamiana. Can J Microbiol 31:804–809

    Article  CAS  PubMed  Google Scholar 

  • Newcomb W (1981) Fine structure of root of Dryas drummondii. Richards (Rosaceae). Can J Bot 59:2500–2514

    Article  Google Scholar 

  • Newcomb W, Baker D, Torrey JG (1987) Ontogeny and fine structure of effective root nodules of the autumn olive (Elaegnus umbellata). Can J Bot 65:80–94

    Article  Google Scholar 

  • Noridge NA, Benson DR (1986) Isolation and nitrogen fixing activity of FRANKIA sp. strain cpll vesicles. J Bacteriol 166:301–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nouioui I, Ghodhbane-Gtari F, Jando M, Tisa LS, Klenk H-P, Gtari M (2019) Frankia torreyi sp. nov., the first actinobacterium of the genus Frankia Brunchorst 1886, 174 AL isolated in axenic culture. Antonie Van Leeuwenhoek 112(1):57–65. https://doi.org/10.1007/s10482-018-1131-8

    Article  CAS  PubMed  Google Scholar 

  • Perradin Y, Mollet MJ, Lalonde M (1983) Influence of phenolics on invitro growth of FRANKIA strain. Can J Bot 61:2807–2814

    Article  CAS  Google Scholar 

  • Pesce C, Kleiner VA, Tisa LS (2019) Simple colony PCR procedure for the filamentous actinobacteria Frankia. Antonie Van Leeuwenhoek 112:109–114. https://doi.org/10.1007/s10482-018-1155-0

    Article  CAS  PubMed  Google Scholar 

  • Rao NS (1998) Isolation and characteristics of FRANKIA. In: Soil microbiology. Oxford and IBH, New Delhi, pp. 236–238

    Google Scholar 

  • Rao NS, Rodriguez Barrueco C (1995) Microbial associations. In: Casuarinas. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, pp. 60–166

    Google Scholar 

  • Ribeiro-Barros AI, Catarino S, Moura I, Ramalho JC, Romeiras MM, Ghodhbane-Gtari F (2019) Actinorhizal trees and shrubs from Africa: distribution, conservation and uses. Antonie Van Leeuwenhoek 112:31–46. https://doi.org/10.1007/s10482-018-1174-x

    Article  PubMed  Google Scholar 

  • Robertson GP, Vitousek PM (2009) Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Env Resour 34:97–125

    Article  Google Scholar 

  • Sarkar I, Gtari M, Tisa LS, Sen A (2019) A novel phylogenetic tree based on the presence of protein domains in selected actinobacteria. Antonie Van Leeuwenhoek 112(1):101–107. https://doi.org/10.1007/s10482-018-1154-1

    Article  CAS  PubMed  Google Scholar 

  • Sarma G, Misra AK (2002) Mixed genotypes in some axenic cultures of FRANKIA. Indian J Microbiol 41:11–14

    Google Scholar 

  • Sarma HK, Sharma BK, Tiwari SC (2003) A novel calcimycin antibiotic from gram positive actinomycete FRANKIA microsymboint. Curr Sci 85:1401–1403

    CAS  Google Scholar 

  • Sayed WF (2011) Improving Casuarina growth and symbiosis with Frankia under different soil and environmental conditions. Folia Microbiol 56:1–9

    Article  CAS  Google Scholar 

  • Sellestedt A, Mattson U (1994) Hydrogen metabolism Casuarina FRANKIA: immunolocalization of nitrogenase and hydrogenase. Soil Biol Biochem 26:583–592

    Article  Google Scholar 

  • Sellestedt A, Huss DK, Ahlquist AS (1986) N2 fixation and biomass production in symbiosis between Alnus incana and FRANKIA strains with hydrogen melatolism. Physiol Plant 66:99–107

    Article  Google Scholar 

  • Sen A, Tisa LS, Gtari M, Sarkar I (2019) Contrasted evolutionary constraints on carbohydrate active enzymes (CAZymes) in selected Frankia strains. Antonie Van Leeuwenhoek 112:115–125. https://doi.org/10.1007/s10482-018-1173-y

    Article  CAS  PubMed  Google Scholar 

  • Senthil KM, Satyanarayana T, Annapurna K (2012) Bioinoculant technology. In: Kumar A, Pareek A, Gupta SM (eds) Biotechnology in medicine and agriculture: principles and practices. I. K. International publishing house Pvt. Ltd., New Delhi, pp 586–612

    Google Scholar 

  • Shridhar BS (2012) Reveiw: nitrogen fixing microorganisms. Int J Microbiol Res 3:46–52

    Google Scholar 

  • Simonet P, Haurat J, Normand P, Burdin R, Moirud A (1984) Localisation of nif genes in a large plasmid in FRANKIA sp. strain. Mol Gen Gennet 204:492–495

    Article  Google Scholar 

  • Simonet P, Grosjean MC, Misra AK, Nazaret S, Cournoyer B, Normand P (1991) Frankia genus-specific characterization by polymerase chain reaction. Appl Environ Microbiol 57:3278–3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava A, Singh SS, Mishra AK (2012) Sodium transport and mechanism(s) of sodium tolerance in Frankia strains. J Basic Microbiol 52:1–2

    Article  Google Scholar 

  • Steele DB, Stowers MD (1986) SOD and catalase in FRANKIA. Can J Microbiol 32:409–413

    Article  CAS  Google Scholar 

  • Tani C, Sasakawa H (2003) Salt tolerance of Casuarina equisetifolia and Frankia Ceq1 strain isolated from the root nodules of C. equisetifolia. Soil Sci Plant Nutr 49:215–222

    Article  Google Scholar 

  • Taveres F, Bernardo L, Sellestedt A (2003) Identification and expression studies of a catalase and a bifunctional catalase peroxidase on FRANKIA strain R 43. Plant Soil 254:75–81

    Article  Google Scholar 

  • Taveres F, Sellstedt A (2000) A sample, rapid and nondestructive procedure to extract cell wall associated proteins from FRANKIA. J Microbiol Methods 39:171–178

    Article  Google Scholar 

  • Tisa LS, Ensign JC (1987) Formation and regeneration of protoplasts of the actinorhizal nitrogen fixing actinomycete FRANKIA. Appl Environ Microbiol 53:53–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tjepkema JD (1984) O2, hemoglobin and energy usage in actinorhizal nodules. In: Veeger C, Newton WE (eds) Advances in nitrogen fixation research. Martinus Nijhoff, The Haugue, pp 467–473

    Chapter  Google Scholar 

  • Tjepkema JD, Ormerod W, Torrey JG (1980) Vesicle formation and acetylene reduction activity in FRANKIA CPII cultured in defined nutrient media. Nature 287:633–635

    Article  CAS  Google Scholar 

  • Tyson JH, Silver WS (1979) Relationship of ultrastructure to acetylene reduction in root nodules of Casuarina. Bot Gaz 140:44–48

    Article  CAS  Google Scholar 

  • Udwary DW, Gontang EA, Jones AC et al (2011) Significant natural product biosynthetic potential of actinorhizal symbionts of the genus Frankia, as revealed by comparative genomic and proteomic analyses. Appl Environ Microbiol 77:3617–3625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Dijk C (1978) Spore formation and endophyte diversity in root nodules of Alnus glutinosa (L) Vill. New Phytol 81:601–615

    Article  Google Scholar 

  • Watanabe S, Kojima K, Ide Y, Sasaki S (2000) Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell Tissue Organ Cult 63:199–206

    Article  CAS  Google Scholar 

  • Wheeler CT, McLaughlin ME, Steele P (1981) A comparison of symbiotic N2 fixation in Alnus glutinosa and Alnus rubra. Plant Soil 61:169–188

    Article  CAS  Google Scholar 

  • Wheeler CT, Miller IM (1990) Current and potential uses of actinorhizal plants. In: Schumter CR, Europe JD (eds) Biology of FRANKIA and Actinorhizal Plants. Accedemic, Tyepkema Neuyork, pp 365–389

    Chapter  Google Scholar 

  • Yang Y, Shipton WA, Reddell P (1997) Effects of phosphorus supply on in vitro growth and phosphatase activity of FRANKIA isolates from Casuarina. Plant soil 189:75–79

    Article  CAS  Google Scholar 

  • Zhang X, Benson DR (1992) Utilisation of amino acids by FRANKIA sp strain Cpll. Arch Microbiol 158:256–261

    Article  CAS  Google Scholar 

  • Zhong C, Zhang Y, Wei Y et al (2019) The role of Frankia inoculation in casuarina plantations in China. Antonie Van Leeuwenhoek 112:47–56. https://doi.org/10.1007/s10482-018-1205-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial assistance received from Defence Research and Development Organization (DRDO), India is duly acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, S.M., Kumar, K., Joshi, R.K., Gupta, S., Bala, M. (2020). Frankia: A Promising N-Fixing Plant Growth Promoting Rhizobacteria (PGPR) Improved Drought Tolerance in Crops at Higher Altitude. In: Goel, R., Soni, R., Suyal, D. (eds) Microbiological Advancements for Higher Altitude Agro-Ecosystems & Sustainability. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-1902-4_20

Download citation

Publish with us

Policies and ethics