Skip to main content

Diversity and Bioprospecting of Yeasts from Extreme Environments

  • Chapter
  • First Online:
Advancing Frontiers in Mycology & Mycotechnology

Abstract

The life of humans has been greatly benefited by microbes since their existence on earth. Extremophiles have unique energy transduction processes and adaptation strategies which help them to survive in an extreme environment (high or low temperature, pH, etc.). Fungi with yeast stage in their life cycle are found in various habitats including extreme environments like hot springs, alkaline lakes, hypersaline lakes, cold glaciers, deep ocean, and several others. Recently, psychrophilic yeasts have been studied widely, but contributions on thermophilic, acidophilic, and halophilic yeasts are lagging behind. Mrakia, Leucosporidium, and Naganishia are some examples of yeasts isolated from cold environments. In the past decades, several investigations have been undertaken on yeasts to assess their biotechnological potentials. Extremophilic yeasts produce enzymes, antifreeze proteins, heat shock proteins, PUFA, EPS, etc., which have immense applications in health, agriculture, and industry. In this chapter, diversity of extremophilic yeasts, strategies adapted for such niches, and potential applications of extremophilic yeasts in biotechnology have been discussed. Yeasts from extreme environments can be exploited in several biotechnological industries, thus helping in the bioeconomy of the country.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F, Miura T, Nagahama T, Inoue A, Usami R, Horikoshi K (2001) Isolation of a highly copper-tolerant yeast, Cryptococcus sp., from the Japan Trench and the induction of superoxide dismutase activity by Cu2+. Biotechnol Lett 23:2027–2034

    Article  CAS  Google Scholar 

  • Agno R (1990) Taxonomic distribution of alkali-tolerant yeasts. Syst Appl Microbiol 13:394–397

    Article  Google Scholar 

  • Aguilera J, Randez-Gil F, Prieto JA (2007) Cold response in Saccharomyces cerevisiae: new functions for old mechanisms. FEMS Microbiol Rev 31:327–341

    Article  CAS  PubMed  Google Scholar 

  • Aksu Z, Dönmez G (2001) Comparison of copper (II) biosorptive properties of live and treated Candida sp. J Environ Sci Health 36:367–381

    Article  CAS  Google Scholar 

  • Alcaíno J, Cifuentes V, Baeza M (2015) Physiological adaptations of yeasts living in cold environments and their potential applications. World J Microbiol Biotechnol 31(10):1467–1473

    Article  PubMed  CAS  Google Scholar 

  • Al-Fageeh MB, Smales CM (2006) Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochem J 397:247–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barth G, Gaillardin C (1996) Yarrowia lipolytica. In Wolf K (ed) Handbook of nonconventional yeast in biotechnology. Springer, Berlin/Heidelberg, pp 313–388

    Chapter  Google Scholar 

  • Besancon X, Smet C, Chabalier C, Rivemale M, Reverbel JP, Ratomahenina R, Galzy P (1992) Study of surface yeast flora of Roquefort cheese. Int J Food Microbiol 17:9–18

    Article  CAS  PubMed  Google Scholar 

  • Bohn JA, BeMiller JN (1995) (1→ 3)-ß-D-glucans as biological response modifiers: a review of structure–functional activity relationships. Carbohydr Polym 28:3–14

    Article  CAS  Google Scholar 

  • Brandão LR, Libkind D, Vaz ABM, Santo LCE, Moliné M, García V, Broock M, Rosa CA (2011) Yeasts from an oligotrophic lake in Patagonia (Argentina): diversity, distribution and synthesis of photoprotective compounds and extracellular enzymes. FEMS Microbiol Ecol 76:1–13

    Article  PubMed  CAS  Google Scholar 

  • Breuer U, Harms H (2006) Debaryomyces hansenii – an extremophilic yeast with biotechnological potential. Yeast 23:415–437

    Article  CAS  PubMed  Google Scholar 

  • Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244(2):229–234

    Article  CAS  PubMed  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82(2):217–241

    Article  CAS  PubMed  Google Scholar 

  • Buzzini P, Turk M, Perini L, Turchetti B, Gunde-Cimerman N (2017) Yeasts in polar and subpolar habitats. In: Yeasts in natural ecosystems: diversity. Springer, Cham, pp 331–365

    Chapter  Google Scholar 

  • Buzzini P, Turchetti B, Yurkov A (2018) Extremophilic yeasts: the toughest yeasts around? Yeast 35(8):487–497. https://doi.org/10.1002/yea.3314

    Article  CAS  PubMed  Google Scholar 

  • Cantrell SA, Casillas-Martinez L, Molina M (2006) Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol Res 110(8):962–970

    Article  CAS  PubMed  Google Scholar 

  • Carrasco M, Rozas JM, Barahona S, Alcaíno J, Cifuentes V, Baeza M (2012) Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiol 12:251

    Article  PubMed  PubMed Central  Google Scholar 

  • Charoenchai C, Fleet GH, Henschke PA, Ben T (1997) Screening of non-Saccharomyces wine yeasts for the presence of extracellular hydrolytic enzymes. Austr J Grape Wine Res 3:2–8

    Article  CAS  Google Scholar 

  • Connell L, Redman R, Craig S, Scorzetti G, Iszard M, Rodriguez R (2008) Diversity of soil yeasts isolated from South Victoria land, Antarctica. Microb Ecol 56:448–459. https://doi.org/10.1007/s00248-008-9363-1

    Article  CAS  PubMed  Google Scholar 

  • Cruz JM, Dominguez JM, Dominguez H, Parajo JC (2000) Dimorphic behaviour of Debaryomyces hansenii grown on barley bran acid hydrolysates. Biotechnol Lett 22:605–610

    Article  CAS  Google Scholar 

  • D’elia T, Veerapaneni R, Theraisnathan V, Rogers SO (2009) Isolation of fungi from Lake Vostok accretion ice. Mycologia 101:751–763

    Article  PubMed  Google Scholar 

  • Davenport RR (1980) An introduction to yeasts and yeast-like organisms. Academic, London, pp 1–27

    Google Scholar 

  • De Garcia V, Brizzio S, Libkind D, Buzzini P, Van Broock M (2007) Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia, Argentina. FEMS Microbiol Ecol 59:331–341

    Article  PubMed  CAS  Google Scholar 

  • Deak T (2006). Environmental factors influencing yeasts. In Rosa CA, Gárbor P (eds) Yeasts handbook on biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 155–174

    Google Scholar 

  • Deak T (2008) Handbook of food spoilage yeasts, 2nd edn. CRC Press, Boca Raton, pp 17–36

    Google Scholar 

  • Donzis RA (1996). Substantially purified β-(1,3) finely ground yeast cell wall glucan composition with dermatological and nutritional uses. US Patent 5, 576,015

    Google Scholar 

  • Droby S, Chalutz E, Wilson CL, Wisniewski M (1989) Characterization of the biocontrol activity of Debaryomyces hansenii in the control of Penicillium digitatum on grapefruit. Can J Microbiol 35:794–800

    Article  Google Scholar 

  • Dziezak JD (1987) Yeasts and yeast derivatives. Appl Food Technol 41:122–125

    Google Scholar 

  • Edwards AB, Douglas AM, Anesio SM, Rassner TDL, Irvine-Fynn B, Sattler GW Griffith (2013) A distinctive fungal community inhabiting cryoconite holes on glaciers in Svalbard. Fungal Ecol 6(2): 168–176

    Article  Google Scholar 

  • Ellis-Evans JC (1985) Fungi from maritime Antarctic freshwater environments. Br Antarct Survey Bull 68:37–45

    Google Scholar 

  • Epova E, Guseva M, Kovalyov L, Isakova E, Deryabina Y, Belyakova A, Zylkova M, Shevelev A (2012) Identification of proteins involved in pH adaptation in extremophile yeast Yarrowia lipolytica. In: Proteomic applications in biology. InTech, Rijeka

    Google Scholar 

  • Fatichenti F, Bergere JL, Deiana P, Farris GA (1983) Antagonistic activity of Debaryomyces hansenii towards Clostridium tyrobutyricum and C. butyricum. J Dairy Res 50:449–457

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Ferreira A, Viljoen BC (2003) Yeasts as adjunct starters in matured Cheddar cheese. Int J Food Microbiol 86:131–140

    Article  CAS  PubMed  Google Scholar 

  • Fleet GH (1992) Spoilage yeasts. Crit Rev Biotechnol 12:1–44

    Article  CAS  PubMed  Google Scholar 

  • Fleet GH, Mian MA (1987) The occurrence and growth of yeasts in dairy products. Int J Food Microbiol 4:145–155

    Article  Google Scholar 

  • Flores M, Dura MA, Marco A, Toldra F (2004) Effect of Debaryomyces spp. on aroma formation and sensory quality of dry-fermented sausages. Meat Sci 68:439–446

    Article  CAS  PubMed  Google Scholar 

  • Fonseca A, Boekhout T, Fell JW (2011) Cryptococcus Vuillemin (1901). In: Kurtzman C, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, Amsterdam, pp 1661–1738

    Chapter  Google Scholar 

  • Fournier D, Lemieux R, Couillard D (1998) Essential interactions between Thiobacillus ferrooxidans and heterotrophic microorganisms during a wastewater sludge bioleaching process. Environ Pollut 101:303–309

    Article  CAS  PubMed  Google Scholar 

  • Gadanho M, Libkind D, Sampaio JP (2006) Yeast diversity in the extreme acidic environments of the Iberian Pyrite Belt. Microb Ecol 52(3):552–563

    Article  PubMed  Google Scholar 

  • Garcia-Gonzalez A, Ochoa JL (1999) Anti-inflammatory activity of Debaryomyces hansenii Cu, Zn-SOD. Arch Med Res 30:69–73

    Article  CAS  PubMed  Google Scholar 

  • Girio FM, Peito MA, Amaral-Collaco MT (1989) Enzymatic and physiological study of D-xylose metabolism by Candida shehatae. Appl Microb Biotechnol 32:199–204

    Article  CAS  Google Scholar 

  • Girio FM, Roseiro JC, Sá-Machado P, Duarte-Reis AR, Amaral-Collaço MT (1994) Effect of oxygen transfer rate on levels of key enzymes of xylose metabolism in Debaryomyces hansenii. Enzym Microb Technol 16:1074–1078

    Article  CAS  Google Scholar 

  • Goto S, Sugiyama J, Iizuka H (1969) Taxonomic study of Antarctic yeasts. Mycologia 61:748–774

    Article  CAS  PubMed  Google Scholar 

  • Gunot AM (1999). Microbial life in permanently cold soils. In Margesin R, Schinner F (eds) Cold-adapted organisms: ecology, physiology, enzymology and molecular biology. Springer, Berlin, pp 3–15

    Google Scholar 

  • Hofmeyer T, Bulani SI, Grzeschik J, Krah S, Glotzbach B, Uth C, Avrutina O, Brecht M, Göringer HU, van Zyl P, Kolmar H (2014) Protein production in Yarrowia lipolytica via fusion to the secreted lipase Lip2p. Mol Biotechnol 56(1):79–90

    Article  CAS  PubMed  Google Scholar 

  • Jamas S, Easson J, Davidson D, Ostroff GR (1996). Use of aqueous soluble glucan preparation to stimulate platelet production. US Patent 5, 532, 223

    Google Scholar 

  • Kambura AK, Mwirichia RK, Kasili RW, Karanja EN, Makonde HM, Boga HI (2016) Diversity of fungi in sediments and water sampled from the hot springs of Lake Magadi and Little Magadi in Kenya. Afr J Microbiol Res 10(10):330–338

    Article  CAS  Google Scholar 

  • Kaszycki P, Czechowska K, Petryszak P, Międzobrodzki J, Pawlik B, Kołoczek H (2006) Methylotrophic extremophilic yeast Trichosporon sp.: a soil-derived isolate with potential applications in environmental biotechnology. Acta Biochimica Polonicas 53(3/2006):463–473

    CAS  Google Scholar 

  • Laubscher PJ, Viljoen BC (1999) The occurrence, growth and survival of yeasts in matured Cheddar. University of the Free State, Bloemfontein, pp 77–95

    Google Scholar 

  • Libkind D, Brizzio S, Ruffini A, Gadanho M, Van Broock M, Sampaio JP (2003) Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina. Antonie Van Leeuwenhoek 84:313–322

    Article  CAS  PubMed  Google Scholar 

  • Libkind D, Moliné M, Sampaio JP, Van Broock M (2009) Yeasts from high-altitude lakes: influence of UV radiation. FEMS Microbiol Ecol 69:353–362

    Article  CAS  PubMed  Google Scholar 

  • Lozovaia OG, Kasatkina TP, Podgorskii VS (2004) Search of heavy metals biosorbents among yeasts of different taxonomic groups. Mikrobiol Z 66:92–101

    CAS  PubMed  Google Scholar 

  • Maharana AK, Singh SM (2018) A cold and organic solvent tolerant lipase produced by Antarctic strain Rhodotorula sp. Y-23. J BasicMicrobiol 58:331–342

    CAS  Google Scholar 

  • Marcincakova R, Kadukoka J, Mrazikova A, Velgosora O, Vojtko M (2015) Lithium bioleaching from lepidolite using the yeast Rhodoturula rubra. J Polish Miner Eng Soc 16:1–6

    Google Scholar 

  • Meléndez-Martínez AJ, Mapelli-Brahm P, Benítez-González A, Stinco CM (2015) A comprehensive review on the colorless carotenoids phytoene and phytofluene. Arch Biochem Biophys 572:188–200

    Article  PubMed  CAS  Google Scholar 

  • Moliné M, Libkind D, de Garcia V, Giraudo MR (2014) Production of pigments and photo-protective compounds by cold-adapted yeasts. Cold-adapted Yeasts. Springer, Berlin/Heidelberg, pp 193–224

    Google Scholar 

  • Morita T, Fukuoka T, Imura T, Kitamoto D (2013) Production of mannosylerythritol lipids and their application in cosmetics. Appl Microbiol Biotechnol 97(11):4691–4700

    Article  CAS  PubMed  Google Scholar 

  • Moubasher AA, Abdel-Sater MA, Soliman ZS (2018) Diversity of yeasts and filamentous fungi in mud from hypersaline and freshwater bodies in Egypt. Czech Mycol 70(1):1–32

    Article  Google Scholar 

  • Mukhopadhyaya SK, Chatterjeea S, Gauria SS, Dasa SS, Mishraa A, Moumita Patraa M, Ghosha AK, Dasa AK, Singh SM, Dey S (2014) Isolation and characterization of extracellular polysaccharide Thelebolan produced by a newly isolated psychrophilic Antarctic fungus Thelebolus. Carbohydr Polym 104:204–212

    Article  CAS  Google Scholar 

  • Nguyen TH, Fleet GH, Rogers PL (1998) Composition of the cell walls of several yeast species. Appl Microbiol Biotechnol 50:206–212

    Article  CAS  PubMed  Google Scholar 

  • Nguyen VAT, Senoo K, Mishima T, Hisamatsu M (2001) Multiple tolerance of Rhodotorula glutinis R-1 to acid, aluminum ion and manganese ion, and its unusual ability of neutralizing acidic medium. J Biosci Bioeng 92:366–371

    Article  CAS  PubMed  Google Scholar 

  • Orozco MR, Hernandez-Saavedra NY, Valle FA, Gonzalez BA, Ochoa JL (1998) Cell yield and superoxide dismutase activity of the marine yeast Debaryomyces hansenii under different culture conditions. J Mar Biotechnol 6:255–259

    Google Scholar 

  • Parajo JC, Dominguez H, Dominguez JM (1995) Production of xylitol from raw wood hydrolysates by Debaryomyces hansenii NRRL Y-7426. Bioproc Engin 13:125–131

    Article  CAS  Google Scholar 

  • Parajo JC, Dominguez H, Dominguez JM (1997) Improved xylitol production with Debaryomyces hansenii Y-7426 from raw or detoxified wood hydrolysates. Enz Microb Technol 21:18–24

    Article  CAS  Google Scholar 

  • Pathan AAK, Bhadra B, Begum Z, Shivaji S (2010) Diversity of yeasts from puddles in the vicinity of midre lovenbreen glacier, arctic and bioprospecting for enzymes and fatty acids. Curr Microbiol 60(4):307–314

    Article  CAS  PubMed  Google Scholar 

  • Pearce DA (2003) Bacterioplankton community structure in a maritime Antarctic oligotrophic lake during a period of holomixis, as determined by denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH). Microb Ecol 46:92–105

    Article  CAS  PubMed  Google Scholar 

  • Perfumo A, Banat IM, Marchant R (2018) Going green and cold: biosurfactants from low-temperature environments to biotechnology applications. Trends Biotechnol 36(3):277–289

    Article  CAS  PubMed  Google Scholar 

  • Pitt JI, Hockin AD (2009) The ecology of fungal food spoilage. In: Fungi and food spoilage. Springer, Boston, pp 3–9

    Chapter  Google Scholar 

  • Plemenitaš A, Lenassi M, Konte T, Kejžar A, Zajc J, Gostinčar C, Gunde-Cimerman N (2014) Adaptation to high salt concentrations in halotolerant/halophilic fungi: a molecular perspective. Front Microbiol 5:199

    PubMed  PubMed Central  Google Scholar 

  • Podgorskii VS, Kasatkina TP, Lozovaia OG (2004) Yeasts – biosorbents of heavy metals. Mikrobiol Z 66:91–103

    CAS  PubMed  Google Scholar 

  • Prista C, Almagro A, Loureiro-Dias MC, Ramos J (1997) Physiological basis for the high salt tolerance of Debaryomyces hansenii. Appl Environ Microbiol 63(10):4005–4009

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez-Orozco M, Hernandez-Saavedra NY, Ochoa J-L (2001) Debaryomyces hansenii growth in non-sterile seawater ClO2–peptone-containing medium. Can J Microbiol 47:676–679

    Article  CAS  PubMed  Google Scholar 

  • Raspor P, Zupan J (2006) Yeasts in extreme environments. In: Biodiversity and ecophysiology of yeasts. Springer, Berlin/Heidelberg, pp 371–417

    Chapter  Google Scholar 

  • Ratledge CO, Tan KH (1990) Oils and fats: production, degradation and utilization by yeasts. In Verachtert HJ, De mot R (eds) Yeast biotechnology and biocatalysis. Marcel Dekker, New York, pp 223–253

    Google Scholar 

  • Ray MK, Shivaji S, Rao NS, Bhargava PM (1989) Yeast strains from the Schirmacher oasis. Antarctica Polar Biol 9:305–309

    Article  Google Scholar 

  • Ray MK, Devi KU, Kumar GS, Shivaji S (1992) Extracellular protease from the antarctic yeast Candida humicola. Appl Environ Microbiol 58(6):1918–1923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rikhvanov EG, Varakina NN, Sozinov DY, Voinikov VK (1999) Association of bacteria and yeasts in hot springs. Appl Environ Microbiol 65(9):4292–4293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353

    Article  CAS  Google Scholar 

  • Roostita R, Fleet GH (1996) The occurrence and growth of yeasts in Camembert and blue-veined cheeses. Int J Food Microbiol 28:393–404

    Article  CAS  PubMed  Google Scholar 

  • Roseiro JC, Peito MA, Girio FM, Amaral-Collaco T (1991) The effects of the oxygen transfer coefficient and substrate concentration on the xylose fermentation by Debaryomyces hansenii. Arch Microbiol 156:484–490

    Article  CAS  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409(6823):1092

    Article  CAS  PubMed  Google Scholar 

  • Russell NJ (2006) Antarctic microorganisms: coming in from the cold. Culture 27:965–989

    Google Scholar 

  • Russell NJ (2008) Membrane components and cold sensing. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 177–190

    Chapter  Google Scholar 

  • Salinas E, Orellano M, Rezza I, Martinez L, Marchesvky E, Tossetti M (2000) Removal of cadmium and lead from dilute aqueous solutions by Rhodotorula rubra. Bioresour Technol 72:107–112

    Article  CAS  Google Scholar 

  • Sampaio JP (2004) Diversity, phylogeny and classification of basidiomycetous yeasts. In: Agerer R, Blanz P, Piepenbring M (eds) Frontiers in Basidiomycote mycology. IHW-Verlag, Eching, pp 49–80

    Google Scholar 

  • Sampaio JP (2011) Rhodotorula Harrison (1928). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, vol 3, 5th edn. Elsevier, London, pp 1873–1927

    Chapter  Google Scholar 

  • Satyanarayana T, Raghukumar C, Shivaji S (2005) Extremophilic microbes: diversity and perspectives. Curr Sci 89(1):78–90

    Google Scholar 

  • Seeley RD (1977) Fractionation and utilisation of baker’s yeast. MBAA Tech Q 14:35–39

    CAS  Google Scholar 

  • Sekova VY, Isakova EP, Deryabina YI (2015) Biotechnological applications of the extremophilic yeast Yarrowia lipolytica. Appl Biochem Microbiol 51(3):278–291

    Article  CAS  Google Scholar 

  • Shivaji S, Prasad GS (2009) Antarctic yeasts: biodiversity and potential applications. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, Berlin, pp 3–16

    Chapter  Google Scholar 

  • Shivaji S, Chattopadhyay MK, Ray MK (1994) Bacteria and yeasts of Schirmacher Oasis, Antarctica: taxonomy, biochemistry and molecular biology. Proc NIPR Symp Polar Biol 7:173–184

    Google Scholar 

  • Singh SM, Nayaka S (2017) Contributions to the floral diversity of Schirmacher oasis and Larsemann Hills, Antarctica. Proc Indian Natn Sci Acad 83(2):469–481

    Google Scholar 

  • Singh P, Singh SM (2012) Characterization of yeast and filamentous fungi isolated from cryoconite holes of Svalbard, Arctic. Polar Biol 35(4):575–583

    Article  Google Scholar 

  • Singh SM, Singh PN, Singh SK, Sharma PK (2012) Pigment, fatty acids and extracellular enzyme analysis, of a fungal strain Thelebolus microsporus from Larsemann Hills Antarctica. Polar Record. https://doi.org/10.1017/S0032247412000563

    Article  Google Scholar 

  • Singh P, Tsuji M, Singh SM, Roy U, Hoshino T (2013) Taxonomic characterization, adaptation strategies and biotechnological potential of cryophilic yeasts from ice cores of Midre Lovénbreen glacier, Svalbard, Arctic. Cryobiology 66:167–175

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Singh SM, Tsuji M, Prasad GS, Hoshino T (2014) Rhodotorula svalbardensis sp. nov., a novel yeast species isolated from cryoconite holes of Ny-Ålesund, Arctic. Cryobiology 68:122–128

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Kapse N, Arora P, Singh SM, Dhakephalkar PK (2015) Draft genome of Cryobacterium sp. MLB-32, an obligate psychrophile from glacier cryoconite holes of high Arctic. Mar Genomics 21:25–26. https://doi.org/10.1016/j.margen.2015.01.006

    Article  PubMed  Google Scholar 

  • Singh P, Roy U, Tsuji M (2016) Characterisation of yeast and filamentous fungi from Brøggerbreen glaciers, Svalbard. Polar Rec 52(4):442–449

    Google Scholar 

  • Sjöling S, Cowan DA (2003) High 16S rDNA bacteria diversity in glacial meltwater lake sediment, Bratina island, Antarctica. Extremophiles 7:275–282

    Article  PubMed  CAS  Google Scholar 

  • Spencer JFT, Spencer DM (1997) Yeasts in natural and artificial habitat. Springer, Berlin, p 381

    Book  Google Scholar 

  • Stanley SO, Rose AH (1967) Bacteria and yeasts from lakes on Deception Island. Proc R Soc Ser B 252:199–207

    Google Scholar 

  • Stetter KO (2006) History of discovery of the first hyperthermophiles. Extremophiles 10(5):357–362

    Article  PubMed  Google Scholar 

  • Strauss MLA, Jolly NP, Lambrechts MG, van Rensburg P (2001) Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine yeasts. J Appl Microbiol 91:182–190

    Article  CAS  PubMed  Google Scholar 

  • Thomas T, Cavicchioli R (2000) Effect of temperature on stability and activity of elongation factor 2 proteins from Antarctic and thermophilic methanogens. J Bacteriol 182:1328–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas-Hall SR, Turchetti B, Buzzini P, Branda E, Boekhout T, Threelen B, Watson K (2010) Cold-adapted yeasts from Antarctica and Italian Alps – description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 14:47–59

    Article  CAS  PubMed  Google Scholar 

  • Tilbury RH (1980). Xerotolerant (osmophilic) yeasts. In: Skinner FA, Passmore SM, Davenport RR (eds) Biology and activities of yeasts.Academic, London, pp 153–179

    Google Scholar 

  • Trappen SV, Mergaert J, Eygen SV, Dawyndt P, Cnockaert MC, Swings J (2002) Diversity of 746 heterotrophic bacteria isolated from microbial mats from ten Antarctic lakes. Syst Appl Microbiol 25:603–610

    Article  PubMed  Google Scholar 

  • Tsuji M (2016) Cold-stress responses in the Antarctic basidiomycetous yeast Mrakia blollopis. R Soc Open Sci 3:160106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsuji M, Yokota Y, Shimohara K, Kudoh S, Hoshino T (2013a) An application of wastewater treatment in a cold environment and stable lipase production of Antarctic basidiomycetous yeast Mrakia blollopis. PLoS One 8(3):e59376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji M, Fujiu S, Xiao N, Hanada Y, Kudoh S, Kondo H, Tsuda S, Hoshino T (2013b) Cold adaptation of fungi obtained from soil and lake sediment in the Skarvsnes ice-free area, Antarctica. FEMS Microbiol Lett 346:121–130

    Article  CAS  PubMed  Google Scholar 

  • Tsuji M, Yokota Y, Kudoh S, Hoshino T (2015) Comparative analysis of milk fat decomposition activity by Mrakia spp. isolated from Skarvsnes ice-free area, East Antarctica. Cryobiology 70:293–296

    Article  CAS  PubMed  Google Scholar 

  • Turk M, Plemenita SA, Gunde-Cimerman N (2011) Extremophilic yeasts: plasmamembrane fluidity as determinant of stress tolerance. Fungal Biol 115:950–958

    Article  CAS  PubMed  Google Scholar 

  • Van den Tempel T, Jacobsen M (2000) The technological characteristics of Debaryomyces hansenii and Yarrowia lipolytica and their potential as starter cultures for production of Danablu. Int Dairy J 10:263–270

    Article  Google Scholar 

  • Vaz ABM, Rosa LH, Vieira MLA, De Garcia V, Brandão LR, Teixeira LCRS, Moliné M, Libkind D, Van Broock M, Rosa CA (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 42:937–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vishniac HS (2006a) A multivariate analysis of soil yeasts isolated from a latitudinal gradient. Microb Ecol 52:90–103

    Article  PubMed  Google Scholar 

  • Vishniac HS (2006b) Yeast biodiversity in the Antarctic. Biodiversity and ecophysiology of yeasts. Springer, Berlin/Heidelberg, pp 419–440

    Google Scholar 

  • Welander U (2005) Microbial degradation of organic pollutants in soil in a cold climate. Soil Sediment Contam 14:281–291

    Article  CAS  Google Scholar 

  • Welthagen JJ, Viljoen BC (1998) Yeast profile in Gouda cheese during processing and ripening. Int J Food Microbiol 41:185–194

    Article  CAS  PubMed  Google Scholar 

  • Williams DL, Pretus HA, McNamee RB, Jones EL, Ensley HE, Browder IW (1992) Development of a water-soluble, sulfated (1→ 3)-ß- D-glucan biological response modifier derived from Saccharomyces cerevisiae. Carbohydr Res 235:247–257

    Article  CAS  PubMed  Google Scholar 

  • Wyder M-T, Puhan Z (1999) Role of selected yeasts in cheese ripening: – an evaluation in aseptic cheese curd slurries. Int Dairy J 9:117–124

    Article  Google Scholar 

  • Xiao N, Inaba S, Tojo M, Degawa Y, Fujiu S, Hanada Y, Kudoh S, Hoshino T (2010) Antifreeze activities of various fungi and Stramenophilia isolated from Antarctica. N Am Fungi 5:215–220

    Google Scholar 

  • Yamauchi K, Kang KH, Kaminogawa S, Komagata K (1975) Effects of yeasts isolated from cheese on the growth of lactic acid bacteria in skim milk. Jap J Zootech Sci 46:73–80

    CAS  Google Scholar 

  • Yanai T, Tsunekawa H, Okamura K & Okamoto R (1994). Manufacture of pyruvic acid with Debaryomyces. JP patent 0 600 091

    Google Scholar 

  • Yurkov AM, Vustin MM, Tyaglov BV, Maksimova IA, Sineokiy SP (2008) Pigmented basidiomycetous yeasts are a promising source of carotenoids and ubiquinone Q 10. Microbiology 77(1):1–6

    Article  CAS  Google Scholar 

  • Zajc J, Džeroski S, Kocev D, Oren A, Sonjak S, Tkavc R, Gunde-Cimerman N (2014) Chaophilic or chaotolerant fungi: a new category of extremophiles? Front Microbiol 5:708

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Hosoi-Tanabe S, Nagata S, Ban S, Imura S (2008) Cultivation and characterization of microorganisms in Antarctic lakes. Conference proceedings, OCEANS Kobe: MTS/IEEE Kobe Techno-Ocean, pp 1–4

    Google Scholar 

Download references

Acknowledgments

RS is grateful to the Department of Biotechnology, New Delhi, for financial support for the establishment of National Centre for Microbial Resource (NCMR), Pune, wide grant letter no. BT/Coord.II/01/03/2016 dated April 6, 2017. SMS acknowledges financial support from Indian Council of Agricultural Research (ICAR) [NBAIM/AMAAS/2014-17/PF/24/21] for research on the Himalayas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S.M., Adhapure, N., Sharma, R. (2019). Diversity and Bioprospecting of Yeasts from Extreme Environments. In: Satyanarayana, T., Deshmukh, S., Deshpande, M. (eds) Advancing Frontiers in Mycology & Mycotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9349-5_5

Download citation

Publish with us

Policies and ethics