Skip to main content

Microbes and Processes in Bioremediation of Soil

  • Chapter
  • First Online:
Microbes and Enzymes in Soil Health and Bioremediation

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 16))

Abstract

Environmental pollution has been increasing at an alarming rate since the beginning of the twenty-first century. There is an enormous increase in the production and use of xenobiotic compounds that have created new sites of environmental contamination and problem worsens as many of such xenobiotic compounds are either persistent or recalcitrant to microbial breakdown. The presence of anthropogenic organic compounds/chemicals in the environment is a matter of significant concern because of their potential toxicity, mutagenicity, and bioconcentration (biomagnification) in higher organisms. This is of immense concern and hence provides impetus to the development of certain remediation techniques. Various microorganisms play a key role in the bioremediation of soil and may range from bacteria majorly to a few actinomycetes and fungi. Bioremediation can be carried out via two main approaches, ex situ and in situ, and choice of method depends largely on site characteristics, concentration, and type of pollutants present. To enhance the remediation process, a more recent approach called bioaugmentation is also practiced. Bioaugmentation trials have met varying degrees of success. This chapter will largely focus on various microorganisms which are potent biomediators and also the processes involved in the same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdulsalam S, la SS A, Bugaje IM et al (2013) Bioremediation of soil contaminated with used motor oil in a closed system. J Bioremed Biodegr 3:100–172

    Google Scholar 

  • Adebajo SO, Akintokun AK, Balogun SA (2017) Screening and characterisation of biosurfactant producing bacteria from soil samples in Ogun-state, Nigeria. Int J Microbial Res 18:1–12

    Article  Google Scholar 

  • AI-Jawhari IFH (2014) Ability of some soil fungi in biodegradation of petroleum hydrocarbon. J Appl Environ Microbiol 2:46–52

    Google Scholar 

  • Aliaa ME, Eltayeb KM, Mostafa AR et al (2016) Biodegradation of industrial oil-polluted wastewater in Egypt by bacterial consortium immobilized in different types of carriers. Pol J Environ Stud 25:1901–1909

    Article  CAS  Google Scholar 

  • Anderson WC, Ward CH (1995) Innovative site remediation technologies In: Vol I Bioremediation. american academy of environmental engineers, WASTECH

    Google Scholar 

  • Antizar-Ladislao B, Lopez-Real J, Beck AJ (2006) Investigation of organic matter dynamics during in-vessel composting of an aged coal-tar emission spectroscopy. Chemosphere 64(5):839–847. https://doi.org/10.1016/j.chemosphere.2005.10.036

    Article  CAS  PubMed  Google Scholar 

  • Aranda E, Ullrich R, Hofrichter M (2010) Conversion of polycyclic aromatic hydrocarbons, methyl naphthalenes and dibenzofuran by two fungal peroxygenases. Biodegradation 21:267–281

    Article  CAS  PubMed  Google Scholar 

  • Beck DP (1991) Sustainability of charcoal amended mineral soil as carrier for Rhizobium inoculants. Soil Biol Biochem 23:41–44

    Article  Google Scholar 

  • Bento FM, Camargo FAO, Okeke BC et al (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj P, Kapley A (2015) Remediation of pesticide-contaminated soil: emerging options vol 1 In: Kalia VC (ed) Microbial factories Biofuel waste treatment. pp 293–313

    Google Scholar 

  • Bourier EJ, Zeahnder AJB (1993) Bioremediation of organic compounds putting microbial metabolism toward. Trends Biotechnol 11:360–367

    Article  Google Scholar 

  • Burghal AA, Najwa MJA, Al-Tamimi WH (2016) Mycodegradation of crude oil by fungal species isolated from petroleum contaminated soil. Int J Innov Res Sci Eng Technol 5:1517–1524

    Google Scholar 

  • Cassidy MB, Mullineers H, Lee H et al (1992) Mineralization of pentachlorophenol in a contaminated soil by Pseudomonas sp. UG30cells encapsulated in K-carrageenan. J Ind Microbiol Biotechnol 3:232–243

    Google Scholar 

  • Chen C, Wang JL (2015) Characteristics of Zn2+ biosorption by Saccharomyces cerevisiae. Biomed Enviro Sci 20:478–482

    Google Scholar 

  • Chen YM, Lin TF, Huang C et al (2007) Degradation of phenol and TCE using suspended and chitosan bed immobilized Pseudomonas putida. J Hazard Mater 148:660–670

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Li X, Zhu Q, Ma J, Hou H, Zhang S (2019) Bioremediation of petroleum-contaminated soil enhanced by aged refuse. Chemo 222:98–105

    Article  CAS  Google Scholar 

  • Cho YG, Rhee SK, Lee ST (2000) Effect of soil moisture on bioremediation of chlorophenol contaminated soil. Biotechnol Lett 22:915–919

    Article  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanism of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  CAS  PubMed  Google Scholar 

  • Colberg PJS, Young LL (1995) Anaerobic degradation of nonhalogenated homocyclic aromatic compounds coupled with nitrate, iron, or sulfate reduction. In: Young LL, Cerniglia CE (eds) Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss, New York, pp 307–330

    Google Scholar 

  • Das A, Mishra S, Verma VK (2015) Enhanced biodecolorization of textile dye remazol navy blue using an isolated bacterial strain Bacillus pumilus HKG212 under improved culture conditions. J Biochem Technol 6:962–969

    Google Scholar 

  • Dehaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.) (II. Aluminum stimulated excretion of malic acid from root apices). P Physiol 103:695–702

    Article  Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Richer-Laflèche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152(1):1–31

    Article  CAS  PubMed  Google Scholar 

  • Dhankher OP, Pilon-Smits EAH, Meagher RB, Doty S (2011) Biotechnological approaches for phytoremediation. In: Altman A, Hasegawa PM (eds) Plant Biotechnology and Agriculture. Academic Press, Oxford, pp 309–328

    Google Scholar 

  • Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109:163–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dolfing J, Harrison BK (1993) Redox and reduction potentials as parameters to predict the degradation pathway of chlorinated benzenes in anaerobic environments. FEMS Microbiol Ecol 13:23–30

    Article  CAS  Google Scholar 

  • Dorb E, Knackmuss HJ (1978) Chemical structure and biodegradability of halogenated aromatic compounds: substituent effects of 1, 2-dioxygenation of catechol. Biochem J 174:85–94

    Article  Google Scholar 

  • DorotaWolicka AS, Bockowski A, Bieleka A (2009) Application of aerobic microorganisms in bioremediation in-situ of soil contaminated by petroleum products. Bioresour Technol 100(13):3321–3227

    Google Scholar 

  • England LS, Lee H, Trevor JT (1993) Bacterial survival in soil: effect of clays and protozoa. Soil Biol Biochem 25:523–531

    Article  Google Scholar 

  • Erika AW, Vivian B, Claudia C et al (2013) Biodegradation of phenol in static cultures by Penicillium chrysogenum erk1: catalytic abilities and residual phytotoxicity. Rev Argent Microbiol 44:113–121

    Google Scholar 

  • Field JA, Stams AJM, Kato M et al (1995) Enhanced biodegradation of aromatic pollutants in coculture of aerobic and anaerobic bacterial consortia. Anton Laeuw 67:47–77

    Article  CAS  Google Scholar 

  • Forsyth JV, Tsao YM, Bleam RD (1995) Bioremediation: why is augmentation needed. In: Fredrkso J, Hinchee RE (eds) Bioaugmentation for site remediation. Battelle Press, Columbus

    Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freedman DL, Lasecki M, Hashsham S et al (1995) Accelerated biotransformation of carbon tetrachloride and chloroform by sulfate reducing enrichment cultures. In: Herson DS, Baker HK (eds) Bioremediation. McGraw Hill, New York, pp 123–128

    Google Scholar 

  • Frutos FJG, Fernandez MD (2010) Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil. J Hazard Mater 183(1–3):806–813. https://doi.org/10.1016/j.jhazmat.2010.07.098

    Article  CAS  Google Scholar 

  • Frutos FJG, Pe’rez R, Escolano O et al (2012) Remediation trials for hydrocarbon-contaminated sludge from a soil washing process: evaluation of bioremediation technologies. J Hazard Mater 199:262–271. https://doi.org/10.1016/j.jhazmat.2011.11.017

    Article  CAS  PubMed  Google Scholar 

  • Gardin H, Pauss A (2001) K-carrageenan/gelatin gel beads for the co-immobilization of aerobic and anaerobic microbial communities degrading 2, 4, 6-trichlorophenol under air limited conditions. Appl Microbiol Biotechnol 56:517–523

    Article  CAS  PubMed  Google Scholar 

  • Gentili AR, Cubitto MA, Ferrero M et al (2006) Bioremediation of crude oil polluted sea water by a hydrocarbon degrading bacterial strain immobilized on chitin and chitosan flakes. Int Biodeterior Biodegrad 57:222–228

    Article  CAS  Google Scholar 

  • Gentry TJ, Rensing C, Pepper IL (2004) New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34:447–494

    Article  CAS  Google Scholar 

  • Germaine KJ, Byrne J, Liu X et al (2014) Ecopiling: a combined phytoremediation and passive biopiling system for remediating hydrocarbon impacted soil at field scale. Front Plant Sci 5:756

    PubMed  Google Scholar 

  • Ghattas A-K, Fischer F, Wick A, Ternes TA (2017) Anaerobic biodegradation of (emerging) organic contaminants in aquatic environment. Water Res 116(2017):268–295

    Article  CAS  PubMed  Google Scholar 

  • Ghazali FM, Rahman RNZA, Salleh AB et al (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Int Biodeterio Biodegrad 54:61–67

    Article  CAS  Google Scholar 

  • Giasi CI, Morelli A (2003) A landfarming application technique used as environmental remediation for coal oil pollution. J Environ Sci Health A Tox Hazard Subst Environ Eng 38:1557–1568

    Article  PubMed  CAS  Google Scholar 

  • Gomez MJ, Pazos F, Guijarro FJ et al (2017) The environmental fate of organic pollutants through the global microbial metabolism. Mol Syst Biol 3:1–11

    Google Scholar 

  • Gong XQ, Cai LL, Li SY et al (2018) Bamboo biochar amendment improves the growth and reproduction of Eisenia fetida and the quality of green waste vermicompost. Ecotox Environ Safe 156:197–204

    Article  CAS  Google Scholar 

  • Goux S, Shapir N, EL Frantrocessi S et al (2003) Long term maintenance of rapid atrazine degradation in soils inoculated with atrazine degraders. Water Air Soil Pollut Focus 3:131–142

    Article  CAS  Google Scholar 

  • Greer LE, Shelton DR (1992) Effect or inoculant strain and organic matter content on kinetics of 2, 4-dichlorophenoxyacetic acid degradation in soil. Appl Environ Microbiol 58:1459–1465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guerra L, Guidi R, Slot I et al (2011) Bacterial genotoxin triggers FEN1-dependent RhoA activation cytoskeletal remodelling and cell survival. J Cell Sci 124:2735–2742

    Article  CAS  PubMed  Google Scholar 

  • Guerrinot ML, Salt DE (2001) Fortified foods and phytoremediation: two sides of same coin. Plant Physiol 125:164–167

    Article  Google Scholar 

  • Hall JL (2002) Cellular mechanism for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ et al (2008) Evolution of metal hyperaccumulation required Cu-regulatory changes and triplication of HMA4. Nature 453:391–395

    Article  CAS  PubMed  Google Scholar 

  • Hassan MM, Alam MZ, Anwar MN (2013) Biodegradation of textile azo dyes by bacteria isolated from dyeing industry effluent. Int Res J Biological Sci 2:27–31

    Google Scholar 

  • Head IM, Martin Jones D, Röling WFM (2006) Marine microorganisms make a meal of oil. Nat. Rev Microbiol 4:173–182

    CAS  Google Scholar 

  • Heitkamp MA, Steward WP (1995) A novel porus nylon biocarrier for immobilized bacteria. Appl Microbiol Biotechnol 62:4662–4669

    Google Scholar 

  • Hesham A, Khan S, Tao Y et al (2012) Biodegradation of high molecular weight PAHs using isolated yeast mixtures: application of metagenomic methods for community structure analyses. Environ Sci Pollut Res Int 19:3568–3578

    Article  CAS  Google Scholar 

  • Hidayat A, Tachibana S (2012) Biodegradation of aliphatic hydrocarbon in three types of crude oil by Fusarium sp. F092 under stress with artificial sea water. J Environ Sci Technol 5:64–73

    Article  CAS  Google Scholar 

  • Hussaini S, Shaker M, Asef M (2013) Isolation of bacterial for degradation of selected pesticides. Bull Environ Pharmacol Life Sci 2:50–53

    CAS  Google Scholar 

  • Infante JC, De Arco RD, Angulo ME (2014) Removal of lead, mercury and nickel using the yeast Saccharomyces cerevisiae. Rev MVZ Córdoba 19:4141–4149

    Article  CAS  Google Scholar 

  • Jakagi SI, Nomoto K, Takemoto T (1984) Physiological aspect of mugineic acid: a possible phytosiderophore of graminaceous plants. J Plants Nutri 7:1–5

    Article  Google Scholar 

  • Jen AC, Wake MC, Mikos AG (1996) Review: hydrogels for cell immobilization. Biotechnol Bioeng 50:254–272

    Article  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme res 2011:1–11. https://doi.org/10.4061/2011/805187

    Article  CAS  Google Scholar 

  • Kim JM, Le NT, Cheng BS et al (2008) Influence of soil components on biodegradation of benzene, toluene, ethylbenzene and o-, m- and p-xylenes by newly isolated bacterium Pseudoxanthomonas spadex RD-a59. Appl Environ Microbiol 74:7313–7320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knackmuss HJ (1981) Degradation of halogenated and sulfonated hydrocarbons. In: Hutter R, Cook AM, Neusch J, Leisinger T (eds) Microbial degradation of xenobiotic and recalcitrant compounds. Academic, London, pp 189–212

    Google Scholar 

  • Knackmuss HJ (1992) Potentials and limitations of microbes to degrade xenobiotics. In: Soil decontamination using biological processes. Karlsruhe, Germany, pp 3–9

    Google Scholar 

  • Kochian LV, Hoekenga OA, Pineros MA (2007) How do crop plants tolerate acid soils? Mechanism of aluminum tolerance and phosphorus efficiency. Ann Rev Plant Biol 55:459–493

    Article  CAS  Google Scholar 

  • Kramer U (2003) Phytoremediation to phytochelatin- plant trace metal homeostasis. New Physiol 158:4–6

    Article  Google Scholar 

  • Kumar A, Bisht BS, Joshi VD et al (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1(6):1079–1093

    Google Scholar 

  • Kuo YC, Wang SY, Kao CM et al (2012) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-a review. Waste Manag 28:215–225

    Google Scholar 

  • Kuppusamy S, Palanisami T, Magharaj M et al (2016) Ex-situ remediation technologies for environmental pollutants: a critical perspective. Rev Environ Contam Toxicol 236:117–192

    CAS  PubMed  Google Scholar 

  • Latha AP, Reddy SS (2013) Reviews on bioremediation potential tool for removing environmental pollution. Int J Basic Appl Chem Sci 3(3):21–33

    Google Scholar 

  • Leahy MC, Erickson GP (1995) Bioventing reduces soil cleanup costs. Hydrocarb Process 8:63–64

    Google Scholar 

  • Liang Y, Zhang X, Dai D et al (2009) Porous biocarrier enhanced biodegradation of crude oil contaminated site. Int Biodeterior Biodegrad 63:80–87

    Article  CAS  Google Scholar 

  • Lin JE, Wang HY (1991) Use of co-immobilized biological systems to degrade toxic organic compounds. Biotechnol Bioeng 38:273–279

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Watts DB, Kloepper JW et al (2018) Influence of plant growth-promoting rhizobacteria on corn growth under different fertility sources. Commun Soil Sci Plant Anal 49(10):1239–1255. https://doi.org/10.1080/00103624.2018.1457155

    Article  CAS  Google Scholar 

  • Liu S, Suflita JM (1993) Ecology and evolution of microbial populations for bioremediation. Trends Biotechnol 11:344–352

    Article  CAS  PubMed  Google Scholar 

  • Macek T, Kotrba P, Svatos A et al (2008) Novel roles for genetically modified plants in environmental protection. Trends Biotechnol 26:146–152

    Article  CAS  PubMed  Google Scholar 

  • Maila MP, Randima P, Surridge K et al (2005) Evaluation of microbial diversity of different soil layer at a contaminated diesel site. Int Biodeter Biodegrad 55:39–44

    Article  CAS  Google Scholar 

  • Malina GJ, Grotenhus TC, Rulkins WH et al (1998) Soil vapour extraction versus bioventing of toluene and decane in bench scale soil columns. Environ Technol 19:977–991

    Article  CAS  Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in remediation of heavy metals contaminated ecosystems: an overview with special reference to phyto remediation. Int J Environ Sci Technol 11(3):843–872

    Article  CAS  Google Scholar 

  • Mashregi M, Prosser JI (2006) Survival and activity of lux-marked phenanthrene degrading Pseudomonas stutzeri P16 under different conditions. Iran J Sci Technol Trans A 30:71–80

    Google Scholar 

  • Maulin PS, Patel KA, Nair SS et al (2013) Microbial degradation of Textile Dye (Remazol Black B) by Bacillus spp. ETL-2012. J Bioremed Biodegr 4:1–5

    Google Scholar 

  • McCarthy K, Walker L, Vigoren et al (2004) Remediation of spilled hydrocarbons by in-situ landfarming at an arctic site. Cold Region Sci Technol 40:31–39

    Article  Google Scholar 

  • McCauly, P (1999) Bioventing for enhanced biodegradation of PAHs. https://clu-in.org/products/newsltrs/ttrend/view.cfm?issue=tt0899.htm. Accessed Aug 1999

  • McGrath Z (2003) Phytoextraction of metals and metalloids from contaminated soil. Curr Opin Biotechnol 14:277–282

    Article  CAS  PubMed  Google Scholar 

  • Meager RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  Google Scholar 

  • Michael JH, Christopher SC (2007) Transporters of ligand for essential metal ions in plants. New Phytol 174:499–506

    Article  CAS  Google Scholar 

  • Miller R (1995) Technology overview report: air sparging, ground water remediation technologies Analysis under GWRTAC. Pilsburgh. pp 10

    Google Scholar 

  • Mohamed AT, El Hussein AA, El Siddig MA et al (2011) Degradation of oxyfluorfen herbicide by soil microorganisms: biodegradation of herbicides. Biotechnol 10:274–279

    Article  CAS  Google Scholar 

  • Mónica P, Darwin RO, Manjunatha B et al (2016) Evaluation of various pesticides-degrading pure bacterial cultures isolated from pesticide-contaminated soils in Ecuador. Afr J Biotechnol 15:2224–2233

    Article  Google Scholar 

  • Nadeef Y, Chitimus AD, Mosnegutu E et al (2012) Technology for soil remediation methods and techniques for environmental protection. J Bioremed Biodegr 79:13–20

    Google Scholar 

  • Niti C, Sunita S, Kamlesh K (2013) Bioremediation: An emerging technology for remediation of pesticides. Res J Chem Environ 17:88–105

    CAS  Google Scholar 

  • NMED (2010) New Mexico Environment Department. Clean up technologies. Petroleum Storage Tank Bureau

    Google Scholar 

  • Norris R (1993) Handbook of bioremediation. CRC Press, Boca Raton

    Google Scholar 

  • Omar SH, Buderker U, Rehm HJ (1990) Degradation of oily sludge from a floatation unit by free and immobilized microorganisms. Appl Microbiol Biotechnol 34:259–273

    Article  CAS  Google Scholar 

  • Ontanon OM, Fernandez M, Agostini E et al (2018) Identification of the main mechanisms involved in the tolerance and bioremediation of Cr(VI) by Bacillus sp. SFC 500-1E. Environ Sci Pollut Res 25(16):16111–16120. https://doi.org/10.1007/s11356-018-1764-1

    Article  CAS  Google Scholar 

  • Pajak M, Halecki W, GÄ…siorek M (2017) Accumulative response of Scots pine (Pinussylvestris L.) and silver birch (Betula pendula Roth) to heavy metals enhanced by Pb-Zn ore mining and processing plants: explicitly spatial considerations of ordinary kriging based on a GIS approach. Chemosphere 168:851–859. https://doi.org/10.1016/j.chemosphere.2016.10.125

    Article  CAS  PubMed  Google Scholar 

  • Pajak M, Blonska E, Szostak M et al (2018) Restoration of vegetation in relation to soil properties of spoil heap heavily contaminated with heavy metals. Water Air Soil Poll 229(12):392. https://doi.org/10.1007/s11270-018-4040-6

    Article  CAS  Google Scholar 

  • Palmer CM, Guerinot ML (2009) Facing challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paranthaman SR, Karthikeyan B (2015) Bioremediation of heavy metal in paper mill effluent using Pseudomonas spp. Int J Microbiol 1:1–5

    Google Scholar 

  • Parewa HP, Meena VS, Jain LK et al (2018) Sustainable crop production and soil health management through plant growth-promoting Rhizobacteria. Role Rhizospheric Microbes Soil 2018:299–329. https://doi.org/10.1007/978-981-10-8402-7_12

    Article  Google Scholar 

  • Pavel LV, Gavrileseu M (2008) Overview of ex-situ decontamination techniques for soil cleanup. Environ Eng Manag J 7(6):815–834

    Article  Google Scholar 

  • Pedro P, Francisco JE, Joao F et al (2014) DNA damage induced by hydroquinone can be prevented by fungal detoxification. Toxicol Rep 1:1096–1105

    Article  CAS  Google Scholar 

  • Peña-Montenegro TD, Lozano L, Dussán J (2015) Genome sequence and description of the mosquitocidal and heavy metal tolerant strain Lysinibacillus sphaericus CBAM5. Stand Genomic Sci 10:1–10

    Article  CAS  Google Scholar 

  • Phulpoto H, Qazi MA, Mangi S et al (2016) Biodegradation of oil-based paint by Bacillus species monocultures isolated from the paint warehouses. Int J Environ Sci Technol 13:125–134

    Article  CAS  Google Scholar 

  • Pilon M, Cohu CM, Ravet K et al (2009) Essential transition metal homeostasis in plants. Curr Opin Plant Biol 12:347–357

    Article  CAS  PubMed  Google Scholar 

  • Priyalaxmi R, Murugan A, Raja P et al (2014) Bioremediation of cadmium by Bacillus safensis (JX126862), a marine bacterium isolated from mangrove sediments. Int J Curr Microbiol Appl Sci 3:326–335

    Google Scholar 

  • Qencrantz JE, Johnson JG, Koenringberg SS (1995) Enhanced intrinsic bioremediation of dissolved phase hydrocarbons using an oxygen releasing compound. Ground Water Monit R 6(4):99–114

    Google Scholar 

  • Qin R, Hirano Y, Brunner I (2007) Exudation of organic acid anions from poplar roots after exposure to Al, Cu and Zn. Tree Physiol 27:313–320

    Article  CAS  PubMed  Google Scholar 

  • Ravi RK, Pathak B, Fulekar MH (2015) Bioremediation of Persistent Pesticides in Rice field Soil Environment Using Surface Soil Treatment Reactor. Int J Curr Microbiol App Sci 4:359–369

    CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1996) Bioremediation of petroleum contamination. In: Crawgord DL, Crawford RL (eds) Bioremediation principles and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Safiyanu I, Isah AA, Abubakar US et al (2015) Review on comparative study on bioremediation for oil spills using microbes. Res J Pharm Biol Chem Sci 6:783–790

    CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  PubMed  Google Scholar 

  • Sani I, Safiyanu I, Rita SM (2015) Review on bioremediation of oil spills using microbial approach. Int Sci Eng Res 3:41–45

    Google Scholar 

  • Sarang B, Richa K, Ram C (2013) Comparative study of bioremediation of hydrocarbon fuel. Int J Biotechnol Bioeng Res 4:677–686

    Google Scholar 

  • Schink B (1985) Degradation of unsaturated hydrocarbons by methanogenic enrichment cultures. FEMS Microbiol Ecol 31:9–77

    Google Scholar 

  • Schink B (1988) Principles and limits of anaerobic degradation:environmental and technological aspects. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 771–846

    Google Scholar 

  • Sellers K (1999) Fundamentals of hazardous waste site remediation. Lewis Publisher, New York

    Google Scholar 

  • Seshadri R, Heidelberg J (2005) Bacteria to the rescue. Nat Biotechnol 23:1236–1237

    Article  CAS  PubMed  Google Scholar 

  • Shedbalkar U, Jadhav J (2011) Detoxification of malachite green and textile industrial effluent by Penicillium ochrochloron. Biotechnol Bioprocess Eng 16:196–204

    Article  CAS  Google Scholar 

  • Sherwood JC, Peterson JN, Skee RS et al (1995) Effect of nitrate availability on chloroform production during CT destruction. In: Leeson A, Semprint L, Hinchee RE (eds) Bioremediation of chlorinated solvents. Batelle, Columbus, pp 85–89

    Google Scholar 

  • Silva-Castro G, SantaCruz-Calvo L, Uad I et al (2012) Treatment of diesel-polluted clay soil employing combined biostimulation in microcosms. Int J Environ Sci Technol 9:535–542

    Article  CAS  Google Scholar 

  • Singh A, Kumar V, Srivastava JN (2013) Assessment of bioremediation of oil and phenol contents in refinery waste water via bacterial consortium. J Pet Environ Biotechnol 4:1–4

    CAS  Google Scholar 

  • Singleton I (1994) Microbial metabolism of xenobiotics fundamental and applied research. J Chem Tech Biotechnol 59:9–23

    Article  CAS  Google Scholar 

  • Smith E, Thavamani P, Ramadass K et al (2015) Remediation trials for hydrocarbon-contaminated soils in arid environments: evaluation of bioslurry and biopiling techniques. Int Biodeterior Biodegrad 101:56–55. https://doi.org/10.1016/j.ibiod.2015.03.029

    Article  CAS  Google Scholar 

  • Soleimani N, Fazli MM, Mehrasbi M et al (2015) Highly cadmium tolerant fungi: their tolerance and removal potential. J Environ Health Sci Eng 13:1–9

    Article  CAS  Google Scholar 

  • Sorensen SJ, Schyberg T, Ronn R (1999) Predation by protozoa on Escherichia coli K12 in soil and transfer of resistant plasmid RP4 to indigenous bacteria in soil. App Soil Ecol 11:79–90

    Article  Google Scholar 

  • Straube W, Nestler C, Hansen et al (2003) Remediation of polyaromatic hydrocarbons (PAHs) through landfarming with biostimulation and bioaugmentation. Acta Biotechnol 23:179–196

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (1995a) Bioventing principles and practice Vol I: Bioventing Principles. Washington DC

    Google Scholar 

  • United States Environmental Protection Agency (1995b) Bioventing principles and practice Vol II: Bioventing design. Washington DC

    Google Scholar 

  • Urum K, Pekdemir T, Gopur M (2003) Optimum conditions for soil washing of crude-oil contaminated with soil with biosurfactant solution. Process Saf Environ Protect 81:203–209

    Article  CAS  Google Scholar 

  • van der Gast CJ, EHiteley AS, Starkey M et al (2003) Bioaugmentation strategies for remediating mixed chemical effluents. Biotechnol Porg 19:1156–1161

    Article  CAS  Google Scholar 

  • van Herwizen R, Hutchings TR, Al-Tabbaa A et al (2007) Remediation of metal contaminated soil with mineral-amended composts. Environ Pollut 150:347–354

    Article  CAS  Google Scholar 

  • van Veen JA, van Overbeek LS, van Elas JD (1997) Fate and activity of microorganisms introduced into the soil. Microbiol Mol Bio Rev 61:121–135

    Google Scholar 

  • Verma JP, Jaiswal DK (2016) Book review: advances in biodegradation and bioremediation of industrial waste. Front Microbiol 6:1–2. https://doi.org/10.3389/fmicb.2015.01555

    Article  Google Scholar 

  • Vidali M (2001) Bioremediation. An Overview Pure Appl Chem 73(7):1163–1172

    Article  CAS  Google Scholar 

  • Volf I (2007) Pin Elasi (ed) Elemental biotechnology and bioremediation

    Google Scholar 

  • Wolski EA, Murialdo SE, Gonzales JF (2006) Effect of pH and inoculum size on pentachloro phenol degradation by pseudomonas sp. Water SA 32:1–5

    Google Scholar 

  • Wong CKE, Cobbett CS (2009) HMA type ATPases are the major mechanisms for root to shoot translocation in Arabidopsis thaliana. New Phytol 181:71–78

    Google Scholar 

  • Xu X, Zhai Z, Li H et al (2017) Synergetic effect of bio-photocatalytic hybrid system: g-C3N4, and Acinetobacter, sp. JLS1 for enhanced degradation of C16 alkane. Chem Eng J 323:520–529. https://doi.org/10.1016/j.cej.2017.04.138

    Article  CAS  Google Scholar 

  • Yogesh P, Akshaya G (2016) Evaluation of Bioremediation Potential of Isolated Bacterial Culture YPAG-9 (Pseudomonas aeruginosa) for Decolorization of Sulfonated di-azodye Reactive Red HE8B under Optimized Culture Conditions. Int J Curr Microbiol App Sci 5:258–272

    Article  CAS  Google Scholar 

  • Zitomer DH, Speece RE (1993) Sequential environments for enhanced biotransformation of aqueous contaminants. Environ Sci Technol 27:227–224

    Article  Google Scholar 

Download references

Acknowledgments

The Fellowship granted to Mr. Kamal Kumar Bhardwaj in the form of SRF from Council of Scientific and Industrial Research under Ministry of Human Resource Development, Government of India, is thankfully acknowledged.

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gangar, T., Bhardwaj, K.K., Gupta, R. (2019). Microbes and Processes in Bioremediation of Soil. In: Kumar, A., Sharma, S. (eds) Microbes and Enzymes in Soil Health and Bioremediation. Microorganisms for Sustainability, vol 16. Springer, Singapore. https://doi.org/10.1007/978-981-13-9117-0_2

Download citation

Publish with us

Policies and ethics