Skip to main content

Abstract

The bioaccumulation of contaminants in soil causes toxicity to human, animals, microorganisms, and plants. Environmental biotechnology such as composting and wastewater treatment is not a new field, yet the recent fields are molecular biology and ecology. Bioremediation uses microorganisms (which may be indigenous or isolated from any other site), naturally occurring bacteria, fungi and plants to degrade or detoxify the contaminants (hazardous to human health and environment) into less toxic forms. Bioaugmentation process is used when microorganisms are imported to a contaminated site to enhance the detoxification. Public considers it more efficient than other technologies because bioremediation is based on natural attenuation. Bioremediation has certain limits such as high aromatic hydrocarbons are resistant to microbial attack. Bioremediation system mostly runs under aerobic conditions. Important factors include availability of contaminants to the microbial population and the environmental factors (pH, temperature, soil type, nutrients and presence of oxygen). Recent strategies for bioremediation include in situ bioremediation (these techniques are applied to soil at the site with minimal disturbance) and ex situ bioremediation (these techniques are applied to soil at the site which has been removed from the site through excavation). Bioremediation is a natural process and therefore has certain advantages along with some disadvantages. Phytoremediation, on the other hand, is the use of plants and their associated microbes for cleaning up the environment. This chapter develops the better understanding of bioremediation of soil, bioremediation strategies, especially the phytoremediation mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015) Bioremediation, biostimulation and bioaugmention: a review. Int J Environ Bioremediation Biodegradation 3:28–39

    Article  CAS  Google Scholar 

  • Adesipo AA, Freese D, Nwadinigwe AO (2020) Prospects of In-situ remediation of crude oil contaminated lands in Nigeria. Scientific African e00403

    Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  PubMed  Google Scholar 

  • Arianzad SA, Zeinoddini M, Haddadi A, Nazarian S, Sajedi RH (2020) In silico design of chimeric and immunogenic protein-containing ipab and ipad as a vaccine candidate against shigella dysenteriae. Curr Proteomics 17(4):333–341

    Article  CAS  Google Scholar 

  • Asira EE (2013) Factors that determine bioremediation of organic compounds in the soil. Acad J Interdisciplinary Stud 2:125–128

    Google Scholar 

  • Atlas RM, Philp J (eds) (2005) Bioremediation: applied microbial solutions for real-world environmental cleanup. ASM Press, Washington

    Google Scholar 

  • Azadi H, Ho P (2010) Genetically modified and organic crops in developing countries: a review of options for food security. Biotechnol Adv 28(1):160–168

    Article  PubMed  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):180

    Article  PubMed  PubMed Central  Google Scholar 

  • Bahmani F, Ataei SA, Mikaili MA (2018) The effect of moisture content variation on the bioremediation of hydrocarbon contaminated soils: modeling and experimental investigation. J Environ Anal Chem 5(2):236

    Article  Google Scholar 

  • Bernhardt ES, Rosi EJ, Gessner MO (2017) Synthetic chemicals as agents of global change. Front Ecol Environ 15(2):84–90

    Article  Google Scholar 

  • Bhandari A, Xia K (2005) Hazardous organic chemicals in biosolids recycled as soil amendments. Water pollution. Springer, Berlin, pp 217–239

    Chapter  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Biores Technol 74(1):63–67

    Article  CAS  Google Scholar 

  • Cairney T (1993) Contaminated land. Blackie, London

    Google Scholar 

  • Cases I, de Lorenzo V (2005) Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol 8:213–222

    CAS  PubMed  Google Scholar 

  • Cobb GP, Sands K, Waters M, Wixson BG, Dorward E (2000) Accumulation of heavy metals by vegetables grown in mine wastes. Environ Toxicol Chem 19:600–607

    Article  CAS  Google Scholar 

  • Couto N, Fritt J, Jensen PE, Højrup M, Rodrigo AP (2014) Suitability of oil bioremediation in an artic soil using surplus heating from an incineration facility. Environ Sci Pollut Res 21(9):6221–6227

    Article  CAS  Google Scholar 

  • da Silva S, Gonçalves I, Gomes de Almeida FC, Padilha da Rocha e Silva NM, Casazza AA, Converti A, Asfora Sarubbo L (2020) Soil bioremediation: overview of technologies and trends. Energies 13(18):4664

    Google Scholar 

  • Das MT, Kumar SS, Ghosh P, Shah G, Malyan SK, Bajar S, Singh L (2020) Remediation strategies for mitigation of phthalate pollution: challenges and future perspectives. J Hazardous Mater 124496

    Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int

    Google Scholar 

  • Demirbas A, Edris G, Alalayah WM (2017) Sludge production from municipal wastewater treatment in sewage treatment plant. Energy Sources Part a: Recovery Utilization Environ Effects 39(10):999–1006

    Article  CAS  Google Scholar 

  • Dias RL, Ruberto L, Calabro A, Balbo AL, Del Panno MT, Mac Cormack WP (2015) hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated antarctic soil. Polar Biol 38(5):677–687

    Article  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8(3):268–275

    Article  PubMed  Google Scholar 

  • Ensley BD (2000) Rationale for use of phytoremediation. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals using plants to clean up the environment. Wiley, New York, p 11

    Google Scholar 

  • Gavrilescu M (2010) Environmental biotechnology: achievements, opportunities and challenges. Dyn Biochem Process Biotechnol Mol Biol 4(1):1–36

    Google Scholar 

  • Ghangrekar MM, Sathe SM, Chakraborty I (2020) In situ bioremediation techniques for the removal of emerging contaminants and heavy metals using hybrid microbial electrochemical technologies. In: Emerging technologies in environmental bioremediation. Elsevier, pp 233–255

    Google Scholar 

  • Harekrushna S, Kumar DC (2012) A review on: bioremediation. Int J Res Chem Environ 2(1):13–21

    Google Scholar 

  • Hatti-Kaul R, Törnvall U, Gustafsson L, Börjesson P (2007) Industrial biotechnology for the production of bio-based chemicals—a cradle-to-grave perspective. Trends Biotechnol 25(3):119–124

    Google Scholar 

  • Haynes R, Murtaza G, Naidu R (2009) Inorganic and organic constituents and contaminants of biosolids: implications for land application. Adv Agron 104:165–267

    Article  CAS  Google Scholar 

  • Höhener P, Ponsin V (2014) In situ vadose zone bioremediation. Curr Opin Biotechnol 27:1–7

    Google Scholar 

  • Hou D, Bolan NS, Tsang DC, Kirkham MB, O'Connor D (2020) Sustainable soil use and management: an interdisciplinary and systematic approach. Sci Total Environ 138961

    Google Scholar 

  • Jacobs LW, O’Connor G, Overcash M, Zabik M, Rygiewicz P (1987) Effects of trace organics in sewage sludges on soil-plant systems and assessing their risk to humans. Lewis, Chelsea

    Google Scholar 

  • Juwarkar AA, Singh SK, Mudhoo AA (2010) Comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9(3):215–288

    Article  CAS  Google Scholar 

  • Kao CM, Chen CY, Chen SC, Chien HY, Chen YL (2008) Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: field and microbial evaluation. Chemosphere 70(8):1492–1499

    Article  CAS  PubMed  Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manage 71(2):95–122

    Article  PubMed  Google Scholar 

  • Khudhaier SR, Al- AMA, Abbas RF (2020) A review article-technology of bioremediation. Int J Res Appl Sci Biotechnol 7(5):349–353

    Article  Google Scholar 

  • Kim S, Krajmalnik R, Kim JO, Chung J (2014) Remediation of petroleum hydrocarbon-contaminated sites by dna diagnosis-based bioslurping technology. Sci Total Environ 497:250–259

    Article  PubMed  Google Scholar 

  • Krogmann U, Boyles LS, Bamka WJ, Chaiprapat S, Martel CJ (1999) Biosolids and sludge management. Water Environ Res 71(5):692–714

    Article  CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant-Microbe Interact 17(1):6–15

    Article  CAS  PubMed  Google Scholar 

  • Kumar PN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29(5):1232–1238

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Shahi SK, Singh S (2018) Bioremediation: an eco-sustainable approach for restoration of contaminated sites. In: Singh J, Sharma D, Kumar G, Sharma N (eds) Microbial bioprospecting for sustainable development. Springer, Singapore, pp 115–136

    Chapter  Google Scholar 

  • Lacalle RG, Aparicio JD, Artetxe U, Urionabarrenetxea E, Polti MA, Soto M, Becerril JM (2020) Gentle remediation options for soil with mixed chromium (VI) and lindane pollution: biostimulation, bioaugmentation, phytoremediation and vermiremediation. Heliyon 6(8):e04550

    Google Scholar 

  • Lee S, Yang YA, Milano SK, Nguyen T, Ahn C, Sim JH, Song J (2020) salmonella typhoid toxin pltb subunit and its non-typhoidal salmonella ortholog confer differential host adaptation and virulence. Cell Host Microbe 27(6):937–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Bräunig J, Angelica GC, Thai, PK, Mueller JF, Yuan Z (2020) Formation and partitioning behaviour of perfluoroalkyl acids (PFAAs) in waste activated sludge during anaerobic digestion. Water Res 189:116583

    Google Scholar 

  • Macaulay BM (2014) Understanding the behavior of oil-degrading microorganisms to enhance the microbial remediation of spilled petroleum. Appl Ecol Environ Res 13:247–262

    Google Scholar 

  • Madhavi GN, Mohini DD (2012) Review paper on–parameters affecting bioremediation. Int J Life Sci Pharma Res 2(3):77–80

    Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3(2):153–162

    Article  CAS  PubMed  Google Scholar 

  • Mench M, Schwitzgue ́bel JP, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16(7):876

    Google Scholar 

  • Miguel AS, Ravanel P, Raveton M (2013) A comparative study on the uptake and translocation of organochlorines by phragmites australis. J Hazard Mater 244:60–69

    Article  Google Scholar 

  • Mishra M, Singh SK, Kumar A (2021) Environmental factors affecting the bioremediation potential of microbes. In: Singh VK, Singh P, Mishra VK (eds) Kumar A. Microbe mediated remediation of environmental contaminants, Woodhead Publishing, pp 47–58

    Google Scholar 

  • Mohammadi L, Rahdar A, Bazrafshan E, Dahmardeh H, Susan M, Hasan AB, Kyzas GZ (2020) Petroleum hydrocarbon removal from wastewaters: a review. Processes 8(4):447

    Google Scholar 

  • Mohan SV, Sirisha K, Rao NC, Sarma PN, Reddy SJ (2004) Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: bioprocess monitoring. J Hazard Mater 116(1–2):39–48

    Article  CAS  PubMed  Google Scholar 

  • Moore JW, Ramamoorthy S (2012) Organic chemicals in natural waters: applied monitoring and impact assessment. Springer Science & Business Media

    Google Scholar 

  • Murtaza G, Haynes RJ, Naidu R, Belyaeva ON, Kim K-R, Lamb DT, Bolan NS (2011) Natural attenuation of Zn, Cu, Pb and Cd in three biosolids-amended soils of contrasting pH measured using rhizon pore water samplers. Water Air Soil Pollut 221:351–363

    Article  CAS  Google Scholar 

  • Murtaza G, Murtaza B, Niazi NK, Sabir M (2014) Soil contaminants: sources, effects, and approaches for remediation. In: Improvement of crops in the era of climatic changes. Springer, New York, pp 171–196

    Google Scholar 

  • Nandy S, Andraskar J, Lanjewar K, Kapley A (2021) Challenges in bioremediation: from lab to land. In: Kumar V, Shah MP (eds) Saxena G. Bioremediation for environmental sustainability, Elsevier, pp 561–583

    Google Scholar 

  • Niazi NK, Singh B, Van Zwieten L, Kachenko AG (2012) Phytoremediation of an arsenic-contaminated site using pteris vittata l. and pityrogramma calomelanos var. austroamericana: a long-term study. Environ Sci Pollut Res 19(8):3506–3515

    Google Scholar 

  • Ntougias S, Baldrian P, Ehaliotis C, Nerud F, Merhautová V, Zervakis GI (2015) Olive mill wastewater biodegradation potential of white-rot fungi–mode of action of fungal culture extracts and effects of ligninolytic enzymes. Bioresour Technol 189:121–130

    Article  CAS  PubMed  Google Scholar 

  • Ossai IC, Ahmed A, Hassan A, Hamid FS (2020) Remediation of soil and water contaminated with petroleum hydrocarbon: a review. Environ Technol Innov 17:100526

    Google Scholar 

  • Ozyigit II, Can H, Dogan I (2020) Phytoremediation using genetically engineered plants to remove metals: a review. Environ Chem Lett 1–30

    Google Scholar 

  • Phulia V, Jamwal A, Saxena N, Chadha NK, Muralidhar (2013) Technologies in aquatic bioremediation, pp 65–91

    Google Scholar 

  • Prasad MNV, Freitas H, Fraenzle S, Wuenschmann S, Markert B (2010) Knowledge explosion in phytotechnologies for environmental solutions. Environ Pollut 158:18–23

    Article  CAS  PubMed  Google Scholar 

  • Ranjha MMAN, Amjad S, Ashraf S et al (2020) Extraction of polyphenols from apple and pomegranate peels employing different extraction techniques for the development of functional date bars. Int J Fruit Sci. https://doi.org/10.1080/15538362.2020.1782804

    Article  Google Scholar 

  • Ranjha MMAN, Irfan S, Nadeem M, Mahmood S (2020) A comprehensive review on nutritional value, medicinal uses, and processing of banana. Food Rev Int. https://doi.org/10.1080/87559129.2020.1725890

    Article  Google Scholar 

  • Sen R, Chakrabarti S (2009) Biotechnology—applications to environmental remediation in resource exploitation. Curr Sci 97(6):768–775

    CAS  Google Scholar 

  • Shahzad A, Siddiqui S, Bano A, Sattar S, Hashmi MZ, Qin M, Shakoor A (2020) Hydrocarbon degradation in oily sludge by bacterial consortium assisted with alfalfa (Medicago sativa L.) and maize (Zea mays L.). Arab J Geosci 13(17): 1–12

    Google Scholar 

  • Santillan JY, Rojas NL, Ghiringhelli PD, Nóbile ML, Lewkowicz ES, Iribarren AM (2020) Organophosphorus compounds biodegradation by novel bacterial isolates and their potential application in bioremediation of contaminated water. Bioresource Technol 317:124003

    Google Scholar 

  • Sharma S. Bioremediation: features, strategies and applications. Asian J Pharm Life Sci 2(2):202–213

    Google Scholar 

  • Sharma I (2020) Bioremediation techniques for polluted environment: concept, advantages, limitations, and prospects. In: Trace metals in the environment-new approaches and recent advances. IntechOpen

    Google Scholar 

  • Shivalkar S, Singh V, Sahoo AK, Samanta SK, Gautam PK (2020) Bioremediation: a potential ecological tool for waste management. In: bioremediation for environmental sustainability. Elsevier, pp 1–21

    Google Scholar 

  • Sinha RK, Herat S, Tandon PK (2007) Phytoremediation: role of plants in contaminated site management. In: Environmental bioremediation technologies. Springer, Berlin, pp 315–330

    Book  Google Scholar 

  • Silva-Castro GA, Uad I, Gónzalez-López J, Fandinõ CG, Toledo FL, Calvo C (2012) Application of selected microbial consortia combined with inorganic and oleophilic fertilizers to recuperate oil-polluted soil using land farming technology. Clean Technol Environ Pol 14:719–726

    Google Scholar 

  • Skinder BM, Uqab B, Ganai, BA (2020) Bioremediation: a sustainable and emerging tool for restoration of polluted aquatic ecosystem. In: Fresh water pollution dynamics and remediation. Springer, Singapore, pp 143–165

    Google Scholar 

  • Smith S (2000) Are controls on organic contaminants necessary to protect the environment when sewage sludge is used in agriculture? Prog Environ Sci 2:129–146

    CAS  Google Scholar 

  • Song ZM, Xu YL, Liang JK, Peng L, Zhang XY, Du Y, Guan YT (2020) Surrogates for on-line monitoring of the attenuation of trace organic contaminants during advanced oxidation processes for water reuse. Water Res 116733

    Google Scholar 

  • Srivastava AK, Singh RK, Singh D (2021) Microbe-based bioreactor system for bioremediation of organic contaminants: present and future perspective. In: Microbe mediated remediation of environmental contaminants. Woodhead Publishing, pp 241–253

    Google Scholar 

  • Thavasi R, Jayalakshmi S, Banat IM (2011) Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresour Technol 102:3366–3372

    Article  CAS  PubMed  Google Scholar 

  • Tiwari G, Singh SP (2014) Application of bioremediation on solid waste management: a review. J Bioremed Biodeg 5(6):248–1172

    Google Scholar 

  • Trinh HT, Duong HT, Strobel BW, Le GT (2020) Comprehensive study of organic micro-pollutants in flooded paddy soils in central Vietnam: levels, pollution pathways and sources. Bull Environ Contamination Toxicol 105(4):572–581

    Google Scholar 

  • Tyagi B, Kumar N (2021) Bioremediation: principles and applications in environmental management. In: Kumar V, Shah MP (eds) Saxena G. Bioremediation for environmental sustainability, Elsevier, pp 3–28

    Google Scholar 

  • Ünüvar S (2018) Microbial foodborne diseases. In: Grumezescu AM (ed) Holban AM. Foodborne diseases, Academic Press, pp 1–31

    Google Scholar 

  • Van Aken B (2009) Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Opin Biotechnol 20(2):231–236

    Article  PubMed  Google Scholar 

  • Vara MN, de Oliveira Freitas HM (2003) Hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6(3):285–332

    Google Scholar 

  • Verma P, George K, Singh H, Singh S, Juwarkar A, Singh R (2006) Modeling rhizofiltration: heavy-metal uptake by plant roots. Environ Model Assess 11(4):387–394

    Article  Google Scholar 

  • Vidali M (2001) Bioremediation: an overview. Pure Appl Chem 73(7):1163–1172

    Article  CAS  Google Scholar 

  • Volpe A, D’Arpa S, Del Moro G, Rossetti S, Tandoi V, Uricchio VF (2012) Fingerprinting hydrocarbons in a contaminated soil from an italian natural reserve and assessment of the performance of a low-impact bioremediation approach. Water Air Soil Pollution 223(4):1773–1782

    Google Scholar 

  • Vouillamoz J, Milke M (2001) Effect of compost in phytoremediation of diesel-contaminated soils. Water Sci Technol 43:291–295

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Zhang S, Li Y, Klassen W (2011) Potential Approaches to improving biodegradation of hydrocarbons for bioremediation of crude oil pollution. Environ Protection J 2:47–55

    Article  CAS  Google Scholar 

  • Watanabe ME (1997) Phytoremediation on the brink of commericialization. Environ Sci Technol 31:182A-186A

    Article  CAS  PubMed  Google Scholar 

  • Whelan MJ, Coulon F, Hince G, Rayner J, McWatters R, Spedding T, Snape I (2015) Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere 131:232–240

    Article  CAS  PubMed  Google Scholar 

  • Williams J (2006) Bioremediation of contaminated soils: a comparison of in situ and ex situ techniques, pages 12; Recuperado de/paper/Bioremediation-of-Contaminated-Soils-% 3A-A-Comparison-Williams/4c6afc722040e0d4807a744b7f89a5e7b9dac97f. Accessed 19 Dec 2020

    Google Scholar 

  • Yang SZ, Jin HJ, Wei Z, He RX, Ji YJ (2009) Bioremediation of oil spills in cold environments: a review. Pedosphere 19:371–381

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lufeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Irfan, S., Ranjha, M.M.A.N., Shafique, B., Ullah, M.I., Siddiqui, A.R., Wang, L. (2022). Bioremediation of Soil: An Overview. In: Malik, J.A. (eds) Advances in Bioremediation and Phytoremediation for Sustainable Soil Management. Springer, Cham. https://doi.org/10.1007/978-3-030-89984-4_1

Download citation

Publish with us

Policies and ethics