Advertisement

The Strategies of Nanomaterials for Therapy

  • Yang Du
  • Shuying Wang
  • Fangyuan LiEmail author
  • Daishun LingEmail author
Chapter

Abstract

Brain diseases, including brain tumor, Alzheimer’s and Parkinson’s diseases, and stroke, are becoming increasingly widespread in the aging population. However, due to our limited knowledge of the pathogenesis of these diseases and inefficient drug delivery system, the treatments for these disorders are still major challenges in modern medicine. Nanomaterials have recently emerged as an effective tool in biomedical fields, which have unique properties and structures conferring improved efficacy, safety, sensitivity, and the potential to be personalized. With these advantages, nanomaterial-based therapies are rapidly progressing and show promise to revolutionize the way we treat brain diseases. In this chapter, the state of the art of current nanomaterials in the treatment of brain diseases will be described, with discussions on the prospects and ongoing challenges that must be overcome.

Keywords

Brain diseases Neurosciences Nanomaterials Nanotechnology Therapeutics 

Notes

Acknowledgments

This work was supported by the National Key Research and Development Program of China (2016YFA0203600), the National Natural Science Foundation of China (31822019, 51703195, 91859116), One Belt and One Road International Cooperation Project from Key Research and Development Program of Zhejiang Province (2019C04024), the Zhejiang Provincial Natural Science Foundation of China (LGF19C100002), the Fundamental Research Funds for the Central Universities (2018QNA7020), and “Thousand Talents Program” for Distinguished Young Scholars.

References

  1. 1.
    Gilmore JL, Yi X, Quan L, Kabanov AV. Novel nanomaterials for clinical neuroscience. J Neuroimmune Pharmacol. 2008;3(2):83–94.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Re F, Gregori M, Masserini M. Nanotechnology for neurodegenerative disorders. Nanomedicine. 2012;8:S51–8.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Silva GA. Nanotechnology approaches for the regeneration and neuroprotection of the central nervous system. Surg Neurol. 2005;63(4):301–6.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Fernandes C, Costa A, Osório L, Lago RC, Linhares P, Carvalho B, Caeiro C. Current standards of care in Glioblastoma therapy. In: Glioblastoma. Brisbane: Codon Publications; 2017, Chapter 11.Google Scholar
  5. 5.
    Serwer LP, James CD. Challenges in drug delivery to tumors of the central nervous system: an overview of pharmacological and surgical considerations. Adv Drug Deliv Rev. 2012;64(7):590–7.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Liu Y, Lu W. Recent advances in brain tumor-targeted nano-drug delivery systems. Expert Opin Drug Deliv. 2012;9(6):671–86.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Cardoso FL, Brites D, Brito MA. Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev. 2010;64(2):328–63.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Novakova I, Subileau EA, Toegel S, Gruber D, Lachmann B, Urban E, Chesne C, Noe CR, Neuhaus W. Transport rankings of non-steroidal Antiinflammatory drugs across blood-brain barrier in vitro models. PLoS One. 2014;9(1):e86806.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2(1):3–14.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Agarwal S, Sane R, Oberoi R, Ohlfest JR, Elmquist W. Delivery of molecularly targeted therapy to malignant Glioma, a disease of the whole brain. Expert Rev Mol Med. 2011;13(13):e17.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Auffinger B, Thaci B, Nigam P, Rincon E, Yu C, Lesniak MS. New therapeutic approaches for malignant glioma: in search of the Rosetta stone. F1000 Med Rep. 2012;4(18):1–6.Google Scholar
  12. 12.
    Gao JQ, Lv Q, Li LM, Tang XJ, Li FZ, Hu YL, Han M. Glioma targeting and blood-brain barrier penetration by dual-targeting doxorubicin liposomes. Biomaterials. 2013;34(22):5628–39.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Ying X, Wen H, Lu WL, Du J, Guo J, Tian W, Men Y, Zhang Y, Li RJ, Yang TY. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release. 2010;141(2):183–92.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Benedetti S, Pirola B, Pollo B, Magrassi L, Bruzzone MG, Rigamonti D, Galli R, Selleri S, Meco FD, Fraja CD. Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med. 2000;6(4):447–50.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Schlachetzki F, Zhang Y, Boado RJ, Pardridge WM. Gene therapy of the brain: the trans-vascular approach. Neurology. 2004;62(8):1275–81.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Verma IM, Naldini L, Kafri T, Miyoshi H, Takahashi M, Blömer U, Somia N, Wang L, Gage FH. Gene therapy: promises, problems and prospects. Nature. 1997;389(6648):239–42.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Kaliberov SA, Markert JM, Gillespie GY, Krendelchtchikova V, Manna DD, Sellers JC, Kaliberova LN, Black ME, Buchsbaum DJ. Mutation of Escherichia coli cytosine deaminase significantly enhances molecular chemotherapy of human glioma. Gene Ther. 2007;14(14):1111–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    De Smedt SC, Demeester J, Hennink WE. Cationic polymer based gene delivery systems. Pharm Res. 2000;17(2):113–26.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Li J, Gu B, Meng Q, Yan Z, Gao H, Chen X, Yang X, Lu W. The use of myristic acid as a ligand of polyethylenimine/DNA nanoparticles for targeted gene therapy of glioblastoma. Nanotechnology. 2011;22(43):435101.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Jung J, Solanki A, Memoli K, Kamei K, Kim H, Drahl M, Williams L, Tseng H, Lee K. Selective inhibition of human brain tumor cells through multifunctional quantum-dot-based siRNA delivery. Angew Chem. 2010;49(1):103–7.CrossRefGoogle Scholar
  21. 21.
    Sellins KS, Cohen JJ. Hyperthermia induces apoptosis in thymocytes. Radiat Res. 1991;126(1):88–95.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Coss R, Linnemans W. The effects of hyperthermia on the cytoskeleton: a review. Int J Hyperth. 1996;12(2):173–96.CrossRefGoogle Scholar
  23. 23.
    Wong RS, Kapp LN, Krishnaswamy G, Dewey WC. Critical steps for induction of chromosomal aberrations in CHO cells heated in S phase. Radiat Res. 1993;133(1):52–9.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Cavaliere R, Ciocatto EC, Giovanella BC, Heidelberger C, Johnson RO, Margottini M, Mondovi B, Moricca G, Rossi-Fanelli A. Selective heat sensitivity of cancer cells. Biochemical and clinical studies. Cancer. 1967;20(9):1351–81.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Sneed PK, Stauffer PR, Diederich CJ, McDermott MW, Lamborn KR, Weaver KA, Prados MD, Chang S, Malec MK, Spry L. Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost ± hyperthermia for glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 1996;36(S1):159.CrossRefGoogle Scholar
  26. 26.
    Jordan A, Scholz R, Maier-Hauff K, van Landeghem FK, Waldoefner N, Teichgraeber U, Pinkernelle J, Bruhn H, Neumann F, Thiesen B. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neuro-Oncol. 2006;78(1):7–14.CrossRefGoogle Scholar
  27. 27.
    Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho CH, Waldöfner N, Scholz R, Jordan A, Loening SA, Wust P. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol. 2007;52(6):1653–62.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol. 2011;103(2):317–24.CrossRefGoogle Scholar
  29. 29.
    Wang Y, Huang R, Liang G, Zhang Z, Zhang P, Yu S, Kong J. MRI-visualized, dual-targeting, combined tumor therapy using magnetic graphene-based mesoporous silica. Small. 2014;10(1):109–16.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Lucky SS, Soo KC, Zhang Y. Nanoparticles in photodynamic therapy. Chem Rev. 2015;115(4):1990–2042.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Dougherty TJ. An update on photodynamic therapy applications. J Clin Laser Med Surg. 2002;20(1):3–7.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Stylli SS, Kaye AH, Macgregor L, Howes M, Rajendra P. Photodynamic therapy of high grade glioma – long term survival. J Clin Neurosci. 2005;12(4):389–98.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Koo YE, Reddy GR, Bhojani M, Schneider R, Philbert MA, Rehemtulla A, Ross BD, Kopelman R. Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev. 2006;58(14):1556–77.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Singh G, Wilson BC, Sharkey SM, Browman GP, Deschamps P. Resistance to photodynamic therapy in radiation induced fibrosarcoma-1 and Chinese hamster ovary-multi-drug resistant cells in vitro. Photochem Photobiol. 1991;54(2):307–12.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Kopelman R, Koo Y-EL, Philbert M, Moffat BA, Reddy GR, McConville P, Hall DE, Chenevert TL, Bhojani MS, Buck SM. Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer. J Magn Magn Mater. 2005;293(1):404–10.CrossRefGoogle Scholar
  36. 36.
    Cheng Y, Meyers JD, Agnes RS, Doane TL, Kenney ME, Broome AM, Burda C, Basilion JP. Addressing brain tumors with targeted gold nanoparticles: a new gold standard for hydrophobic drug delivery? Small. 2011;7(16):2301–6.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Meyers JD, Cheng Y, Broome AM, Agnes RS, Schluchter MD, Margevicius S, Wang X, Kenney ME, Burda C, Basilion JP. Peptide-targeted gold nanoparticles for photodynamic therapy of brain cancer. Part Part Syst Charact. 2015;32(4):448–57.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Krishnamachari Y, Salem AK. Innovative strategies for co-delivering antigens and CpG oligonucleotides. Adv Drug Deliv Rev. 2009;61(3):205–17.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Blattman JN, Greenberg PD. Cancer immunotherapy: a treatment for the masses. Science. 2004;305(5681):200–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Melief CJ. Cancer: immune pact with the enemy. Nature. 2007;450(7171):803–4.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature. 2007;449(7161):419–29.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Kateb B, Van Handel M, Zhang L, Bronikowski MJ, Manohara H, Badie B. Internalization of MWCNTs by microglia: possible application in immunotherapy of brain tumors. NeuroImage. 2007;37:S9–S17.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Krishnamachari Y, Geary SM, Lemke CD, Salem AK. Nanoparticle delivery Systems in Cancer Vaccines. Pharm Res. 2011;28(2):215–36.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kuang J, Song W, Yin J, Zeng X, Han S, Zhao YP, Tao J, Liu CJ, He XH, Zhang XZ. iRGD modified chemo-immunotherapeutic nanoparticles for enhanced immunotherapy against glioblastoma. Adv Funct Mater. 2018;28(17):1800025.CrossRefGoogle Scholar
  45. 45.
    Schneider T, Becker A, Ringe K, Reinhold A, Firsching R, Sabel BA. Brain tumor therapy by combined vaccination and antisense oligonucleotide delivery with nanoparticles. J Neuroimmunol. 2008;195(1–2):21–7.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Graeber MB, Kösel S, Egensperger R, Banati RB, Müller U, Bise K, Hoff P, Möller HJ, Fujisawa K, Mehraein P. Rediscovery of the case described by Alois Alzheimer in 1911: historical, histological and molecular genetic analysis. Neurogenetics. 1997;1(1):73–80.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184–5.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Graham WV, Bonitooliva A, Sakmar TP. Update on Alzheimer’s disease therapy and prevention strategies. Annu Rev Med. 2017;68(1):413–30.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Goedert M, Eisenberg DS, Crowther RA. Propagation of Tau aggregates and neurodegeneration. Annu Rev Neurosci. 2017;40:189–210.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. Biomed Rep. 2016;4(5):519–22.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement. 2016;12(6):719–32.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Sahni JK, Doggui S, Ali J, Baboota S, Dao L, Ramassamy C. Neurotherapeutic applications of nanoparticles in Alzheimer’s disease. J Control Release. 2011;152(2):208–31.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Thorgrimsen L. Phase 3 trials of Solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370(4):311–21.CrossRefGoogle Scholar
  54. 54.
    Viola KL, Sbarboro J, Sureka R, De M, Bicca MA, Wang J, Vasavada S, Satpathy S, Wu S, Joshi H. Towards non-invasive diagnostic imaging of early-stage Alzheimer’s disease. Nat Nanotechnol. 2015;10(1):91–8.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Herran E, Pérezgonzález R, Igartua M, Pedraz JL, Carro E, Hernandez RM. Enhanced hippocampal neurogenesis in APP/Ps1 mouse model of Alzheimer’s disease after implantation of VEGF-loaded PLGA nanospheres. Curr Alzheimer Res. 2015;12(10):932–40.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Yang Y. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomed Nanotechnol Biol Med. 2011;6(3):427–41.CrossRefGoogle Scholar
  57. 57.
    Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res. 2008;1200:159–68.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Mittal G, Sahana DK, Bhardwaj V, Ravi Kumar MN. Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release. 2007;119(1):77–85.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Mulik RS, Mönkkönen J, Juvonen RO, Mahadik KR, Paradkar AR. ApoE3 mediated poly(butyl) cyanoacrylate nanoparticles containing curcumin: study of enhanced activity of curcumin against beta amyloid induced cytotoxicity using in vitro cell culture model. Mol Pharm. 2010;7(3):815–25.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Smith A, Giunta B, Bickford PC, Fountain M, Tan J, Shytle RD. Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int J Pharm. 2010;389(1):207–12.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Bush AI. Drug development based on the metals hypothesis of Alzheimer’s disease. J Alzheimers Dis. 2008;15(2):223–40.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Cui Z, Lockman PR, Atwood CS, Hsu CH, Gupte A, Allen DD, Mumper RJ. Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer’s and other CNS diseases. Eur J Pharm Biopharm. 2005;59(2):263–72.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Liu G, Men P, Harris PLR, Rolston RK, Perry G, Smith MA. Nanoparticle iron chelators: a new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neurosci Lett. 2006;406(3):189–93.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Liu G, Men P, Kudo W, Perry G, Smith MA. Nanoparticle-chelator conjugates as inhibitors of amyloid-beta aggregation and neurotoxicity: a novel therapeutic approach for Alzheimer disease. Neurosci Lett. 2009;455(3):187–90.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Cui Z, Bu W, Fan W, Zhang J, Ni D, Liu Y, Wang J, Liu J, Yao Z, Shi J. Sensitive imaging and effective capture of Cu(2+): towards highly efficient theranostics of Alzheimer’s disease. Biomaterials. 2016;104:158–67.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Mufamadi MS, Choonara YE, Kumar P, Modi G, Naidoo D, Ndesendo VM, Du LT, Iyuke SE, Pillay V. Surface-engineered nanoliposomes by chelating ligands for modulating the neurotoxicity associated with β-amyloid aggregates of Alzheimer’s disease. Pharm Res. 2012;29(11):3075–89.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Dugan LL, Gabrielsen JK, Yu SP, Lin TS, Choi DW. Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol Dis. 1996;3(2):129–35.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Huang HM, Ou HC, Hsieh SJ, Chiang LY. Blockage of amyloid beta peptide-induced cytosolic free calcium by fullerenol-1, carboxylate C60 in PC12 cells. Life Sci. 2000;66(16):1525–33.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Kotelnikova RA, Smolina AV, Grigoryev VV, Faingold II, Mischenko DV, Rybkin AY, Poletayeva DA, Vankin GI, Zamoyskiy VL, Voronov II. Influence of water-soluble derivatives of [60]fullerene on therapeutically important targets related to neurodegenerative diseases. MedChemComm. 2014;5(11):1664–8.CrossRefGoogle Scholar
  70. 70.
    Xie L, Luo Y, Lin D, Xi W, Yang X, Wei G. The molecular mechanism of fullerene-inhibited aggregation of Alzheimer’s β-amyloid peptide fragment. Nanoscale. 2014;6(16):9752–62.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Armisén PA, Sancho MB, Almaraz GE, Prieto BG, Polanco AI. Colitis induced by a food allergen. A report of 20 cases. Anales Espanoles De Pediatria. 1996;44(1):21–4.Google Scholar
  72. 72.
    Heckman KL, Decoteau W, Estevez A, Reed KJ, Costanzo W, Sanford D, Leiter JC, Clauss J, Knapp K, Gomez C. Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano. 2013;7(12):10582–96.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Cimini A, Ceru MP, Amicarelli F, Falone S, Phani RA, Loreto SD, Benedetti E, Santucci S, D’Angelo B. Cerium oxide nanoparticles trigger neuronal survival in a human Alzheimer disease model by modulating BDNF pathway. Curr Nanosci. 2009;5(2):167–76.CrossRefGoogle Scholar
  74. 74.
    Xu C, Qu X. Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 2014;6(3):102–8.CrossRefGoogle Scholar
  75. 75.
    Cimini A, D’Angelo B, Das S, Gentile R, Benedetti E, Singh V, Monaco AM, Santucci S, Seal S. Antibody-conjugated PEGylated cerium oxide nanoparticles for specific targeting of Aβ aggregates modulate neuronal survival pathways. Acta Biomater. 2012;8(6):2056–67.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Kwon HJ, Cha MY, Kim D, Kim DK, Soh M, Shin K, Hyeon T, Mookjung I. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano. 2016;10(2):2860–76.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Chen Q, Du Y, Zhang K, Liang Z, Li J, Yu H, Ren R, Feng J, Jin Z, Li F. A Tau-targeted multifunctional nanocomposite for combinational therapy of Alzheimer’s disease. ACS Nano. 2018;12(2):1321–38.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Bharali DJ, Klejbor I, Stachowiak EK, Dutta P, Roy I, Kaur N, Bergey EJ, Prasad PN, Stachowiak MK. Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci U S A. 2005;102(32):11539–44.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Jaruszewski KM, Ramakrishnan S, Poduslo JF, Kandimalla KK. Chitosan enhances the stability and targeting of immuno-nanovehicles to cerebro-vascular deposits of Alzheimer’s disease amyloid protein. Nanomedicine. 2012;8(2):250–60.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Agyare EK, Curran GL, Ramakrishnan M, Yu CC, Poduslo JF, Kandimalla KK. Development of a smart nano-vehicle to target cerebrovascular amyloid deposits and brain parenchymal plaques observed in Alzheimer’s disease and cerebral amyloid angiopathy. Pharm Res. 2008;25(11):2674–84.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Zhang ZX, Roman GC, Hong Z, Wu CB, Qu QM, Huang JB, Zhou B, Geng ZP, Wu JX, Wen HB, Zhao H, Zahner GE. Parkinson’s disease in China: prevalence in Beijing, Xian, and Shanghai. Lancet. 2005;365(9459):595–7.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896–912.CrossRefGoogle Scholar
  83. 83.
    Kalia LV, Kalia SK. Alpha-Synuclein and Lewy pathology in Parkinson’s disease. Curr Opin Neurol. 2015;28(4):375–81.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Kalia LV, Lang AE. Parkinson disease in 2015: evolving basic, pathological and clinical concepts in PD. Nat Rev Neurol. 2016;12(2):65–6.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Pires AO, Teixeira FG, Mendes-Pinheiro B, Serra SC, Sousa N, Salgado AJ. Old and new challenges in Parkinson’s disease therapeutics. Prog Neurobiol. 2017;156:69–89.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Md S, Khan RA, Mustafa G, Chuttani K, Baboota S, Sahni JK, Ali J. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Eur J Pharm Sci. 2013;48(3):393–405.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Wu H, Hu K, Jiang X. From nose to brain: understanding transport capacity and transport rate of drugs. Expert Opin Drug Deliv. 2008;5(10):1159–68.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Pahuja R, Seth K, Shukla A, Shukla RK, Bhatnagar P, Chauhan LK, Saxena PN, Arun J, Chaudhari BP, Patel DK, Singh SP, Shukla R, Khanna VK, Kumar P, Chaturvedi RK, Gupta KC. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS Nano. 2015;9(5):4850–71.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    De GE, Trapani A, Cafagna D, Sabbatini L, Cometa S. Dopamine-loaded chitosan nanoparticles: formulation and analytical characterization. Anal Bioanal Chem. 2011;400(7):1997–2002.CrossRefGoogle Scholar
  90. 90.
    Trapani A, De GE, Cafagna D, Denora N, Agrimi G, Cassano T, Gaetani S, Cuomo V, Trapani G. Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. Int J Pharm. 2011;419(1):296–307.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Yang X, Zheng R, Cai Y, Liao M, Yuan W, Liu Z. Controlled-release levodopa methyl ester/benserazide-loaded nanoparticles ameliorate levodopa-induced dyskinesia in rats. Int J Nanomedicine. 2012;7:2077–86.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Kaye CM, Nicholls B. Clinical pharmacokinetics of Ropinirole. Clin Pharmacokinet. 2000;39(4):243–54.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Azeem A, Ahmad FJ, Khar RK, Talegaonkar S. Nanocarrier for the transdermal delivery of an Antiparkinsonian drug. AAPS PharmSciTech. 2009;10(4):1093–103.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Dingler A, Gohla S. Production of solid lipid nanoparticles (SLN): scaling up feasibilities. J Microencapsul. 2002;19(1):11–6.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Esposito E, Fantin M, Marti M, Drechsler M, Paccamiccio L, Mariani P, Sivieri E, Lain F, Menegatti E, Morari M, Cortesi R. Solid lipid nanoparticles as delivery systems for bromocriptine. Pharm Res. 2008;25(7):1521–30.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Tsai MJ, Huang YB, Wu PC, Fu YS, Kao YR, Fang JY, Tsai YH. Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: pharmacokinetic and behavioral evaluations. J Pharm Sci. 2011;100(2):547–57.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Wang A, Wang L, Sun K, Liu W, Sha C, Li Y. Preparation of rotigotine-loaded microspheres and their combination use with L-DOPA to modify dyskinesias in 6-OHDA-lesioned rats. Pharm Res. 2012;29(9):2367–76.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Wyman T, Rohrer D, Kirigiti P, Nichols H, Pilcher K, Nilaver G, Machida C. Promoter-activated expression of nerve growth factor for treatment of neurodegenerative diseases. Gene Ther. 1999;6(10):1648–60.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Rinne JO, Mlic JR, Paljärvi L, Rinne UK. Dementia in Parkinson’s disease is related to neuronal loss in the medial substantia nigra. Ann Neurol. 1989;26(1):47–50.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Collier DTJ, Sortwell CE. Therapeutic potential of nerve growth factors in Parkinson’s disease. Drugs Aging. 1999;14(4):261–87.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, Balabanyan VU, Voronina TA, Trofimov SS, Kreuter J, Gelperina S, Begley D, Alyautdin RN. Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target. 2009;17(8):564–74.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Xie J, Chen L, Varadan VK, Yancey J, Srivatsan M. The effects of functional magnetic nanotubes with incorporated nerve growth factor in neuronal differentiation of PC12 cells. Nanotechnology. 2008;19(10):105101.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Facci L, Stevens DA, Pangallo M, Franceschini D, Skaper SD, Strijbos PJ. Corticotropin-releasing factor (CRF) and related peptides confer neuroprotection via type 1 CRF receptors. Neuropharmacology. 2003;45(5):623–36.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Pedersen WA, Wan R, Zhang P, Mattson MP. Urocortin, but not urocortin II, protects cultured hippocampal neurons from oxidative and excitotoxic cell death via corticotropin-releasing hormone receptor type I. J Neurosci. 2002;22(2):404–12.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Hu K, Shi Y, Jiang W, Han J, Huang S, Jiang X. Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: preparation, characterization and efficacy in Parkinson’s disease. Int J Pharm. 2011;415(1):273–83.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Wen Z, Yan Z, Hu K, Pang Z, Cheng X, Guo LR, Zhang Q, Jiang X, Fang L, Lai R. Odorranalectin-conjugated nanoparticles: preparation, brain delivery and pharmacodynamic study on Parkinson’s disease following intranasal administration. J Control Release. 2011;151(2):131–8.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Björklund A, Björklund T, Kirik D. Gene therapy for dopamine replacement in Parkinson’s disease. Sci Transl Med. 2009;1(2):2ps2.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Huang R, Ke W, Liu Y, Wu D, Feng L, Chen J, Pei Y. Gene therapy using lactoferrin-modified nanoparticles in a rotenone-induced chronic Parkinson model. J Neurol Sci. 2010;290(1):123–30.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Chtarto A, Yang X, Bockstael O, Melas C, Blum D, Lehtonen E, Abeloos L, Jaspar JM, Levivier M, Brotchi J. Controlled delivery of glial cell line-derived neurotrophic factor by a single tetracycline-inducible AAV vector. Exp Neurol. 2007;204(1):387–99.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Huang R, Han L, Li J, Ren F, Ke W, Jiang C, Pei Y. Neuroprotection in a 6-hydroxydopamine-lesioned Parkinson model using lactoferrin-modified nanoparticles. J Gene Med. 2009;11(9):754–63.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Huang R, Ma H, Guo Y, Liu S, Kuang Y, Shao K, Li J, Liu Y, Han L, Huang S. Angiopep-conjugated nanoparticles for targeted long-term gene therapy of Parkinson’s disease. Pharm Res. 2013;30(10):2549–59.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Zhang Y, Pardridge WM. Near complete rescue of experimental Parkinson’s disease with intravenous, non-viral GDNF gene therapy. Pharm Res. 2009;26(5):1059–63.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Kim AS, Cahill E, Cheng NT. Global stroke belt: geographic variation in stroke burden worldwide. Stroke. 2015;46(12):3564–70.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Shcharbina N, Shcharbin D, Bryszewska M. Nanomaterials in stroke treatment: perspectives. Stroke. 2013;44(8):2351–5.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Fernandes LF, Bruch GE, Massensini AR, Frézard F. Recent advances in the therapeutic and diagnostic use of liposomes and carbon nanomaterials in ischemic stroke. Front Neurosci. 2018;12:453–67.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Ferranti SD, Despres JP, Fullerton HJ, Howard VJ. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2007;115(5):e69–e245.Google Scholar
  117. 117.
    Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet. 2008;371(9624):1612–23.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Mullen MT, Pisapia JM, Tilwa S, Messé SR, Stein SC. Systematic review of outcome after ischemic stroke due to anterior circulation occlusion treated with intravenous, intra-arterial, or combined intravenous+intra-arterial thrombolysis. Stroke. 2012;43(43):2350–5.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Mutoh T, Mutoh T, Taki Y, Ishikawa T. Therapeutic potential of natural product-based oral nanomedicines for stroke prevention. J Med Food. 2016;19(6):521–7.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Tomillero A, Moral MA. Gateways to clinical trials. Methods Find Exp Clin Pharmacol. 2008;30(4):313–31.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Adeoye O, Hornung R, Khatri P, Kleindorfer D. Recombinant tissue-type plasminogen activator use for ischemic stroke in the United States: a doubling of treatment rates over the course of 5 years. Stroke. 2011;42(7):1952–5.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Silvacandal A, Argibay B, Iglesiasrey R, Vargas Z, Vieitesprado A, Lópezarias E, Rodríguezcastro E, Lópezdequidt I, Rodríguezyáñez M, Piñeiro Y. Vectorized nanodelivery systems for ischemic stroke: a concept and a need. J Nanobiotechnol. 2017;15(1):30–44.CrossRefGoogle Scholar
  123. 123.
    Sarmah D, Saraf J, Kaur H, Pravalika K, Tekade R, Borah A, Kalia K, Dave K, Bhattacharya P. Stroke management: An emerging role of nanotechnology. Micromachines. 2017;8(9):262–74.PubMedCentralCrossRefGoogle Scholar
  124. 124.
    Chen L, Gao X. The application of nanoparticles for neuroprotection in acute ischemic stroke. Ther Deliv. 2017;8(10):915–28.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Erdem SS, Sazonova IY, Hara T, Jaffer FA, JR MC. Detection and treatment of intravascular thrombi with magnetofluorescent nanoparticles. Methods Enzymol. 2012;508:191–209.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Chen JP, Yang PC, Ma YH, Tu SJ, Lu YJ. Targeted delivery of tissue plasminogen activator by binding to silica-coated magnetic nanoparticle. Int J Nanomedicine. 2012;7:5137–49.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Kim BH, Lee N, Kim H, An K, Park YI, Choi Y, Shin K, Lee Y, Kwon SG, Na HB, Park JG, Ahn TY, Kim YW, Moon WK, Choi SH, Hyeon T. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J Am Chem Soc. 2011;133(32):12624–31.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Bi F, Zhang J, Su Y, Tang YC, Liu JN. Chemical conjugation of urokinase to magnetic nanoparticles for targeted thrombolysis. Biomaterials. 2009;30(28):5125–30.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    McCarthy JR. Nanomedicine and cardiovascular disease. Curr Cardiovasc Imaging Report. 2010;3(1):42–9.CrossRefGoogle Scholar
  130. 130.
    Ma Y-H, Wu S-Y, Wu T, Chang Y-J, Hua M-Y, Chen J-P. Magnetically targeted thrombolysis with recombinant tissue plasminogen activator bound to polyacrylic acid-coated nanoparticles. Biomaterials. 2009;30(19):3343–51.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Uesugi Y, Kawata H, Jo J, Saito Y, Tabata Y. An ultrasound-responsive nano delivery system of tissue-type plasminogen activator for thrombolytic therapy. J Control Release. 2010;147(2):269–77.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Tang D-W, Yu S-H, Ho Y-C, Mi F-L, Kuo P-L, Sung H-W. Heparinized chitosan/poly(γ-glutamic acid) nanoparticles for multi-functional delivery of fibroblast growth factor and heparin. Biomaterials. 2010;31(35):9320–32.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Bai S, Ahsan F. Synthesis and evaluation of pegylated dendrimeric nanocarrier for pulmonary delivery of low molecular weight heparin. Pharm Res. 2009;26(3):539–48.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Gary-Bobo M, Mir Y, Rouxel C, Brevet D, Basile I, Maynadier M, Vaillant O, Mongin O, Blanchard-Desce M, Morere A, Garcia M, Durand JO, Raehm L. Mannose-functionalized mesoporous silica nanoparticles for efficient two-photon photodynamic therapy of solid tumors. Angew Chem. 2011;50(48):11425–9.CrossRefGoogle Scholar
  135. 135.
    Schubert D, Dargusch R, Raitano J, Chan SW. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun. 2006;342(1):86–91.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Jin H, Chen WQ, Tang XW, Chiang LY, Yang CY, Schloss JV, Wu JY. Polyhydroxylated C(60), fullerenols, as glutamate receptor antagonists and neuroprotective agents. J Neurosci Res. 2015;62(4):600–7.CrossRefGoogle Scholar
  137. 137.
    Dugan LL, Lovett EG, Quick KL, Lotharius J, Lin TT, O’Malley KL. Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat Disord. 2001;7(3):243–6.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Hirsch A. Dendrimeric fullerene derivatives, process for their preparation, and use as neuroprotectants. U.S. Pat. 2003;6(506):928.Google Scholar
  139. 139.
    Chorny M, Hood E, Levy RJ, Muzykantov VR. Endothelial delivery of antioxidant enzymes loaded into non-polymeric magnetic nanoparticles. J Control Release. 2010;146(1):144–51.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Klyachko NL, Manickam DS, Brynskikh AM, Uglanova SV, Li S, Higginbotham SM, Bronich TK, Batrakova EV, Kabanov AV. Cross-linked antioxidant nanozymes for improved delivery to CNS. Nanomedicine. 2012;8(1):119–29.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Tu J, Yang F, Wan J, Liu Y, Zhang J, Wu B, Liu Y, Zeng S, Wang L. Light-controlled astrocytes promote human mesenchymal stem cells toward neuronal differentiation and improve the neurological deficit in stroke rats. Glia. 2014;62(1):106–21.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.CrossRefGoogle Scholar
  143. 143.
    Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41–9.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Hao L, Zou Z, Tian H, Zhang Y, Zhou H, Liu L. Stem cell-based therapies for ischemic stroke. Bio Med Res Int. 2014;2014:468748.Google Scholar
  145. 145.
    Marquez-Curtis LA, Janowska-Wieczorek A, Mcgann LE, Elliott JAW. Mesenchymal stromal cells derived from various tissues: biological, clinical and cryopreservation aspects. Cryobiology. 2015;71(2):181–97.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Ellis-Behnke R, Teather L, Schneider G, So K-F. Using nanotechnology to design potential therapies for CNS regeneration. Curr Pharm Des. 2007;13(24):2519–28.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Borlongan CV, Masuda T, Walker TA, Maki M, Hara K, Yasuhara T, Matsukawa N, Emerich DF. Nanotechnology as an adjunct tool for transplanting engineered cells and tissues. Curr Mol Med. 2007;7(7):609–18.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Kubinová Š, Syková E. Nanotechnology for treatment of stroke and spinal cord injury. Nanomedicine. 2010;5(1):99–108.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Roberson ED, Scearcelevie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science. 2007;316(5825):750–4.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Huang X, Zhang F, Wang Y, Sun X, Choi KY, Liu D, Choi J-S, Shin T-H, Cheon J, Niu G. Design considerations of iron-based nanoclusters for noninvasive tracking of mesenchymal stem cell homing. ACS Nano. 2014;8(5):4403–14.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Park W, Yang HN, Ling D, Yim H, Kim KS, Hyeon T, Na K, Park K-H. Multi-modal transfection agent based on monodisperse magnetic nanoparticles for stem cell gene delivery and tracking. Biomaterials. 2014;35(25):7239–47.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Nair S, Dileep A, Rajanikant G. Nanotechnology based diagnostic and therapeutic strategies for neuroscience with special emphasis on ischemic stroke. Curr Med Chem. 2012;19(5):744–56.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Pharmaceutics, College of Pharmaceutical SciencesZhejiang UniversityZhejiangPeople’s Republic of China

Personalised recommendations