Skip to main content

Advertisement

Log in

Nanomedicine and Cardiovascular Disease

  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Nanomedicine has become an important tool in the imaging and therapy of numerous diseases. This is due, in large part, to the ability to generate multifunctional nanoagents bearing combinations of targeting, diagnostic, and therapeutic moieties, allowing for the tailoring of the properties of the synthesized nanomaterials. With respect to cardiovascular disease and its sequelae, nanomedicine has the potential to detect and treat some of the leading causes of death and disability in the developed world, including atherosclerosis, thrombosis, and myocardial infarction. As such, this review focuses on some of the most poignant examples of the utility of nanomedicine in the detection and treatment of cardiovascular disease that have been recently reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cormode DP, Skajaa T, Fayad ZA, Mulder WJ: Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol 2009, 29:992–1000.

    Article  CAS  PubMed  Google Scholar 

  2. Jaffer FA, Libby P, Weissleder R: Optical and multimodality molecular imaging: insights into atherosclerosis. Arterioscler Thromb Vasc Biol 2009, 29:1017–1024.

    Article  CAS  PubMed  Google Scholar 

  3. McCarthy JR, Kelly KA, Sun EY, Weissleder R: Targeted delivery of multifunctional magnetic nanoparticles. Nanomed 2007, 2:153–167.

    Article  CAS  Google Scholar 

  4. McCarthy JR, Weissleder R: Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 2008, 60:1241–1251.

    Article  CAS  PubMed  Google Scholar 

  5. Skajaa T, Cormode DP, Falk E, et al.: High-Density Lipoprotein-Based Contrast Agents for Multimodal Imaging of Atherosclerosis. Arterioscler Thromb Vasc Biol 2009, In press.

  6. Nahrendorf M, Sosnovik DE, French BA, et al.: Multimodality cardiovascular molecular imaging, Part II. Circ Cardiovasc Imaging 2009, 2:56–70.

    Article  PubMed  Google Scholar 

  7. Sinusas AJ, Bengel F, Nahrendorf M, et al.: Multimodality cardiovascular molecular imaging, part I. Circ Cardiovasc Imaging 2008, 1:244–256.

    Article  PubMed  Google Scholar 

  8. • Nahrendorf M, Zhang H, Hembrador S, et al.: Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 2008, 117:379–387. The trimodal nanoagent utilized in this study was able to correlate macrophage burden with PET signal. It was also able to demonstrate localization to atherosclerotic lesions by both MRI and fluorescence imaging.

    Article  CAS  PubMed  Google Scholar 

  9. Nahrendorf M, Waterman P, Thurber G, et al.: Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors. Arterioscler Thromb Vasc Biol 2009, 29:1444–1451.

    Article  CAS  PubMed  Google Scholar 

  10. Hyafil F, Cornily JC, Feig JE, et al.: Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med 2007, 13:636–641.

    Article  CAS  PubMed  Google Scholar 

  11. Hyafil F, Cornily JC, Rudd JH et al.: Quantification of inflammation within rabbit atherosclerotic plaques using the macrophage-specific CT contrast agent N1177: a comparison with 18F-FDG PET/CT and histology. J Nucl Med 2009, 50:959–965.

    Article  CAS  PubMed  Google Scholar 

  12. McCarthy JR, Jaffer FA, Weissleder R: Imaging and therapy of atherosclerotic lesions with theranostic nanoparticles. In Methods in Bioengineering: Nanoscale Bioengineering and Nanomedicine. Edited by Rege K, Medintz IL. Boston: Artec House; 2009:137–151.

    Google Scholar 

  13. McCarthy JR, Jaffer FA, Weissleder R: A macrophage-targeted theranostic nanoparticle for biomedical applications. Small 2006, 2:983–987.

    Article  CAS  PubMed  Google Scholar 

  14. Flaumenhaft R, Tanaka E, Graham GJ, et al.: Localization and quantification of platelet-rich thrombi in large blood vessels with near-infrared fluorescence imaging. Circulation 2007, 115:84–93.

    Article  PubMed  Google Scholar 

  15. Frenette PS, Johnson RC, Hynes RO, Wagner DD: Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin. Proc Natl Acad Sci U S A 1995, 92:7450–7454.

    Article  CAS  PubMed  Google Scholar 

  16. Massberg S, Sausbier M, Klatt P, et al.: Increased adhesion and aggregation of platelets lacking cyclic guanosine 3′,5′-monophosphate kinase I. J Exp Med 1999, 189:1255–1264.

    Article  CAS  PubMed  Google Scholar 

  17. Sim DS, Merrill-Skoloff G, Furie BC, et al.: Initial accumulation of platelets during arterial thrombus formation in vivo is inhibited by elevation of basal cAMP levels. Blood 2004, 103:2127–2134.

    Article  CAS  PubMed  Google Scholar 

  18. Balasubramanian V, Grabowski E, Bini A, Nemerson Y: Platelets, circulating tissue factor, and fibrin colocalize in ex vivo thrombi: real-time fluorescence images of thrombus formation and propagation under defined flow conditions. Blood 2002, 100:2787–2792.

    Article  CAS  PubMed  Google Scholar 

  19. Falati S, Gross P, Merrill-Skoloff G, et al.: Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat Med 2002, 8:1175–1181.

    Article  CAS  PubMed  Google Scholar 

  20. Knight LC, Maurer AH, Ammar IA, et al.: Evaluation of indium-111-labeled anti-fibrin antibody for imaging vascular thrombi. J Nucl Med 1988, 29:494–502.

    CAS  PubMed  Google Scholar 

  21. Stratton JR, Cerqueira MD, Dewhurst TA, Kohler TR: Imaging arterial thrombosis: comparison of technetium-99 m-labeled monoclonal antifibrin antibodies and indium-111-platelets. J Nucl Med 1994, 35:1731–1737.

    CAS  PubMed  Google Scholar 

  22. Jaffer FA, Tung CH, Wykrzykowska JJ, et al.: Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi. Circulation 2004, 110:170–176.

    Article  CAS  PubMed  Google Scholar 

  23. Tung CH, Ho NH, Zeng Q, et al.: Novel factor XIII probes for blood coagulation imaging. Chembiochem 2003, 4:897–899.

    Article  CAS  PubMed  Google Scholar 

  24. McCarthy JR, Patel P, Botnaru I, et al.: Multimodal nanoagents for the detection of intravascular thrombi. Bioconjug Chem 2009, 20:1251–1255.

    Article  CAS  PubMed  Google Scholar 

  25. Aruva MR, Daviau J, Sharma SS, Thakur ML: Imaging thromboembolism with fibrin-avid 99mTc-peptide: evaluation in swine. J Nucl Med 2006, 47:155–162.

    CAS  PubMed  Google Scholar 

  26. Kawasaki K, Miyano M, Hirase K, Iwamoto M: Amino acids and peptides. XVIII. Synthetic peptides related to N-terminal portion of fibrin alpha-chain and their inhibitory effect on fibrinogen/thrombin clotting. Chem Pharm Bull (Tokyo) 1993, 41:975–977.

    CAS  Google Scholar 

  27. Thakur ML, Pallela VR, Consigny PM, et al.: Imaging vascular thrombosis with 99mTc-labeled fibrin alpha-chain peptide. J Nucl Med 2000, 41:161–168.

    CAS  PubMed  Google Scholar 

  28. Ma YH, Wu SY, Wu T, et al.: Magnetically targeted thrombolysis with recombinant tissue plasminogen activator bound to polyacrylic acid-coated nanoparticles. Biomaterials 2009, 30:3343–3351.

    Article  CAS  PubMed  Google Scholar 

  29. Bi F, Zhang J, Su Y, et al.: Chemical conjugation of urokinase to magnetic nanoparticles for targeted thrombolysis. Biomaterials 2009, 30:5125–5130.

    Article  CAS  PubMed  Google Scholar 

  30. Sosnovik DE, Nahrendorf M, Deliolanis N, et al.: Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo. Circulation 2007, 115:1384–1391.

    Article  PubMed  Google Scholar 

  31. Nahrendorf M, Sosnovik DE, Waterman P, et al.: Dual channel optical tomographic imaging of leukocyte recruitment and protease activity in the healing myocardial infarct. Circ Res 2007, 100:1218–1225.

    Article  CAS  PubMed  Google Scholar 

  32. Nahrendorf M, Sosnovik D, Chen JW, et al.: Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation 2008, 117:1153–1160.

    Article  CAS  PubMed  Google Scholar 

  33. • Panizzi P, Nahrendorf M, Wildgruber M, et al.: Oxazine conjugated nanoparticle detects in vivo hypochlorous acid and peroxynitrite generation. J Am Chem Soc 2009, 131:15739–15744. This is the first example of a long circulating nanoparticulate construct for the detection of MPO activity in vivo. Although used in MI, this probe will demonstrate utility in a number of conditions with inflammatory components, such as atherosclerosis, diabetes, and cancer.

    Article  CAS  PubMed  Google Scholar 

  34. •• Christen T, Nahrendorf M, Wildgruber M, et al.: Molecular imaging of innate immune cell function in transplant rejection. Circulation 2009, 119:1925–1932. This article establishes that the detection of transplant rejection need not be an invasive procedure. Instead, noninvasive determination of macrophage infiltration may serve a diagnostic/prognostic role.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

The author has no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason R. McCarthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarthy, J.R. Nanomedicine and Cardiovascular Disease. curr cardiovasc imaging rep 3, 42–49 (2010). https://doi.org/10.1007/s12410-009-9002-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-009-9002-3

Keywords

Navigation