Skip to main content

The Craft of Peroxisome Purification—A Technical Survey Through the Decades

  • Chapter
  • First Online:
Proteomics of Peroxisomes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 89))

Abstract

Purification technologies are one of the working horses in organelle proteomics studies as they guarantee the separation of organelle-specific proteins from the background contamination by other subcellular compartments. The development of methods for the separation of organelles was a major prerequisite for the initial detection and characterization of peroxisome as a discrete entity of the cell. Since then, isolated peroxisomes fractions have been used in numerous studies in order to characterize organelle-specific enzyme functions, to allocate the peroxisome-specific proteome or to unravel the organellar membrane composition. This review will give an overview of the fractionation methods used for the isolation of peroxisomes from animals, plants and fungi. In addition to “classic” centrifugation-based isolation methods, relying on the different densities of individual organelles, the review will also summarize work on alternative technologies like free-flow-electrophoresis or flow field fractionation which are based on distinct physicochemical parameters. A final chapter will further describe how different separation methods and quantitative mass spectrometry have been used in proteomics studies to assign the proteome of PO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Tris-HCl:

Tris (hydroxymethyl) aminomethane hydrochloride

MOPS:

4-Morpholinepropane sulfonic acid

Tricine:

N-[Tris(hydroxymethyl)methyl]glycine

EDTA:

Ethylenediaminetetraacetic acid

PMSF:

Phenylmethanesulfonyl fluoride,

DTT:

1,4-Dithiothreitol

LM fraction:

Light mitochondrial fraction

HM fraction:

Heavy mitochondrial fraction

PTS:

Peroxisome targeting sequence

FFE:

Free flow electrophoresis

FlFFF:

Flow field-flow fractionation

DIGE:

Difference Gel Electrophoresis

References

  • Adams DH, Burgess EA (1957) The effect of the degree of homogenization on the catalase activity of liver homogenates. Br J Cancer 11(2):310–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal G, Fassas SN, Xia ZJ, Subramani S (2016) Distinct requirements for intra-ER sorting and budding of peroxisomal membrane proteins from the ER. J Cell Biol 212(3):335–348. https://doi.org/10.1083/jcb.201506141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal G, Joshi S, Subramani S (2011) Cell-free sorting of peroxisomal membrane proteins from the endoplasmic reticulum. Proc Natl Acad Sci U S A 108(22):9113–9118. https://doi.org/10.1073/pnas.1018749108 (doi:1018749108 [pii])

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahlemeyer B, Neubert I, Kovacs WJ, Baumgart-Vogt E (2007) Differential expression of peroxisomal matrix and membrane proteins during postnatal development of mouse brain. J Comp Neurol 505(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Ahmad S, Pritsos CA, Bowen SM, Heisler CR, Blomquist GJ, Pardini RS (1988) Antioxidant enzymes of larvae of the cabbage looper moth, Trichoplusia ni: subcellular distribution and activities of superoxide dismutase, catalase and glutathione reductase. Free Radic Res Commun 4(6):403–408

    Article  CAS  PubMed  Google Scholar 

  • Alvarez A, Hidalgo U, Kawada ME, Munizaga A, Zuniga A, Ibanez L, Koenig CS, Santos MJ (1992) Isolation of peroxisomes from frozen human liver samples. Anal Biochem 206(1):147–154

    Article  CAS  PubMed  Google Scholar 

  • Antonenkov VD, Sormunen RT, Hiltunen JK (2004a) The behavior of peroxisomes in vitro: mammalian peroxisomes are osmotically sensitive particles. Am J Physiol Cell Physiol 287(6):C1623–C1635

    Article  CAS  PubMed  Google Scholar 

  • Antonenkov VD, Sormunen RT, Hiltunen JK (2004b) The rat liver peroxisomal membrane forms a permeability barrier for cofactors but not for small metabolites in vitro. J Cell Sci 117(Pt 23):5633–5642

    Article  CAS  PubMed  Google Scholar 

  • Appelkvist EL, Brunk U, Dallner G (1981) Isolation of peroxisomes from rat liver using sucrose and Percoll gradients. J Biochem Biophys Methods 5(4):203–217

    Article  CAS  PubMed  Google Scholar 

  • Arai Y, Hayashi M, Nishimura M (2008) Proteomic analysis of highly purified peroxisomes from etiolated soybean cotyledons. Plant Cell Physiol 49(4):526–539

    Article  CAS  PubMed  Google Scholar 

  • Arnold G, Holtzman E (1978) Microperoxisomes in the central nervous system of the postnatal rat. Brain Res 155(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Bartoszewska M, Opalinski L, Veenhuis M, van der Klei IJ (2011) The significance of peroxisomes in secondary metabolite biosynthesis in filamentous fungi. Biotechnol Lett 33(10):1921–1931. https://doi.org/10.1007/s10529-011-0664-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baudhuin P, Beaufay H, De Duve C (1965a) Combined biochemical and morphological study of particulate fractions from rat liver. Analysis of preparations enriched in lysosomes or in particles containing urate oxidase, d-amino acid oxidase, and catalase. J Cell Biol 26(1):219–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baudhuin P, Beaufay H, Rahman-Li Y, Sellinger OZ, Wattiaux R, Jacques P, De Duve C (1964) Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase, d-amino acid oxidase and catalase in rat-liver tissue. Biochem J 92(1):179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baudhuin P, Mueller M, Poole B, Deduve C (1965b) Non-mitochondrial oxidizing particles (microbodies) in rat liver and kidney and in tetrahymena pyriformis. Biochem Biophys Res Commun 20:53–59

    Article  CAS  PubMed  Google Scholar 

  • Baumgart E, Fahimi HD, Stich A, Völkl A (1996) l-lactate dehydrogenase A4- and A3B isoforms are bona fide peroxisomal enzymes in rat liver. Evidence for involvement in intraperoxisomal NADH reoxidation. J Biol Chem 271(7):3846–3855

    Article  CAS  PubMed  Google Scholar 

  • Beaufay H (1966) La centrifugation en gradient de densité. Doctoral Thesis, Universitè Catholique de Louvain, Leuven, Belgium

    Google Scholar 

  • Beaufay H, Jacques P, Baudhuin P, Sellinger OZ, Berthet J, De Duve C (1964) Tissue fractionation studies. 18. Resolution of mitochondrial fractions from rat liver into three distinct populations of cytoplasmic particles by means of density equilibration in various gradients. Biochem J 92(1):184–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernhard W, Rouiller C (1956) Microbodies and the problem of mitochondrial regeneration in liver cells. J Biophys Biochem Cytol 2(4 Suppl):355–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bottelbergs A, Verheijden S, Hulshagen L, Gutmann DH, Goebbels S, Nave KA, Kassmann C, Baes M (2010) Axonal integrity in the absence of functional peroxisomes from projection neurons and astrocytes. Glia 58(13):1532–1543. https://doi.org/10.1002/glia.21027

    Article  PubMed  Google Scholar 

  • Breidenbach RW, Beevers H (1967) Association of the glyoxylate cycle enzymes in a novel subcellular particle from castor bean endosperm. Biochem Biophys Res Commun 27(4):462–469

    Article  CAS  PubMed  Google Scholar 

  • Bronfman M, Inestrosa NC, Leighton F (1979) Fatty acid oxidation by human liver peroxisomes. Biochem Biophys Res Commun 88(3):1030–1036

    Article  CAS  PubMed  Google Scholar 

  • Bulitta C, Ganea C, Fahimi HD, Völkl A (1996) Cytoplasmic and peroxisomal catalases of the guinea pig liver: evidence for two distinct proteins. Biochim Biophys Acta 1293(1):55–62

    Article  PubMed  Google Scholar 

  • Chance B (1950) The reactions of catalase in the presence of the notatin system. Biochem J 46(4):387–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu BB, Liao YC, Qi W, Xie C, Du X, Wang J, Yang H, Miao HH, Li BL, Song BL (2015) Cholesterol transport through lysosome-peroxisome membrane contacts. Cell 161(2):291–306. https://doi.org/10.1016/j.cell.2015.02.019

    Article  CAS  PubMed  Google Scholar 

  • Cimini A, Cristiano L, Bernardo A, Benedetti E, Di Loreto S, Ceru MP (2003) Peroxisomes and PPARs in cultured neural cells. Adv Exp Med Biol 544:271–280

    Article  CAS  PubMed  Google Scholar 

  • Cimini AM, Moreno S, Giorgi M, Serafini B, Ceru MP (1993) Purification of peroxisomal fraction from rat brain. Neurochem Int 23(3):249–260

    Article  CAS  PubMed  Google Scholar 

  • Claude A (1946a) Fractionation of mammalian liver cells by differential centrifugation: I. Problems, methods, and preparation of extract. J Exp Med 84(1):51–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claude A (1946b) Fractionation of mammalian liver cells by differential centrifugation: II. Experimental procedures and results. J Exp Med 84(1):61–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper TG, Beevers H (1969) Mitochondria and glyoxysomes from castor bean endosperm—enzyme constituents and catalytic capacity. J Biol Chem 244(13):3507–3513

    CAS  PubMed  Google Scholar 

  • Corpas FJ (1992) Metabolism of reactive oxygen species and ureides in leaf peroxisomes of Pisum sativum L. under salinity conditions. PhD thesis, University of Granada, Granada, Spain

    Google Scholar 

  • Corpas FJ, Barroso JB, Sandalio LM, Distefano S, Palma JM, Lupiáñez JA, del Río LA (1998) A dehydrogenase-mediated recycling system of NADPH in plant peroxisomes. Biochem J 330(Pt 2):777–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Sandalio LM, Palma JM, Leidi EO, Hernández JA, Sevilla F, del Río LA (1991) Subcellular distribution of superoxide dismutase in leaves of ureide-producing leguminous plants. Physiol Plant 82:285–291

    Article  CAS  Google Scholar 

  • Costello J, Castro I, Camões F, Schrader T, McNeall D, Giannopoulou N, Pogenberg V, Gomes S, Bonekamp N, Ribeiro D, Wilmanns M, Islinger M, Schrader M (2017) Predicting the targeting of tail-anchored proteins to subcellular compartments in mammalian cells. J Cell Sci. Epub ahead of print

    Google Scholar 

  • Cramer J, Effelsberg D, Girzalsky W, Erdmann R (2015a) Large-scale purification of peroxisomes for preparative applications. Cold Spring Harb Protoc 2015 (9):pdb prot083725. https://doi.org/10.1101/pdb.prot083725

    Article  PubMed  Google Scholar 

  • Cramer J, Effelsberg D, Girzalsky W, Erdmann R (2015b) Small-scale purification of peroxisomes for analytical applications. Cold Spring Harb Protoc 2015 (9):pdb prot083717. https://doi.org/10.1101/pdb.prot083717

    Article  PubMed  Google Scholar 

  • Davies LP, Johnston GA (1975) d-aspartate oxidase activity in extracts of mammalian central nervous tissue. J Neurochem 25(3):299–304

    Article  CAS  PubMed  Google Scholar 

  • De Duve C (1960) Intracellular localization of enzymes. Nature 187:836–853

    Article  Google Scholar 

  • De Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46(2):323–357

    Article  PubMed  Google Scholar 

  • De Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F (1955) Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J 60(4):604–617

    Article  PubMed Central  Google Scholar 

  • Erdmann R (2016) Assembly, maintenance and dynamics of peroxisomes. Biochim Biophys Acta 1863(5):787–789. https://doi.org/10.1016/j.bbamcr.2016.01.020

    Article  CAS  PubMed  Google Scholar 

  • Erdmann R, Blobel G (1995) Giant peroxisomes in oleic acid-induced Saccharomyces cerevisiae lacking the peroxisomal membrane protein Pmp27p. J Cell Biol 128(4):509–523

    Article  CAS  PubMed  Google Scholar 

  • Eubel H, Meyer EH, Taylor NL, Bussell JD, O’Toole N, Heazlewood JL, Castleden I, Small ID, Smith SM, Millar AH (2008) Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148(4):1809–1829. https://doi.org/10.1104/pp.108.129999 (doi:pp.108.129999 [pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford T, Graham J, Rickwood D (1994) Iodixanol: a nonionic iso-osmotic centrifugation medium for the formation of self-generated gradients. Anal Biochem 220(2):360–366. https://doi.org/10.1006/abio.1994.1350

    Article  CAS  PubMed  Google Scholar 

  • Fukao Y, Hayashi M, Nishimura M (2002) Proteomic analysis of leaf peroxisomal proteins in greening cotyledons of Arabidopsis thaliana. Plant Cell Physiol 43(7):689–696

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt B (1981) Ezyme activities of the b-oxidation pathway in spinach leaf peroxisomes. FEBS Lett 126(1):71–73

    Article  CAS  Google Scholar 

  • Gerhardt B (1983) Localization of b-oxidation enzymes in peroxisomes isolated from nonfatty plant tissues. Planta 159:238–246

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt BP, Beevers H (1970) Developmental studies on glyoxysomes in Ricinus endosperm. J Cell Biol 44(1):94–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh MK, Hajra AK (1986) A rapid method for the isolation of peroxisomes from rat liver. Anal Biochem 159(1):169–174

    Article  CAS  PubMed  Google Scholar 

  • Goldfischer S, Moore CL, Johnson AB, Spiro AJ, Valsamis MP, Wisniewski HK, Ritch RH, Norton WT, Rapin I, Gartner LM (1973) Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science 182(107):62–64

    Article  CAS  PubMed  Google Scholar 

  • Goodman JM, Scott CW, Donahue PN, Atherton JP (1984) Alcohol oxidase assembles post-translationally into the peroxisome of Candida boidinii. J Biol Chem 259(13):8485–8493

    CAS  PubMed  Google Scholar 

  • Graham IA, Eastmond PJ (2002) Pathways of straight and branched chain fatty acid catabolism in higher plants. Prog Lipid Res 41(2):156–181

    Article  CAS  PubMed  Google Scholar 

  • Graham J, Ford T, Rickwood D (1994) The preparation of subcellular organelles from mouse liver in self-generated gradients of iodixanol. Anal Biochem 220(2):367–373

    Article  CAS  PubMed  Google Scholar 

  • Graves LB Jr, Becker WM (1974) Beta-oxidation in glyoxysomes from Euglena. J Protozool 21(5):771–774

    Article  CAS  PubMed  Google Scholar 

  • Graves LB Jr, Trelease RN, Grill A, Becker WM (1972) Localization of glyoxylate cycle enzymes in glyoxysomes in Euglena. J Protozool 19(3):527–532

    Article  CAS  PubMed  Google Scholar 

  • Gray EG, Whittaker VP (1962) The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat 96:79–88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gronemeyer T, Wiese S, Grinhagens S, Schollenberger L, Satyagraha A, Huber LA, Meyer HE, Warscheid B, Just WW (2013a) Localization of Rab proteins to peroxisomes: a proteomics and immunofluorescence study. FEBS Lett 587(4):328–338. https://doi.org/10.1016/j.febslet.2012.12.025

    Article  CAS  PubMed  Google Scholar 

  • Gronemeyer T, Wiese S, Ofman R, Bunse C, Pawlas M, Hayen H, Eisenacher M, Stephan C, Meyer HE, Waterham HR, Erdmann R, Wanders RJ, Warscheid B (2013b) The proteome of human liver peroxisomes: identification of five new peroxisomal constituents by a label-free quantitative proteomics survey. PLoS ONE 8(2):e57395. https://doi.org/10.1371/journal.pone.0057395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross W (1989) Intracellular localization of enzymes of fatty acid-beta-oxidation in the alga cyanidium caldarium. Plant Physiol 91(4):1476–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross W, Beevers H (1989) Subcellular distribution of enzymes of glycolate metabolism in the alga cyanidium caldarium. Plant Physiol 90(3):799–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross W, Winkler U, Stabenau H (1985) Characterization of peroxisomes from the alga bumilleriopsis filiformis. Plant Physiol 77(2):296–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajra AK, Bishop JE (1982) Glycerolipid biosynthesis in peroxisomes via the acyl dihydroxyacetone phosphate pathway. Ann N Y Acad Sci 386:170–182

    Article  CAS  PubMed  Google Scholar 

  • Hajra AK, Wu D (1985) Preparative isolation of peroxisomes from liver and kidney using metrizamide density gradient centrifugation in a vertical rotor. Anal Biochem 148(1):233–244

    Article  CAS  PubMed  Google Scholar 

  • Hannig K, Heidrich HG (1974) The use of continuous preparative free-flow electrophoresis for dissociating cell fractions and isolation of membranous components. Methods Enzymol 31:746–761

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Just WW, Koster A, Schimassek H (1985) Improved isolation and purification of rat liver peroxisomes by combined rate zonal and equilibrium density centrifugation. Arch Biochem Biophys 237(1):124–134

    Article  CAS  PubMed  Google Scholar 

  • Hess R, Staubli W, Riess W (1965) Nature of the hepatomegalic effect produced by ethyl-chlorophenoxy-isobutyrate in the rat. Nature 208(5013):856–858

    Article  CAS  PubMed  Google Scholar 

  • Hettema EH, Erdmann R, van der Klei I, Veenhuis M (2014) Evolving models for peroxisome biogenesis. Curr Opin Cell Biol 29:25–30. https://doi.org/10.1016/j.ceb.2014.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogeboom GH, Schneider WC, Pallade GE (1948) Cytochemical studies of mammalian tissues; isolation of intact mitochondria from rat liver; some biochemical properties of mitochondria and submicroscopic particulate material. J Biol Chem 172(2):619–635

    CAS  PubMed  Google Scholar 

  • Huang AH, Beevers H (1971) Isolation of microbodies from plant tissues. Plant Physiol 48(5):637–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islinger M, Cardoso MJ, Schrader M (2010a) Be different—the diversity of peroxisomes in the animal kingdom. Biochim Biophys Acta 8:881–897. https://doi.org/10.1016/j.bbamcr.2010.03.013 (doi:S0167-4889(10)00090-X [pii])

    Article  CAS  Google Scholar 

  • Islinger M, Eckerskorn C, Völkl A (2010b) Free-flow electrophoresis in the proteomic era: a technique in flux. Electrophoresis 31(11):1754–1763. https://doi.org/10.1002/elps.200900771

    Article  CAS  PubMed  Google Scholar 

  • Islinger M, Grille S, Fahimi HD, Schrader M (2012) The peroxisome: an update on mysteries. Histochem Cell Biol 137(5):547–574. https://doi.org/10.1007/s00418-012-0941-4

    Article  CAS  PubMed  Google Scholar 

  • Islinger M, Li KW, Loos M, Liebler S, Angermuller S, Eckerskorn C, Weber G, Abdolzade A, Völkl A (2010c) Peroxisomes from the heavy mitochondrial fraction: isolation by zonal free flow electrophoresis and quantitative mass spectrometrical characterization. J Proteome Res 9(1):113–124. https://doi.org/10.1021/pr9004663

    Article  CAS  PubMed  Google Scholar 

  • Islinger M, Li KW, Seitz J, Völkl A, Luers GH (2009) Hitchhiking of Cu/Zn superoxide dismutase to peroxisomes-evidence for a natural piggyback import mechanism in mammals. Traffic. https://doi.org/10.1111/j.1600-0854.2009.00966.x (doi:TRA966 [pii])

    Article  PubMed  Google Scholar 

  • Islinger M, Luers GH, Li KW, Loos M, Völkl A (2007) Rat liver peroxisomes after fibrate treatment. A survey using quantitative mass spectrometry. J Biol Chem 282(32):23055–23069

    Article  CAS  PubMed  Google Scholar 

  • Islinger M, Luers GH, Zischka H, Ueffing M, Völkl A (2006) Insights into the membrane proteome of rat liver peroxisomes: microsomal glutathione-S-transferase is shared by both subcellular compartments. Proteomics 6(3):804–816

    Article  CAS  PubMed  Google Scholar 

  • Jadot M, Boonen M, Thirion J, Wang N, Xing J, Zhao C, Tannous A, Qian M, Zheng H, Everett JK, Moore DF, Sleat DE, Lobel P (2017) Accounting for protein subcellular localization: a compartmental map of the rat liver proteome. Mol Cell Proteomics 16(2):194–212. https://doi.org/10.1074/mcp.M116.064527

    Article  CAS  PubMed  Google Scholar 

  • Kalmbach P, Fahimi HD (1978) Peroxisomes: identification in freeze-etch preparations of rat kidney. Cell Biol Int Rep 2(4):389–396

    Article  CAS  PubMed  Google Scholar 

  • Kamiryo T, Abe M, Okazaki K, Kato S, Shimamoto N (1982) Absence of DNA in peroxisomes of Candida tropicalis. J Bacteriol 152(1):269–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kassmann CM, Lappe-Siefke C, Baes M, Brugger B, Mildner A, Werner HB, Natt O, Michaelis T, Prinz M, Frahm J, Nave KA (2007) Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat Genet 39(8):969–976

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi M, Hatano N, Yokota S, Shimozawa N, Imanaka T, Taniguchi H (2004) Proteomic analysis of rat liver peroxisome: presence of peroxisome-specific isozyme of Lon protease. J Biol Chem 279(1):421–428

    Article  CAS  PubMed  Google Scholar 

  • Kionka C, Kunau WH (1985) Inducible beta-oxidation pathway in Neurospora crassa. J Bacteriol 161(1):153–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitano R, Morimoto S (1975) Isolation of peroxisomes from the dog kidney cortex. Biochim Biophys Acta 411(1):113–120

    Article  CAS  PubMed  Google Scholar 

  • Kovacs WJ, Faust PL, Keller GA, Krisans SK (2001) Purification of brain peroxisomes and localization of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Eur J Biochem 268(18):4850–4859

    Article  CAS  PubMed  Google Scholar 

  • Krivankova L, Bocek P (1998) Continuous free-flow electrophoresis. Electrophoresis 19(7):1064–1074. https://doi.org/10.1002/elps.1150190704

    Article  CAS  PubMed  Google Scholar 

  • Kubo Y (2013) Function of peroxisomes in plant-pathogen interactions. Subcell Biochem 69:329–345. https://doi.org/10.1007/978-94-007-6889-5_18

    Article  CAS  PubMed  Google Scholar 

  • Lam SK, Yoda N, Schekman R (2010) A vesicle carrier that mediates peroxisome protein traffic from the endoplasmic reticulum. Proc Natl Acad Sci U S A 107(50):21523–21528. https://doi.org/10.1073/pnas.1013397107 (doi:1013397107 [pii])

    Article  PubMed  PubMed Central  Google Scholar 

  • Lazarow PB, De Duve C (1976) A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A 73(6):2043–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazo O, Singh AK, Singh I (1991) Postnatal development and isolation of peroxisomes from brain. J Neurochem 56(4):1343–1353

    Article  CAS  PubMed  Google Scholar 

  • Leighton F, Poole B, Beaufay H, Baudhuin P, Coffey JW, Fowler S, De Duve C (1968) The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339. Improved isolation procedures, automated analysis, biochemical and morphological properties of fractions. J Cell Biol 37(2):482–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemmens M, Verheyden K, Van Veldhoven P, Vereecke J, Mannaerts GP, Carmeliet E (1989) Single-channel analysis of a large conductance channel in peroxisomes from rat liver. Biochim Biophys Acta 984(3):351–359

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Liu J, Lester JD, Pijut SS, Graf GA (2015) ABCD2 identifies a subclass of peroxisomes in mouse adipose tissue. Biochem Biophys Res Commun 456(1):129–134. https://doi.org/10.1016/j.bbrc.2014.11.046

    Article  CAS  PubMed  Google Scholar 

  • López-Huertas E, del Río LA (2014) Characterization of antioxidant enzymes and peroxisomes of olive (Olea europaea L.) fruits. J Plant Physiol 171(16):1463–1471. https://doi.org/10.1016/j.jplph.2014.06.014

    Article  CAS  PubMed  Google Scholar 

  • López-Huertas E, Sandalio LM, del Río LA (1995) Integral membrane polypeptides of pea leaf peroxisomes: characterization and response to plant stress. Plant Physiol Biochem 33(3):295–302

    Google Scholar 

  • Luers G, Beier K, Hashimoto T, Fahimi HD, Völkl A (1990) Biogenesis of peroxisomes: sequential biosynthesis of the membrane and matrix proteins in the course of hepatic regeneration. Eur J Cell Biol 52(2):175–184

    CAS  PubMed  Google Scholar 

  • Luers G, Hashimoto T, Fahimi HD, Völkl A (1993) Biogenesis of peroxisomes: isolation and characterization of two distinct peroxisomal populations from normal and regenerating rat liver. J Cell Biol 121(6):1271–1280

    Article  CAS  PubMed  Google Scholar 

  • Luers GH, Hartig R, Mohr H, Hausmann M, Fahimi HD, Cremer C, Völkl A (1998) Immuno-isolation of highly purified peroxisomes using magnetic beads and continuous immunomagnetic sorting. Electrophoresis 19(7):1205–1210

    Article  CAS  PubMed  Google Scholar 

  • Mackness MI, Connock MJ (1985) Predominant localization of dihydroxyacetone-phosphate acyltransferase activity in renal peroxisomes of male and female mice. Comp Biochem Physiol B 80(1):161–164

    Article  CAS  PubMed  Google Scholar 

  • Managadze D, Wurtz C, Wiese S, Meyer HE, Niehaus G, Erdmann R, Warscheid B, Rottensteiner H (2010) A proteomic approach towards the identification of the matrix protein content of the two types of microbodies in Neurospora crassa. Proteomics 10(18):3222–3234. https://doi.org/10.1002/pmic.201000095

    Article  CAS  PubMed  Google Scholar 

  • Marelli M, Smith JJ, Jung S, Yi E, Nesvizhskii AI, Christmas RH, Saleem RA, Tam YY, Fagarasanu A, Goodlett DR, Aebersold R, Rachubinski RA, Aitchison JD (2004) Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane. J Cell Biol 167(6):1099–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateos RM, León AM, Sandalio LM, Gómez M, del Río LA, Palma JM (2003) Peroxisomes from pepper fruits (Capsicum annuum L.): purification, characterisation and antioxidant activity. J Plant Physiol 160(12):1507–1516

    Article  CAS  PubMed  Google Scholar 

  • Mattiazzi Usaj M, Brloznik M, Kaferle P, Zitnik M, Wolinski H, Leitner F, Kohlwein SD, Zupan B, Petrovic U (2015) Genome-wide localization study of yeast Pex11 identifies peroxisome-mitochondria interactions through the ERMES complex. J Mol Biol 427(11):2072–2087. https://doi.org/10.1016/j.jmb.2015.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCammon MT, Veenhuis M, Trapp SB, Goodman JM (1990) Association of glyoxylate and beta-oxidation enzymes with peroxisomes of Saccharomyces cerevisiae. J Bacteriol 172(10):5816–5827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohr H, Völkl A (2002) Isolation of peroxisomal subpopulations from mouse liver by immune free-flow electrophoresis. Electrophoresis 23(13):2130–2137

    Article  CAS  PubMed  Google Scholar 

  • Moreno de la Garza M, Schultz-Borchard U, Crabb JW, Kunau WH (1985) Peroxisomal beta-oxidation system of Candida tropicalis. Purification of a multifunctional protein possessing enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and 3-hydroxyacyl-CoA epimerase activities. Eur J Biochem 148(2):285–291

    Article  CAS  PubMed  Google Scholar 

  • Muller M, Hogg JF, De Duve C (1968) Distribution of tricarboxylic acid cycle enzymes and glyoxylate cycle enzymes between mitochondria and peroxisomes in Tetrahymena pyriformis. J Biol Chem 243(20):5385–5395

    CAS  PubMed  Google Scholar 

  • Neat CE, Osmundsen H (1979) The rapid preparation of peroxisomes from rat liver by using a vertical rotor. Biochem J 180(2):445–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neat CE, Thomassen MS, Osmundsen H (1980) Induction of peroxisomal beta-oxidation in rat liver by high-fat diets. Biochem J 186(1):369–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuttley WM, Bodnar AG, Mangroo D, Rachubinski RA (1990) Isolation and characterization of membranes from oleic acid-induced peroxisomes of Candida tropicalis. J Cell Sci 95(Pt 3):463–470

    CAS  PubMed  Google Scholar 

  • Ofman R, Speijer D, Leen R, Wanders RJ (2006) Proteomic analysis of mouse kidney peroxisomes: identification of RP2p as a peroxisomal nudix hydrolase with acyl-CoA diphosphatase activity. Biochem J 393(Pt 2):537–543

    Article  CAS  PubMed  Google Scholar 

  • Paigen K (1954) The occurrence of several biochemically distinct types of mitochondria in rat liver. J Biol Chem 206(2):945–957

    CAS  PubMed  Google Scholar 

  • Reumann S, Babujee L, Ma C, Wienkoop S, Siemsen T, Antonicelli GE, Rasche N, Luder F, Weckwerth W, Jahn O (2007) Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell 19(10):3170–3193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reumann S, Bettermann M, Benz R, Heldt HW (1997) Evidence for the presence of a porin in the membrane of glyoxysomes of castor bean. Plant Physiol 115(3):891–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reumann S, Lisik P (2017) Isolation of Arabidopsis leaf peroxisomes and the peroxisomal membrane. Methods Mol Biol 1511:97–112. https://doi.org/10.1007/978-1-4939-6533-5_8

    Article  CAS  PubMed  Google Scholar 

  • Rhodin J (1954) Correlation of ultrastructural organization and function in normal experimentally changed convoluted tubule cells of the mouse kidney. Doctoral Thesis, Aktiebolaget Godvil, Stockholm

    Google Scholar 

  • Roggenkamp R, Sahm H, Hinkelmann W, Wagner F (1975) Alcohol oxidase and catalase in peroxisomes of methanol-grown Candida boidinii. Eur J Biochem 59(1):231–236

    Article  CAS  PubMed  Google Scholar 

  • Rokka A, Antonenkov VD, Soininen R, Immonen HL, Pirila PL, Bergmann U, Sormunen RT, Weckstrom M, Benz R, Hiltunen JK (2009) Pxmp2 is a channel-forming protein in Mammalian peroxisomal membrane. PLoS ONE 4(4):e5090. https://doi.org/10.1371/journal.pone.0005090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahm H, Roggenkamp R, Wagner F (1975) Microbodies in methanol-grown Condida boidinii. J Gen Microbiol 88:218–222

    Article  CAS  PubMed  Google Scholar 

  • Sandalio LM, Palma JM, del Río LA (1987) Localization of manganese superoxide dismutase in peroxisomes isolated from Pisum sativum L. Plant Sci 51:1–8

    Article  CAS  Google Scholar 

  • Schafer H, Nau K, Sickmann A, Erdmann R, Meyer HE (2001) Identification of peroxisomal membrane proteins of Saccharomyces cerevisiae by mass spectrometry. Electrophoresis 22(14):2955–2968

    Article  CAS  PubMed  Google Scholar 

  • Schliebs W, Wurtz C, Kunau WH, Veenhuis M, Rottensteiner H (2006) A eukaryote without catalase-containing microbodies: neurospora crassa exhibits a unique cellular distribution of its four catalases. Eukaryot Cell 5(9):1490–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider WC (1948) Intracellular distribution of enzymes; the oxidation of octanoic acid by rat liver fractions. J Biol Chem 176(1):259–266

    CAS  PubMed  Google Scholar 

  • Schollenberger L, Gronemeyer T, Huber CM, Lay D, Wiese S, Meyer HE, Warscheid B, Saffrich R, Peranen J, Gorgas K, Just WW (2010) RhoA regulates peroxisome association to microtubules and the actin cytoskeleton. PLoS ONE 5(11):e13886. https://doi.org/10.1371/journal.pone.0013886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwitzguebel JP, Siegenthaler PA (1984) Purification of peroxisomes and mitochondria from spinach leaf by percoll gradient centrifugation. Plant Physiol 75(3):670–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh H, Usher S, Poulos A (1989) Mitochondrial and peroxisomal beta-oxidation of stearic and lignoceric acids by rat brain. J Neurochem 53(6):1711–1718

    Article  CAS  PubMed  Google Scholar 

  • Singh I, Lazo O, Kremser K (1993) Purification of peroxisomes and subcellular distribution of enzyme activities for activation and oxidation of very-long-chain fatty acids in rat brain. Biochim Biophys Acta 1170(1):44–52

    Article  CAS  Google Scholar 

  • Small GM, Brolly D, Connock MJ (1980) Palmityl-CoA oxidase: detection in several guinea pig tissues and peroxisomal localisation in mucosa, of small intestine. Life Sci 27(19):1743–1751

    Article  CAS  PubMed  Google Scholar 

  • Small GM, Hocking TJ, Strudee AP, Burdett K, Connock MJ (1981) Enhancement by dietary clofibrate of peroxisomal palmityl-CoA oxidase in kidney and small intestine of albino mice and liver of genetically lean and obese mice. Life Sci 28(17):1875–1882

    Article  CAS  PubMed  Google Scholar 

  • Small GM, Imanaka T, Shio H, Lazarow PB (1987) Efficient association of in vitro translation products with purified stable Candida tropicalis peroxisomes. Mol Cell Biol 7(5):1848–1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JJ, Szilard RK, Marelli M, Rachubinski RA (1997) The peroxin Pex17p of the yeast Yarrowia lipolytica is associated peripherally with the peroxisomal membrane and is required for the import of a subset of matrix proteins. Mol Cell Biol 17(5):2511–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stabenau H (1976) Microbodies from spirogyra: organelles of a filamentous alga similar to leaf peroxisomes. Plant Physiol 58(5):693–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stabenau H (1984) Microbodies from different algae. In: Wiessner W, Robinson D, Starr PC (eds) Compartments in algal cells and their interaction. Springer, Berlin, pp 183–190

    Chapter  Google Scholar 

  • Stabenau H, Beevers H (1974) Isolation and characterization of microbodies from the alga Chlorogonium elongatum. Plant Physiol 53(6):866–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stabenau H, Winkler U, Saftel W (1984a) Enzymes of beta-oxidation in different types of algal microbodies. Plant Physiol 75(3):531–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stabenau H, Winkler U, Saftel W (1984b) Mitochondrial metabolism of glycolate in the alga Eremosphaera viridis. Z Pflanzenphysiol 118:413–420

    Article  Google Scholar 

  • Steinberg G, Harmer NJ, Schuster M, Kilaru S (2017) Woronin body-based sealing of septal pores. Fungal Genet Biol 109:53–55. https://doi.org/10.1016/j.fgb.2017.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svoboda DJ, Azarnoff DL (1966) Response of hepatic microbodies to a hypolipidemic agent, ethyl chlorophenoxyisobutyrate (CPIB). J Cell Biol 30(2):442–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo AS, Avers CJ (1969) Some aspects of regulation of peroxisomes and mitochondria in yeast. Ann N Y Acad Sci 168(2):302–312

    Article  CAS  PubMed  Google Scholar 

  • Tenney K, Hunt I, Sweigard J, Pounder JI, McClain C, Bowman EJ, Bowman BJ (2000) Hex-1, a gene unique to filamentous fungi, encodes the major protein of the Woronin body and functions as a plug for septal pores. Fungal Genet Biol 31(3):205–217. https://doi.org/10.1006/fgbi.2000.1230

    Article  CAS  PubMed  Google Scholar 

  • Thoms S, Debelyy MO, Nau K, Meyer HE, Erdmann R (2008) Lpx1p is a peroxisomal lipase required for normal peroxisome morphology. FEBS J 275(3):504–514

    Article  CAS  PubMed  Google Scholar 

  • Thomson JF, Klipfel FJ (1957) Further studies on cytoplasmic particulates isolated by gradient centrifugation. Arch Biochem Biophys 70(1):224–238

    Article  CAS  PubMed  Google Scholar 

  • Thul PJ, Akesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H, Alm T, Asplund A, Bjork L, Breckels LM, Backstrom A, Danielsson F, Fagerberg L, Fall J, Gatto L, Gnann C, Hober S, Hjelmare M, Johansson F, Lee S, Lindskog C, Mulder J, Mulvey CM, Nilsson P, Oksvold P, Rockberg J, Schutten R, Schwenk JM, Sivertsson A, Sjostedt E, Skogs M, Stadler C, Sullivan DP, Tegel H, Winsnes C, Zhang C, Zwahlen M, Mardinoglu A, Ponten F, von Feilitzen K, Lilley KS, Uhlen M, Lundberg E (2017) A subcellular map of the human proteome. Science 356 (6340). https://doi.org/10.1126/science.aal3321

    Article  PubMed  CAS  Google Scholar 

  • Titorenko VI, Chan H, Rachubinski RA (2000) Fusion of small peroxisomal vesicles in vitro reconstructs an early step in the in vivo multistep peroxisome assembly pathway of Yarrowia lipolytica. J Cell Biol 148(1):29–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolbert NE (1971) Isolation of leaf peroxisomes. Methods Enzymol 23A:665–682

    Article  Google Scholar 

  • Tolbert NE (1981) Metabolic pathways in peroxisomes and glyoxysomes. Annu Rev Biochem 50:133–157

    Article  CAS  PubMed  Google Scholar 

  • Tolbert NE, Oeser A, Kisaki T, Hageman RH, Yamazaki RK (1968) Peroxisomes from spinach leaves containing enzymes related to glycolate metabolism. J Biol Chem 243(19):5179–5184

    CAS  PubMed  Google Scholar 

  • Tolbert NE, Oeser A, Yamazaki RK, Hageman RH, Kisaki T (1969) A survey of plants for leaf peroxisomes. Plant Physiol 44(1):135–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukada H (1974) Isolation of nucleoids (cores) from peroxisomes. Methods Enzymol 31(Pt A):368–374

    Google Scholar 

  • Uchiyama H, Ando M, Toyonaka Y, Tabuchi T (1982) Subcellular localization of the methylcitric-acid-cycle enzymes in propionate metabolism of Yarrowia lipolytica. Eur J Biochem 125(3):523–527

    Article  CAS  PubMed  Google Scholar 

  • van Dijken JP, Veenhuis M, Kreger-van Rij NJW, Harder W (1975) Microbodies in methanol-assimilating yeasts. Arch Microbiol 102:41–44

    Article  PubMed  Google Scholar 

  • Van Veldhoven PP, Baumgart E, Mannaerts GP (1996) Iodixanol (Optiprep), an improved density gradient medium for the iso-osmotic isolation of rat liver peroxisomes. Anal Biochem 237(1):17–23

    Article  PubMed  Google Scholar 

  • Van Veldhoven PP, Just WW, Mannaerts GP (1987) Permeability of the peroxisomal membrane to cofactors of beta-oxidation. Evidence for the presence of a pore-forming protein. J Biol Chem 262(9):4310–4318

    PubMed  Google Scholar 

  • Veenhuis M, Mateblowski M, Kunau WH, Harder W (1987) Proliferation of microbodies in Saccharomyces cerevisiae. Yeast 3(2):77–84. https://doi.org/10.1002/yea.320030204

    Article  CAS  PubMed  Google Scholar 

  • Völkl A, Baumgart E, Fahimi H (1997) Isolation and characterization of peroxisomes. In: Graham J, Rickwood D (eds) Subcellular fractionation—a practical approach. Oxford University Press, Oxford, pp 143–168

    Google Scholar 

  • Völkl A, Baumgart E, Fahimi HD (1988) Localization of urate oxidase in the crystalline cores of rat liver peroxisomes by immunocytochemistry and immunoblotting. J Histochem Cytochem 36(4):329–336

    Article  PubMed  Google Scholar 

  • Völkl A, Fahimi HD (1985) Isolation and characterization of peroxisomes from the liver of normal untreated rats. Eur J Biochem 149(2):257–265

    Article  PubMed  Google Scholar 

  • Völkl A, Fahimi HD (1996) Isolation of peroxisomes. In: Celis JE (ed) Cell biology: a laboratory handbook, 2nd edn, vol 2. Academic Press, San Diego, pp 63–68

    Chapter  Google Scholar 

  • Völkl A, Mohr H, Weber G, Fahimi HD (1998) Isolation of peroxisome subpopulations from rat liver by means of immune free-flow electrophoresis. Electrophoresis 19(7):1140–1144

    Article  PubMed  Google Scholar 

  • Waechter F, Bentley P, Bieri F, Staubli W, Völkl A, Fahimi HD (1983) Epoxide hydrolase activity in isolated peroxisomes of mouse liver. FEBS Lett 158(2):225–228

    Article  CAS  PubMed  Google Scholar 

  • Wanders RJ, Waterham HR (2006) Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 75:295–332

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Taylor TH, Arriaga EA (2012) Analysis of the bioactivity of magnetically immunoisolated peroxisomes. Anal Bioanal Chem 402(1):41–49. https://doi.org/10.1007/s00216-011-5476-3

    Article  CAS  PubMed  Google Scholar 

  • Wattiaux R, Wattiaux-De Coninck S, Ronveaux-dupal MF, Dubois F (1978) Isolation of rat liver lysosomes by isopycnic centrifugation in a metrizamide gradient. J Cell Biol 78(2):349–368

    Article  CAS  PubMed  Google Scholar 

  • Wattiaux R, Wibo M, Baudhuin P (1963) Influence of the injection of Triton WR-1339 on the properties of rat liver lysosomes. In: De Reuck AVS, Cameron MP (eds) Lysosomes Ciba Foundation symposium. Churchill, London, pp 176–200

    Chapter  Google Scholar 

  • Wiese S, Gronemeyer T, Ofman R, Kunze M, Grou CP, Almeida JA, Eisenacher M, Stephan C, Hayen H, Schollenberger L, Korosec T, Waterham HR, Schliebs W, Erdmann R, Berger J, Meyer HE, Just W, Azevedo JE, Wanders RJ, Warscheid B (2007) Proteomics characterization of mouse kidney peroxisomes by tandem mass spectrometry and protein correlation profiling. Mol Cell Proteomics 6(12):2045–2057

    Article  CAS  PubMed  Google Scholar 

  • Wriessnegger T, Gubitz G, Leitner E, Ingolic E, Cregg J, de la Cruz BJ, Daum G (2007) Lipid composition of peroxisomes from the yeast Pichia pastoris grown on different carbon sources. Biochim Biophys Acta 1771(4):455–461

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi J, Nishimura M (1984) Purification of glyoxysomal catalase and immunochemical comparison of glyoxysomal and leaf peroxisomal catalase in germinating pumpkin cotyledons. Plant Physiol 74(2):261–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JS, Lee JY, Moon MH (2015) High speed size sorting of subcellular organelles by flow field-flow fractionation. Anal Chem 87(12):6342–6348. https://doi.org/10.1021/acs.analchem.5b01207

    Article  CAS  PubMed  Google Scholar 

  • Yi EC, Marelli M, Lee H, Purvine SO, Aebersold R, Aitchison JD, Goodlett DR (2002) Approaching complete peroxisome characterization by gas-phase fractionation. Electrophoresis 23(18):3205–3216

    Article  CAS  PubMed  Google Scholar 

  • Yohannes G, Jussila M, Hartonen K, Riekkola ML (2011) Asymmetrical flow field-flow fractionation technique for separation and characterization of biopolymers and bioparticles. J Chromatogr A 1218(27):4104–4116. https://doi.org/10.1016/j.chroma.2010.12.110

    Article  CAS  PubMed  Google Scholar 

  • Zaar K, Angermuller S, Völkl A, Fahimi HD (1986a) Pipecolic acid is oxidized by renal and hepatic peroxisomes. Implications for Zellweger’s cerebro-hepato-renal syndrome (CHRS). Exp Cell Res 164(1):267–271

    Article  CAS  PubMed  Google Scholar 

  • Zaar K, Völkl A, Fahimi HD (1986b) Isolation and characterization of peroxisomes from the renal cortex of beef, sheep, and cat. Eur J Cell Biol 40(1):16–24

    CAS  PubMed  Google Scholar 

  • Zaar K, Völkl A, Fahimi HD (1987) Association of isolated bovine kidney cortex peroxisomes with endoplasmic reticulum. Biochim Biophys Acta 897(1):135–142

    Article  CAS  PubMed  Google Scholar 

  • Zaar K, Völkl A, Fahimi HD (1989) d-aspartate oxidase in rat, bovine and sheep kidney cortex is localized in peroxisomes. Biochem J 261(1):233–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaar K, Völkl A, Fahimi HD (1991) Purification of marginal plates from bovine renal peroxisomes: identification with l-alpha-hydroxyacid oxidase B. J Cell Biol 113(1):113–121

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to those whose work has not been cited owing to space limitations. We are grateful to Profs. L. A. del Río and F. J. Corpas for providing images from plant Percoll and sucrose gradients shown in Fig. 1. We thank the FFE Service GmbH, Feldkirchen, Germany for the FFE illustrations presented in Fig. 3. This work was supported by the MEAMEDMA Anschubförderung of the Medical Faculty Mannheim, University of Heidelberg and by the German Research Foundation (DFG 397476530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Islinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Islinger, M., Manner, A., Völkl, A. (2018). The Craft of Peroxisome Purification—A Technical Survey Through the Decades. In: del Río, L., Schrader, M. (eds) Proteomics of Peroxisomes. Subcellular Biochemistry, vol 89. Springer, Singapore. https://doi.org/10.1007/978-981-13-2233-4_4

Download citation

Publish with us

Policies and ethics