Skip to main content

Isolation of Arabidopsis Leaf Peroxisomes and the Peroxisomal Membrane

  • Protocol
  • First Online:
Isolation of Plant Organelles and Structures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1511))

Abstract

To date, less than 150 proteins have been located to plant peroxisomes, indicating that unbiased large-scale approaches such as experimental proteome research are required to uncover the remaining yet unknown metabolic functions of this organelle as well as its regulatory mechanisms and membrane proteins. For experimental proteome research, Arabidopsis thaliana is the model plant of choice and an isolation methodology that obtains peroxisomes of sufficient yield and high purity is vital for research on this organelle. However, organelle enrichment is more difficult from Arabidopsis when compared to other plant species and especially challenging for peroxisomes. Leaf peroxisomes from Arabidopsis are very fragile in aqueous solution and show pronounced physical interactions with chloroplasts and mitochondria in vivo that persist in vitro and decrease peroxisome purity. Here, we provide a detailed protocol for the isolation of Arabidopsis leaf peroxisomes using two different types of density gradients (Percoll and sucrose) sequentially that yields approximately 120 μg of peroxisome proteins from 60 g of fresh leaf material. A method is also provided to assess the relative purity of the isolated peroxisomes by immunoblotting to allow selection of the purest peroxisome isolates. To enable the analysis of peroxisomal membrane proteins, an enrichment strategy using sodium carbonate treatment of isolated peroxisome membranes has been adapted to suit isolated leaf peroxisomes and is described here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CE:

Crude extract

FW:

Fresh weight

GB:

Grinding buffer

HPR:

Hydroxypyruvate reductase

IS:

Internal standard

LP-P1/2:

First/second purified leaf peroxisome fraction

RbcL:

RuBisCO large subunit

SHMT:

Serine hydroxymethyltransferase

TE:

Tricine–EDTA

References

  1. Hu J, Baker A, Bartel B et al (2012) Plant peroxisomes: biogenesis and function. Plant Cell 24:2279–2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kaur N, Reumann S, Hu J (2009) Peroxisome Biogenesis and Function. In: Somerville CR, Meyerowitz EM, (eds) The Arabidopsis book. Rockville, MD: The American Society of Plant Biologists. pp 1–41

    Google Scholar 

  3. Kim HU, van Oostende C, Basset GJ et al (2008) The AAE14 gene encodes the Arabidopsis o-succinylbenzoyl-CoA ligase that is essential for phylloquinone synthesis and photosystem-I function. Plant J 54:272–283

    Article  CAS  PubMed  Google Scholar 

  4. Tanabe Y, Maruyama J, Yamaoka S et al (2011) Peroxisomes are involved in biotin biosynthesis in Aspergillus and Arabidopsis. J Biol Chem 286:30455–30461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Widhalm JR, Ducluzeau AL, Buller NE et al (2012) Phylloquinone (vitamin K(1)) biosynthesis in plants: two peroxisomal thioesterases of Lactobacillales origin hydrolyze 1,4-dihydroxy-2-naphthoyl-CoA. Plant J 71:205–215

    Article  CAS  PubMed  Google Scholar 

  6. Cooper TG, Beevers H (1969) Beta oxidation in glyoxysomes from castor bean endosperm. J Biol Chem 244:3514–3520

    CAS  PubMed  Google Scholar 

  7. Harrison-Lowe N, Olsen LJ (2006) Isolation of glyoxysomes from pumpkin cotyledons. Curr Protoc Cell Biol 3(19):1–8

    Google Scholar 

  8. Lopez-Huertas E, Sandalio LM, Del Rio LA (1995) Integral membrane polypeptides of pea leaf peroxisomes: Characterization and response to plant stress. Plant Physiol Biochem 33:295–302

    Google Scholar 

  9. Yu C, Huang AH (1986) Conversion of serine to glycerate in intact spinach leaf peroxisomes: role of malate dehydrogenase. Arch Biochem Biophys 245:125–133

    Article  CAS  PubMed  Google Scholar 

  10. AGI (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  11. Reumann S, Babujee L, Ma C et al (2007) Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell 19:3170–3193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reumann S, Quan S, Aung K et al (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol 150:125–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fukao Y, Hayashi M, Nishimura M (2002) Proteomic analysis of leaf peroxisomal proteins in greening cotyledons of Arabidopsis thaliana. Plant Cell Physiol 43:689–696

    Article  CAS  PubMed  Google Scholar 

  14. Fukao Y, Hayashi M, Hara-Nishimura I et al (2003) Novel glyoxysomal protein kinase, GPK1, identified by proteomic analysis of glyoxysomes in etiolated cotyledons of Arabidopsis thaliana. Plant Cell Physiol 44:1002–1012

    Article  CAS  PubMed  Google Scholar 

  15. Quan S, Yang P, Cassin-Ross G et al (2013) Proteome analysis of peroxisomes from etiolated Arabidopsis seedlings identifies a peroxisomal protease involved in beta-oxidation and development. Plant Physiol 163:1518–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eubel H, Meyer EH, Taylor NL et al (2008) Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148:1809–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bussell JD, Behrens C, Ecke W et al (2013) Arabidopsis peroxisome proteomics. Front Plant Sci 4:101

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lingner T, Kataya AR, Antonicelli GE et al (2011) Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses. Plant Cell 23:1556–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lingner T, Kataya AR, Reumann S (2012) Experimental and statistical post-validation of positive example EST sequences carrying peroxisome targeting signals type 1 (PTS1). Plant Signal Behav 7

    Google Scholar 

  20. Reumann S, Singhal R (2014) Isolation of leaf peroxisomes from Arabidopsis for organelle proteome analyses. Methods Mol Biol 1072:541–552

    Article  CAS  PubMed  Google Scholar 

  21. Fujiki Y, Hubbard AL, Fowler S et al (1982) Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol 93:97–102

    Article  CAS  PubMed  Google Scholar 

  22. Ma C, Haslbeck M, Babujee L et al (2006) Identification and characterization of a stress-inducible and a constitutive small heat-shock protein targeted to the matrix of plant peroxisomes. Plant Physiol 141:47–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoagland DR, Arnon DI (1950) The waterculture method for growing plants without soil. California Agricultural Experiment Station Circular 347:1–32

    Google Scholar 

  24. Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute-solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    Article  CAS  PubMed  Google Scholar 

  25. Reumann S (2011) Toward a definition of the complete proteome of plant peroxisomes: where experimental proteomics must be complemented by bioinformatics. Proteomics 11: 1764–1779

    Article  CAS  PubMed  Google Scholar 

  26. Timm S, Florian A, Jahnke K et al (2011) The hydroxypyruvate-reducing system in Arabidopsis: multiple enzymes for the same end. Plant Physiol 155:694–705

    Article  CAS  PubMed  Google Scholar 

  27. Timm S, Nunes-Nesi A, Parnik T et al (2008) A cytosolic pathway for the conversion of hydroxypyruvate to glycerate during photorespiration in Arabidopsis. Plant Cell 20:2848–2859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research is supported by the Marie Curie Initial Training Networks (ITN) action PerFuMe (project number 316723).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrun Reumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Reumann, S., Lisik, P. (2017). Isolation of Arabidopsis Leaf Peroxisomes and the Peroxisomal Membrane. In: Taylor, N., Millar, A. (eds) Isolation of Plant Organelles and Structures. Methods in Molecular Biology, vol 1511. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6533-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6533-5_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6531-1

  • Online ISBN: 978-1-4939-6533-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics