Skip to main content

Efficacy of Major Plant Extracts/Molecules on Field Insect Pests

  • Chapter
Advances in Plant Biopesticides

Abstract

Insect pests are considered the major hurdle in enhancing the production and productivity of any farming system. The use of conventional synthetic pesticides has led to the emergence of pesticide-resistant insects, environmental pollution, and negative effects on natural enemies, which have caused an ecological imbalance of the predator-prey ratio and human health hazards; therefore, eco-friendly alternative strategies are required. The plant kingdom, a rich repertoire of secondary metabolites, can be tapped as an alternative for insect pest management strategies. A number of plants have been documented to have insecticidal properties against various orders of insects in vitro by acting as antifeedants, repellents, sterilant and oviposition deterrents, etc. However, only a few plant compounds are applicable at the field level or presently commercialised. Here, we have provided an overview of the broad-spectrum insecticidal activity of plant compounds from neem, Annona, Pongamia, and Jatropha. Additionally, the impact of medicinal plants, herbs, spices, and essential oils has been reviewed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acda MN (2009) Toxicity, tunneling and feeding behavior of the termite, Coptotermes vastator, in sand treated with oil of the Physic nut, Jatropha curcas. J Insect Sci 6:1–8

    Article  Google Scholar 

  • Adabie–Gomez DA, Monford KG, Agyir-Yawson A, Owusu-Biney A, Osae M (2006) Evaluation of four local plant species for insecticidal activity against Sitophilus zeamais Mots (Coleoptera:Curculionidae) and Callosobruchus maculatus (F) (Coleoptera: Bruchidae-). Ghana J Agric Sci 39:147–154

    Google Scholar 

  • Adebowale KO, Adedire CO (2006) Chemical composition and insecticidal properties of the underutilized Jatropha curcas seed oil. African J Biotech 5(10):901–906

    CAS  Google Scholar 

  • Adolf W, Opferkuch HJ, Hecker E (1984) Irritant phorbol derivatives from four Jatropha species. Phytochemistry 23:129–132

    Article  CAS  Google Scholar 

  • Aerts RJ, Mordue (Luntz) AJ (1997) Feeding deterrence and toxicity of neem triterpenoids. J Chem Ecol 23(9):2117–2132

    Article  CAS  Google Scholar 

  • Ahammadsahib KI, Hollingworth RM, McGovern JP, Hui YH, McLaughlin JL (1993) Mode of action of bullatacin: A potent antitumor and pesticidal annonaceous acetogenins. Life Sci 53:1113–1120

    Article  CAS  PubMed  Google Scholar 

  • Ahmad G, Yadav PP, Maurya R (2004) Furanoflavonoid glycosides from Pongamia pinnata fruits. Phytochemistry 65:921–924

    Article  CAS  PubMed  Google Scholar 

  • Ahmad N, Ansari MS, Hasan F (2012) Effects of neem based insecticides on Plutella xylostella (Linn.). Crop Prot 34:18–24

    Article  CAS  Google Scholar 

  • Akanbi WB, Adebayo TA, Togun OA, Adeyeye AS, Olaniran OA (2007) The use of compost extract as foliar spray nutrient source and botanical insecticide in Telfairia occidentalis. WJAS 3(5):642–652

    Google Scholar 

  • Alali FQ, Rogers LL, Zhang Y, McLaughlin JL (1998) Unusual bioactive annonaceous acetogenins from Goniothalamus giganteus. Tetrahedron 54:5833–5844

    Article  CAS  Google Scholar 

  • Alali FQ, Liu X, McLaughlin JL (1999) Annonaceous acetogenins: recent progress. J Nat Prod 62:504–540

    Article  CAS  PubMed  Google Scholar 

  • Alam S, Sarkar Z, Islam A (2004) Synthesis and studies of antibacterial activity of pongaglabol. J Chem Sci 116:29–32

    Article  CAS  Google Scholar 

  • Alao FO, Adebayo TA, Olaniran OA, Akanbi WB (2011) Preliminary evaluation of the insecticidal potential of organic compost extracts against insect pests of Okra (Abelmoschus esculentus (L.) Moench). Asian J Plant Sci Res 1(3):123–130

    Google Scholar 

  • Al-Khafaji AS, Omar AD, Eskander T (2003) Effect of plant extracts on the control of some important agricultural pests. In: Eighth Arab congress of plant protection, 12–16 October, El-Beida, Libya, pp 87–91

    Google Scholar 

  • Álvarez O, Neske A, Popich S, Bardón A (2007) Toxic effects of annonaceous acetogenins from Annona cherimolia (Magnoliales: Annonaceae) on Spodoptera frugiperda (Lepidoptera: Noctuidae). J Pestic Sci 80:63–67

    Article  Google Scholar 

  • Álvarez O, Barrachina I, Ayala I, Goncalvez M, Moya P, Neske A, Bardón A (2008) Toxic effects annonaceous acetogenins on Oncopeltus fasciatus. J Pestic Sci 81:85–89

    Article  Google Scholar 

  • Alves DS, Oliviera DF, Carvalho GA, Dos Santos JRHM, Carvalho DA, Santos MAI, De Carvalho HWP (2011) Plant extracts as an alternative to control Leucoptera coffeella (Guérin-Mèneville) (Lepidoptera: Lyonetiidae). Neotrop Entomol 40(1):123–128

    Article  CAS  PubMed  Google Scholar 

  • Aneja R, Khanna RN, Seshadri TR (1963) 6-Methoxyfuroflavone, a new component of the seeds of Pongamia glabra. J Chem Soc: 163–168

    Google Scholar 

  • Anita S, Sujatha P, Prabhudas P (2012) Efficacy of pulverised leaves of Annona squamosa (L.), Moringa oleifera (Lam.) and Eucalyptus globulus (Labill.) against the stored grain pest, Tribolium castaneum (Herbst.). Recent Res Sci Technol 4(2):19–23

    Google Scholar 

  • Antonious GF, Meyer JE, Rogers JA, Hu YH (2007) Growing hot pepper for cabbage looper, Trichoplusia ni (Hübner) and spider mite, Tetranychus urticae (Koch) control. J Environ Sci Health B 42(5):559–567

    Article  CAS  PubMed  Google Scholar 

  • Atawodi ES, Joy C, Atawodi JC (2009) Azadirachta indica(neem): a plant of multiple biological and pharmacological activities. Phytochem Rev 8:601–620

    Article  CAS  Google Scholar 

  • Barnby MA, Yamasaki R, Klocke JA (1989) Biological activity of azadirachtin, three derivatives, and their ultraviolet radiation degradation products against tobacco budworm (Lepidoptera, Noctuidae) larvae. J Econ Entomol 82:58–63

    Article  CAS  Google Scholar 

  • Bermejo A, Figadére B, Zafra-Polo MC, Barrachina I, Estornell E, Cortes D (2005) Acetogenins from Annonaceae: recent progress in isolation, synthesis and mechanisms of action. Nat Prod Rep 22:269–303

    Article  CAS  PubMed  Google Scholar 

  • Bilton JN, Broughton HB, Ley SV, Lidert A, Morgan ED, Rzepa HS, Sehppard RN (1985) Structural reappraisal of the limonoid insect antifeedant azadirachtin. J Chem Soc Chem Commun 14:968–971

    Google Scholar 

  • Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U (2002) Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci 82(11):1336–1345

    CAS  Google Scholar 

  • Blaney WM, Simmonds MSJ, Ley SV, Anderson JC, Toogood PL (1990) Antifeedant effects of azadirachtin and structurally related compounds on lepidopterous larvae. Entomol Exp Appl 55:149–160

    Article  CAS  Google Scholar 

  • Bobadilla M, Zavaleta G, Gil F, Pollack L, Sisniegas M (2002) Efecto bioinsecticida del extracto etanólico de las semillas de Annona cherimolia Miller (chirimoya) y A. muricata Linnaeus (guanábana) sobre larvas del IV estadio de Anopheles sp.. Rev Peru Biol 9:64–73

    Google Scholar 

  • Boursier CM, Bosco D, Coulibaly A, Negre M (2011) Are traditional neem extract preparations as efficient as a commercial formulation of azadirachtin A? Crop Prot 30(3):318–322

    Article  CAS  Google Scholar 

  • Bozsik A (1996) Studies on aphicidal efficiency of different stinging nettle extracts. Anz Schädl kd Pflanzenschutz Umweltschutz Appita 69:21–22

    Article  Google Scholar 

  • Brinji NV (1987) Non-traditional oil seeds and oils in India. Oxford/IBH Publishing, New Delhi, pp 143–166

    Google Scholar 

  • Broughton HB, Ley SV, Slawin AMZ, Williams DJ, Morgan ED (1986) X-ray crystallographic structure determination of detigloyldihydroazadirachtin and reassignment of the structure of the limonoid insect antifeedant azadirachtin. J Chem Soc 1:46–47

    Google Scholar 

  • Bullangpoti V, Wajnberg E, Feyereisen PAR (2012) Antifeedant activity of Jatropha gossypiifolia and Melia azedarach senescent leaf extracts on Spodoptera frugiperda (Lepidoptera: Noctuidae) and their potential use as synergists. Pest Manag Sci 68:1255–1264

    Article  CAS  PubMed  Google Scholar 

  • Bunker GK, Rana BS, Ameta OP (2006) Efficacy of some plant products against mustard aphid, Lipaphis erysimi (Kaltenbach). Pestology 30:28–32

    CAS  Google Scholar 

  • Butterworth JH, Morgan ED (1968) Isolation of a substance that suppresses feeding in locusts. J Chem Soc Chem Commun 1:23–24

    Google Scholar 

  • Butterworth JH, Morgan ED (1971) Investigation of the locust feeding inhibition of the seeds of the neem tree, Azadirachta indica. J Insect Physiol 17:969–977

    Article  CAS  Google Scholar 

  • Cabone P, Sarais G, Angioni A, Lai F, Dedola F, Paolo Cabras P (2009) Fate of azadirachtin A and related azadirachtoids on tomatoes after greenhouse treatment. J Environ Sci Health B 44:598–605

    Article  CAS  Google Scholar 

  • Carcache-Blanco EJ, Kang YH, Park EJ, Su BN, Kardono LB, Riswan S, Fong HH, Pezzuto JM, Kinghorn AD (2003) Constituents of the stem bark of Pongamia pinnata with the potential to induce quinone reductase. J Nat Prod 66:1197–1202

    Article  CAS  PubMed  Google Scholar 

  • Castillo LE, Jimenez JJ, Delgado MA (2010) Secondary metabolites of the Annonaceae, Solanaceae and Meliaceae families used as biological control of insects. Trop Subtrop Agroecosyst 12:445–462

    Google Scholar 

  • Cavé A, Figadeŕe B, Laurens A, Cortes D (1997) Acetogenins from annonaceae. In: Herz W, Kirby GW, Moore RE, Steglish W, Tamm C (eds) Progress in the chemistry of organic natural products. Springer, New York, pp 81–287

    Google Scholar 

  • Chandel BS, Pandey UK, Kumar A (1987) Insecticidal evaluation of some plant extracts against Epilachna vigintioctopunctata Fabr. (Coleoptera: Coccinellidae). Indian J Entomol 49(2):294–296

    Google Scholar 

  • Chang FR, Yang PY, Lin JY, Lee KH, Wu YC (1998) Bioactive kaurane diterpenoids from Annona glabra. J Nat Prod 61:437–439

    Article  CAS  PubMed  Google Scholar 

  • Chatrou LW, Rainer H, Maas PJM (2004) Annonaceae (Soursop family). In: Smith N et al (eds) Flowering plants of the neotropics. New York Botanical Garden, New York, pp 18–20

    Google Scholar 

  • Chatterjee A, Pakrashi S (eds) (1994) The treatise on Indian medicinal plants, vol 3, Publications and information directorate. CSIR, New Delhi, p 76

    Google Scholar 

  • Chauhan D, Chauhan JS (2002) Flavonoid glycosides from Pongamia pinnata. Pharm Biol 40:171–174

    Article  CAS  Google Scholar 

  • Chávez D, Acevedo LA, Jimenezin MR (1998) A novel annonaceous acetogenin from the seeds of Rollinia mucosa containing adjacent tetrahydrofuran-tetrahydropyran ring systems. J Nat Prod 61:419–421

    Google Scholar 

  • Chitra KC, Reddy PVR, Rao KP (1991) Effect of certain plant extracts in the control of brinjal spotted leaf beetle, Henosepilachna vigintioctopunctata Fabr. J Appl Zool Res 2(1):37–38

    Google Scholar 

  • Chopra RN, Bhadwan RL, Gosh S (1949) Poisonous plants in India. Scientific monograph no. 17, ICAR, New Delhi, pp 10–12

    Google Scholar 

  • Chowdhuri H (1996) Effect of curcumin and turmeric oil on photostability and efficacy of azadirachtin. Ph.D. thesis, PG School, Indian Agricultural Research Institute, New Delhi, India

    Google Scholar 

  • Colman-Saizarbitoria T, Johnson HA, Alali FQ, Hopp DC, Rogers LL, McLaughlin JL (1998) Annojahnin from Annona jahnii: a possible precursor of mono-tetrahydrofuran acetogenins. Phytochemistry 49:1609–1616

    Article  CAS  PubMed  Google Scholar 

  • Cólom OA, Barrachina I, Mingol IA, Mass CG, Sanz PM, Neske A, Bardon A (2008) Toxic effects of annonaceous acetogenins on Oncopeltus fasciatus. J Pest Sci 81:81–85

    Article  Google Scholar 

  • Cólom OA, Neske A, Chahboune N, Zafra-Polo MC, Bardón A (2009) Tucupentol, a novel mono-tetrahydrofuranic acetogenin from Annona montana, as potent inhibitor of mitochondrial complex I. Chem Biodivers 6:335–340

    Article  Google Scholar 

  • Cordell GA, Quinn-Beattie ML, Farnsworth NR (2001) The potential of alkaloids in drugs discovery. Phytother Res 15:183–205

    Article  CAS  PubMed  Google Scholar 

  • CSIR (1969) The wealth of India – a dictionary of Indian raw materials, vol 8. Publications and Information Directorate, Council of Scientific and Industrial Research, New Delhi, pp 206–211

    Google Scholar 

  • Da Rocha AI, Luz AIR, Rodrigues WA (1981) A presença de alcaloides em espécies botânicas da Amazônia. III – Annonaceae. Acta Amazon 11:537–546

    Google Scholar 

  • Dalwadi MM, Korat DM, Tank BD (2008) Bio-efficacy of some botanical insecticides against major insect pests of Indian bean, Lablab purpureus L. Karnataka J Agric Sci 21(2):295–296

    Google Scholar 

  • Devakumar C, Sukh Dev (1996) In: Randhawa NS, Parmar BS (eds) Neem, 2nd edn. New Age, pp. 77–110. ISBN 10: 812242046X/ISBN 13:9788122420463

    Google Scholar 

  • Devappa RK, Maes J, Makkar HPS, Greyt WD, Becker K (2009) Isolation of phorbol esters from Jatropha curcas oil and quality of produced biodiesel. In: 2nd international congress on biodiesel: the science and the technologies, Munich, Germany.

    Google Scholar 

  • Devappa RK, Makkar HPS, Becker K (2010) Jatropha toxicity – a review. J Toxicol Environ Health B Crit Rev 13:476–507

    Article  CAS  PubMed  Google Scholar 

  • Devappa RK, Makkar HPS, Becker K (2011) Jatropha diterpenes: a review. J Am Oil Chem Soc 88:301–322

    Google Scholar 

  • Devappa RK, Makkar HPS, Becker K (2012) Localisation of antinutrients and qualitative identification of toxic components in Jatropha curcas seed. J Sci Food Agric 92:1519–1525. doi:10.1002/jsfa.4736

    Article  CAS  PubMed  Google Scholar 

  • Devappa RK, Bingham JP, Khana SK (2013) High performance liquid chromatography method for rapid quantification of phorbol esters in Jatropha curcas seed. Ind Crops Prod 49:211–219

    Article  CAS  Google Scholar 

  • Dhandapani N, Rajendran NS, Abul KA (1985) Plant products as anti-feedants to control insects. Pesticides 19(11):53–60

    Google Scholar 

  • Di Toto Blessing L, Álvarez Colom O, Popich S, Neske A, Bardón A (2010) Antifeedant and toxic effects of acetogenins from Annona montana on Spodoptera frugiperda L. J Pest Sci 83:307–310

    Google Scholar 

  • El Shafie HAF, Basedow T (2003) The efficacy of different neem preparation for control of insects damaging potatoes and eggplants in the Sudan. Crop Prot 22:1015–1021

    Article  CAS  Google Scholar 

  • Enan EE (2005) Molecular and pharmacological analysis of an octopamine receptor from American cockroach and fruit fly in response to plant essential oils. Arch Insect Biochem Physiol 59:161–171

    Article  CAS  PubMed  Google Scholar 

  • Ermel K (1995) Azadirachtin content of neem seed kernels from different regions of the world. In: Schmutterer H (ed) The neem tree, source of unique natural products for integrated pest management, medicine, industry and other purposes. Weinheim, VCH, pp 89–92

    Google Scholar 

  • Fang XP, Rieser MJ, Gu GX, McLaughlin JL (1993) Annonaceous acetogenins: an updated review. Phytochem Anal 4:27–49

    Article  CAS  Google Scholar 

  • Feldhege M, Schmutterer H (1993) Investigations on side effects of Margosan-O on Encarsia Formosa Gah. (Hym., Aphelenidae), parasitoid of the greenhouse whitefly, Trialeurodes vaporariorum Westw. (Hom., Aleyrodidae). J Appl Entomol 115:37–42

    Article  Google Scholar 

  • Fontana J, Lancas F, Pasos M, Cappelaro E, Villegas J, Baron M, Noseda M, Pomiiio M, Vitale A, Webber A, Maul A, Foerster LPW (1998) Selective polarity- and adsorption-guided extraction/purification of Annona sp. polar acetogenins and biological assay against agricultural pests. Appl Biochem Biotechnol 70:67–76

    Article  Google Scholar 

  • Garg GP (1979) New component from leaves of Pongamia glabra. Planta Med 37:73–74

    Article  CAS  Google Scholar 

  • Gelbic I, Nemec V (2001) Developmental changes caused by metyrapone and azadirachtin in Spodoptera littoralis (Boisd.) (Lep., Noctuidae) and Galleria melonella (L.) (Lep., Pyralidae). J Appl Entomol 125:417–422

    Article  CAS  Google Scholar 

  • GEXSI (2008) http://www.Jatropha-platform.org/documents/GEXSI

  • Goel G, Makkar HPS, Francis G, Becker K (2007) Phorbol esters: structure, biological activity, and toxicity in animals. Int J Toxicol 26:279–288

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Rupela OP, Humanyun P, Kiran BK, Sailasree J, Alekhya G, Sandeep D (2009) Bio-active metabolites from PGPR and botanicals. In: Reddy MS, Sayyed RZ, Sarma YR, Reddy KRK, Desai S, Rao VK, Reddy BC, Podile AR, Kloepper JW (eds) Proceedings of first Asian PGPR congress on plant growth promotion by rhizobacteria for sustainable agriculture, Andhra Pradesh, India. Scientific Publishers, Jodhpur, pp 44–51

    Google Scholar 

  • Gopalakrishnan S, Kannan IGK, Alekhya G, Humayun P, Sree Vidya M, Deepthi K (2010) Efficacy of Jatropha, Annona and Parthenium biowash on Sclerotium rolfsii, Fusarium oxysporum f. sp. ciceri and Macrophomina phaseolina, pathogens of chickpea and sorghum. Afr J Biotechnol 9(47):8048–8057

    Google Scholar 

  • Gopalakrishnan S, Ranga Rao GV, Humayun P, Rameshwar Rao V, Alekhya G, Simi J, Deepthi K, Sree Vidya M, Srinivas V, Mamatha L, Rupela O (2011) Efficacy of botanical extracts and entomopathogens on control of Helicoverpa armigera and Spodoptera litura. Afr J Biotechnol 10(73):16667–16673

    Google Scholar 

  • Govindachari TR (1992) Chemical and biological investigations on Azadirachta indica (the neem tree). Curr Sci 63:117–122

    Google Scholar 

  • Govindachari TR, Sandhya G, Ganeshraj SP (1991) Isolation of novel azadirachtin H and I by high-performance liquid chromatography. Chromatographia 31:303–305

    Article  CAS  Google Scholar 

  • Govindachari TR, Suresh G, Gopalakrishnan G, Wesley SD (2000) Insect antifeedant and growth regulating activities of neem seed oil the role of major tetrenotriterpenoids. J Appl Entomol 124:287–291

    Google Scholar 

  • Green PWC, Stevenson PC, Simmonds MSJ, Sharma HC (2003) Phenolic compounds on the pod-surface of pigeonpea, Cajanus cajan, mediate feeding behavior of Helicoverpa armigera larvae. J Chem Ecol 29(4):811–821

    Article  CAS  PubMed  Google Scholar 

  • Gu ZM, Zhao GX, Oberlies NH, Zeng L, McLaughlin JL (1995) Annonaceous acetogenins: potent mitochondrial inhibitors with diverse applications. In: Arnason JT, Mata R, Romeo JT (eds) Recent advances in phytochemistry, vol 29. Plenum Press, New York, pp 249–310

    Google Scholar 

  • Guadaño A, Gutiérrez C, De la Peña E, Cortés D, González A (2000) Insecticidal and mutagenic evaluation of two annonaceous acetogenins. J Nat Prod 63:773–776

    Article  PubMed  CAS  Google Scholar 

  • Haas W, Strerk H, Mittelbach M (2002) Novel 12 deoxy-16-hydroxyphorbol diesters isolates from the seed oil of Jatropha curcas. J Nat Prod 65:1434–1440

    Article  CAS  PubMed  Google Scholar 

  • Habou ZA, Haougui A, Mergeai G, Haubruge E, Toudou A, Verheggen FJ (2011) Insecticidal effect of Jatropha curcas oil on the aphid Aphis fabae (Hemiptera: Aphididae) and on the main insect pests. associated with cowpeas (Vigna unguiculata) in Niger. Tropicultura 29(4):225–229

    Google Scholar 

  • Hasan F, Ansari MS (2011) Toxic effects of neem-based insecticides on Pieris brassicae (Linn.). Crop Prot 30:502–507

    Article  CAS  Google Scholar 

  • He K, Zeng L, Ye Q, Shi G, Oberlies NH, Zhao GX, Njoku CJ, McLaughlin JL (1997) Comparative SAR evaluations of annonaceous acetogenins for pesticidal activity. Pestic Sci 49:372–378

    Article  CAS  Google Scholar 

  • Heywood VH (1978) Flowering plants of the world. University Press, Oxford (Cortes D 1991)

    Google Scholar 

  • Hodin J (2009) On the origins of insect hormone signaling, phenotypic plasticity of insects. Science Publishers, Enfield, New Hampshire, USA, pp 817–839

    Google Scholar 

  • Hoelmer KA, Osborne LS, Yokomu RK (1990) Effect of neem extracts on beneficial insects in greenhouse culture. In: USDA neem workshop on neem’s potential in pest management programs. USDA, Beltsville, pp 100–105

    Google Scholar 

  • Irulandi S, Balasubramanian G (2000) Report on the effect of botanicals against Megalurothrips distalis (Karny) (Thripidae: Thysanoptera) and Lampides boeticus Linn. (Lycaenidae: Lepidoptera) on greengram. Insect Environ 5(4):175–176

    Google Scholar 

  • Isman MB (1993) Growth inhibitory and antifeedant effects of azadirachtin on six noctuids of regional economic importance. Pestic Sci 38:57–63

    Article  CAS  Google Scholar 

  • Isman MB (1995) Lepidoptera: butterflies and moths. In: Schmutterer H (ed) The neem tree, source of unique natural products for integrated pest management, medicine, industry and other purposes. VCH Verlagsgesellschaft, Weinheim, pp 229–318

    Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  CAS  PubMed  Google Scholar 

  • Isman MB, Akhtar Y (2007) Plant natural products as a source for developing environmentally acceptable insecticides. In: Shaaya I, Nauen R, Horowitz AR (eds) Insecticides design using advanced technologies. Springer, Berlin/Heidelberg, pp 235–248

    Chapter  Google Scholar 

  • Isman MB, Koul O, Luczynski A, Kaminski J (1990) Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadirachtin content. J Agric Food Chem 38:1408–1411

    Article  Google Scholar 

  • Jadhau KB, Jadhua LD (1984) Use of vegetable oils, plant extracts and synthetic products as protectants from pulse beetle. Callosobruchus maculatus in stored grain. J Food Sci Technol 21:110–113

    Google Scholar 

  • Jarvis AP, Johnson S, Morgan ED, Simmonds MSJ, Blaney WM (1997) Photoxidation of nimbin and salannin, tertranortriterpenoids from the neem tree (Azadirachta indica). J Chem Ecol 23(12):2841–2860

    Article  CAS  Google Scholar 

  • Jarvis AP, Johnson S, Morgan ED (1998) Stability of the natural insecticide azadirachtin in aqueous and organic solvents. Pestic Sci 53:217–222

    Article  CAS  Google Scholar 

  • Jarvis AP, Morgan ED, Edwards C (1999) Rapid separation of triterpenoids from neem seed extracts. Phytochem Anal 10:39–43

    Article  CAS  Google Scholar 

  • Jing L, Fang Y, Ying X, Wenxing H, Meng X, Syed MN, Fang C (2005) Toxic impact of ingested jatropherol-I on selected enzymatic activities and the ultrastructure of midgut cells in silkworm, Bomboxy mori L. J Appl Entomol 129:98–104

    Article  CAS  Google Scholar 

  • Johnson S, Morgan ED, Peiris CN (1996) Development of the major triterpenoids and oil in the oil and seeds of neem (Azadirachta indica). Ann Bot 78:383–388

    Article  CAS  Google Scholar 

  • Johnson HA, Oberlies NH, Alali FQ, McLaughlin JE (2000) Thwarting resistance: annonaceous acetogenins as new pesticidal and antitumor agents. In: Cutler SJ, Cutler JG (eds) Biological active natural products: pharmaceuticals. CRC Press, Boca Raton, pp 173–183

    Google Scholar 

  • Jolad SD, Hoffman JJ, Schram KH, Cole JR, Tempesta MS, Kriek GR, Bates RB (1982) Uvaricin a new antitumor agent from Uvaria accuminata, (Annonaceae). J Org Chem 47:3151–3153

    Article  Google Scholar 

  • Katekhaye SD, Kale MS, Laddha KS (2012) A simple and improved method for isolation of karanjin from Pongamia pinnata Linn. seed oil. Indian J Natl Prod Resour 3(1):131–143

    CAS  Google Scholar 

  • Katoune HI, Malam Lafia D, Salha H, Doumma A, Drame AY, Pasternak D, Ratnadass A (2011) Physic nut (Jatropha curcas) oil as a protectant against field insect pests of cowpea in Sudano-Sahelian cropping systems. J SAT Agric Res 9:1–6

    Google Scholar 

  • Khalequzzaman M, Nahar J, (2003) Toxicity of azadirachtin to larvae and adults of Tribolium castaneum (Herbst). J Biol Sci 11:19–24

    Google Scholar 

  • Khalequzzaman M, Sultana S (2006) Insecticidal activity of Annona squamosa L. seed extracts against the red flour beetle, Tribolium castaneum (Herbst). J Bio-Sci 14:107–112

    Google Scholar 

  • Khani M, Awang RM, Omar D, Rahmani M (2012) Bioactivity effect of Piper nigrum L. and Jatropha curcas L. extracts against Corcyra cephalonica [Stainton]. Agrotechnol 2:1

    Google Scholar 

  • Khumrungsee N, Bullangpoti V, Pluempanupat W (2009) Efficiency of Jatropha gossypiifolia L. (Euphorbiaceae) against Spodoptera exigua HÜbner (Lepidoptera: Noctuidae): toxicity and its detoxifying enzyme activities. KKU Sci J 37:50–55

    Google Scholar 

  • Klenk A, Bokel M, Kraus W (1986) 3-Tigloylazadiractl, an insect growth regulating constituent of Azadirachta indica. J Chem Soc Chem Commun 7:523–524

    Google Scholar 

  • Kotkar HM, Prashant SM, Sangeetha VGSS, Shipra RJ, Shripad MU, Maheshwari VL (2001) Antimicrobial and pesticidal activity of partially purified flavonoids of Annona squamosa. Pest Manag Sci 58:33–37

    Article  CAS  Google Scholar 

  • Koul O (1999) Insect growth regulating and antifeedant effects of neem extracts and azadirachtin on two aphid species of ornamental plants. J Biosci 1:85–90

    Article  Google Scholar 

  • Koul O, Isman MB, Ketkar CM (1990) Properties and uses of neem, Azadirachta indica. Can J Bot 68:1–11

    Article  CAS  Google Scholar 

  • Koul O, Shankar JS, Kapil RS (1996) The effect of neem allelochemicals on nutritional physiology of larval Spodoptera litura. Entomol Exp Appl 79:43–50

    Google Scholar 

  • Koul O, Multani JS, Singh G, Daniewski WM, Berlozecki S (2003) 6 beta-hydroxygedunin from Azadirachta indica. Its potentiation effects with some non-azadirachtin limonoids in neem against lepidopteran larvae. J Agric Food Chem 51:2937–2942

    Article  CAS  PubMed  Google Scholar 

  • Kraus W (1995) In: Schmutterer H, Ascher KRS (eds) The neem tree: source of unique natural products for integrated pest management, medicine, industry and other purposes. VCH Publishers Inc., New York, pp 35–88. ISBN 3-527-30054-6

    Google Scholar 

  • Kraus W, Bokel M, Cramer R, Klenk A, Poehnl H (1985) Constituents of neem and related species. A revised structure of azadirachtin. Abstr 3rd Int Conf Chem Biotechnol Biol Act Nat Prod 4:446–450

    Google Scholar 

  • Krishnamurthi A (1969) The wealth of India, vol VIII. Publication and Information Directorate CSIR, New Delhi

    Google Scholar 

  • Kumar J, Parmar BS (1997) Neem oil content and its key chemical constituents in relation to the agro-ecological factors and regions of India. Pestic Res J 9:216–225

    Google Scholar 

  • Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop for industrial uses (J. curcas L.): a review. Ind Crops Prod 28:1–10

    Article  CAS  Google Scholar 

  • Kumar M, Singh R (2002) Potential of Pongamia glabra Vent as an insecticide of plant origin. Biol Agric Hortic 20:29–50

    Article  CAS  Google Scholar 

  • Kumar V, Chandrashekar K, Sidhu OP (2006) Efficacy of karanjin and different extracts of Pongamia pinnata against selected insect pests. J Entomol Res 30(2):103–108

    Google Scholar 

  • Lal L (1987) Studies on natural repellents against potato tuber moth. Phthorimaea operculella Zell in country stores. Potato Res 30(2):329–334

    Article  Google Scholar 

  • Leatemia J, Isman M (2004) Efficacy of crude seed extracts of Annona squamosa against diamondback moth, Plutella xylostella L. in the greenhouse. Int J Pest Manag 50:129–133

    Article  Google Scholar 

  • Leboeuf M, Cavé A, Bhaumik PK, Mukherjee B, Bukherjee R (1982) The phytochemistry of Annonaceae. Phytochemistry 21:2783–2813

    Article  CAS  Google Scholar 

  • Ley SV, Anderson JC, Blaney WM, Jones PS, Lidert Z, Morgan ED, Robinson NG, Santafianos D, Simmonds MSJ, Toogood PL (1989) Insect antifeedants from Azadirachta indica: chemical modification and structure–activity relationships of azadirachtin and some related limonoids. Tetrahedron 45:5175–5192

    Article  CAS  Google Scholar 

  • Li L, Li X, Shi C, Deng Z, Fu H, Proksch P, Lin W (2006) Pongamone A–E, five flavonoids from the stems of a mangrove plant, Pongamia pinnata. Phytochemistry 67:1347–1352

    Article  CAS  PubMed  Google Scholar 

  • Liang GM, Chen W, Liu TX (2003) Effects of three neem-based insecticides on diamondback moth (Lepidoptera: Plutellidae). Crop Prot 22:333–340

    Article  CAS  Google Scholar 

  • Lindquist RK, Casey ML (1990) Evaluation of oils, soaps and natural product derivatives for miner, foxglove aphid, western flower thrips and greenhouse whitefly control. Ohio Flor Assoc Bull 727:3–5

    Google Scholar 

  • Liu SY, Sporer F, Wink M, Jouurdane J, Henning R, Li YL, Ruppel A (1997) Anthraquinones in Rheum palmatum and Rumex dentatus (Polygonaceae) and phorbol esters in J. curcas (Euphorbiaceae) with molluscicidal activity against the schistosome vector snails Oncomelania, Biomphalaria and Bulinus. Trop Med Int Health 2:179–188

    Google Scholar 

  • Macedo ME, Consoli RA, Grandi TS, Dos Anjos AM, Oliveira AB, Mendes NM, Queiroz RO, Zani CL (1997) Screening of Asteraceae (Compositae) plant extracts for larvicidal activity against Aedes fluviatilis (Diptera: Culicidae). Mem Inst Oswaldo Cruz 92:565–570

    Google Scholar 

  • Mahey S, Sharma P, Seshadri TR (1972) Structure and synthesis of globrachromene, a new constituent of Pongamia glabra. Indian J Chem 10:585–588

    CAS  Google Scholar 

  • Maia MF, Moore SJ (2011) Plant-based insect repellents: a review of their efficacy, development and testing. Malaria J 10(1):S11

    Article  CAS  Google Scholar 

  • Makkar HPS, Becker K (2009) Jatropha curcas, a promising crop for the generation of biodiesel and value-added coproducts. Eur J Lipid Sci Technol 111:773–787

    Article  CAS  Google Scholar 

  • Makkar HPS, Becker K, Sporer F, Wink M (1997) Studies on nutritive potential and toxic constituents of different provenances of J. curcas. J Agric Food Chem 45:3152–3157

    Google Scholar 

  • Makkar HPS, Francis G, Becker K (2007) Bioactivity of phytochemicals in some lesser known plants and their effects and potential applications in livestock and aquaculture production systems. Animal 1:1371–1391

    Article  CAS  PubMed  Google Scholar 

  • Makkar HPS, Maes J, Becker K (2009) Removal and degradation of phorbol esters during pre-treatment and transesterification of Jatropha curcas oil. J Am Oil Chem Soc 86:173–181

    Article  CAS  Google Scholar 

  • Malik SB, Seshadri TR, Sharma P (1976) Minor component of the leaves of Pongamia glabra. Indian J Chem 14B:229–230

    CAS  Google Scholar 

  • Martinez SS, Van Emden HF (2001) Growth disruption, abnormalities and mortality of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) caused by azadirachtin. Neotrop Entomol 30:113–125

    Article  CAS  Google Scholar 

  • Mazid M, Khan TA, Mohammad F (2011) Role of secondary metabolites in defense mechanisms of plants. Biol Med 3(2):232–249

    CAS  Google Scholar 

  • McLaughlin JL, Zeng L, Oberlies NH, Alfonso D, Johnson HA, Cummings BA (1997) In: Hedin PA, Hollingworth RM, Miyamoto J, Thompson DG (eds) Phytochemicals for pest control, ACS symposium series 658. American Chemical Society, Washington, DC, pp 117–133

    Google Scholar 

  • Meera B, Kumar S, Kalidhar SB (2003) A review of the chemistry and biological activity of Pongamia pinnata. J Med Aromat Plant Sci 25:441–465

    CAS  Google Scholar 

  • Mengual L (1997) Extraction of bioactive substances from J. curcas L. and bioassays on Zonocerus variegatus, Sesamia calamistis and Busseola fusca for characterisation of insecticidal properties. In: Gübitz GM, Mittelbach M, Trabi M (eds) Biofuel and industrial products from Jatropha curcas. Dbv-Verlag University, Graz, pp 211–215

    Google Scholar 

  • Mohanty KK, Chakraborty DP, Roy S (1988) Antifeedant activity of oil fractions of some leguminous plants against Diacrisia obliqua. Indian J Agric Sci 58(7):579–580

    Google Scholar 

  • Mondal A, Walia S, Shrivastava C, Kumar B, Kumar J (2010) Synthesis and insecticidal activity of karanj ketone oxime and its ester derivatives against the mustard aphid (Lipaphis erysimi). Pestic Res J 22(1):39–43

    CAS  Google Scholar 

  • Mordue AJ, Blackwell A (1993) Azadirachtin, an update. J Insect Physiol 39:903–924

    Article  CAS  Google Scholar 

  • Mordue AJ, Nisbet AJ (2000) Azadirachtin form the neem tree Azadirachta indica: its action against insects. An Soc Entomol Bras 29:615–632

    Article  CAS  Google Scholar 

  • Murray B, Isman (1997) Neem and other botanical insecticides: barriers to commercialization. Phytoparasitica 25(4):339–344

    Article  Google Scholar 

  • Murugan K, Jeyabalan D, Kumar SN, Babu R, Sivaramakrishnan S, Nathan SS (1998) Antifeedant and growth inhibitory potency of neem limonoids against Helicoverpa armigera Hubner (Lepidoptera: Nocutuidae). Insect Sci Appl 1:157–162

    Google Scholar 

  • Narasimhan V, Mariappan V (1988) Effect of plant derivatives on green leaf hopper (GLH) and rice tungro (RTV) transmissions. Int Rice Res Newsl 13(1):28–29

    Google Scholar 

  • Nathan SS, Kalaivani K (2006) Combined effects of azadirachtin and nucleopolyhedrovirus (SpltNPV) on Spodoptera littoralis Fabricius (Lepidoptera: Noctuidae) larvae. Biol Control 39:96–104

    Article  CAS  Google Scholar 

  • Nathan SS, Kalaivani K, Murugan K (2005) Paul Gene Chung. Efficacy of neem limonoids on Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae) the rice leaffolder. Crop Prot 24:760–763

    Article  CAS  Google Scholar 

  • Nathan SS, Chunga PG, Murugan K (2006) Combined effect of biopesticides on the digestive enzymatic profiles of Cnaphalocrocis medinalis (Guenée) (the rice leaffolder) (Insecta: Lepidoptera: Pyralidae). Ecotoxicol Environ Saf 64:382–389

    Article  CAS  PubMed  Google Scholar 

  • Ngiefu CK, Paquot C, Vieux A (1976) Oil-bearing plants of Zaire. II. Botanical families providing oils of medium unsaturation. Oleagineux 31(12):545–547

    Google Scholar 

  • National Research Council (NRC) (1992) Neem: tree for solving global problems. National Academy Press, Washington, DC

    Google Scholar 

  • Nwosu MO, Okafor JI (1995) Preliminary studies of the antifungal activities of some medicinal plants against Basidiobolus and some other pathogenic fungi. Mycoses 38:191–195

    Article  CAS  PubMed  Google Scholar 

  • Ocampo D, Ocampo R (2006) Bioactividad de la família Annonaceae. Rev Univ Caldas 5:135–155

    Google Scholar 

  • Okonkwo EO (2005) Plant materials used for controlling insect pests of stored products in Nigeria, Families Annonaceae, Piperaceae, and Rutaceae. J Herbs Spices Med Plants 11:47–69

    Article  Google Scholar 

  • Onunkun O (2012) Evaluation of aqueous extracts of five plants in the control of flea beetles on okra (Abelmoschus esculentus (L.) Moench). J Biopest 5(Suppl):62–67

    Google Scholar 

  • Packiam SM, Ignacimuthu S (2013) Effect of botanical pesticide formulations against the chilli trips (Scirtothrips dorsalis Hood) on peanut ecosystem. Int J Nat Appl Sci 2(1):1–5

    Google Scholar 

  • Packiam SM, Anbalagan V, Ignacimuthu S, Vendan SE (2012) Formulation of a novel phytopesticide PONNEEM and its potentiality to control generalist herbivorous Lepidopteran insect pests, Spodoptera litura (Fabricius) and Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Asian Pac J Trop Dis 2(2):S720–S723

    Article  Google Scholar 

  • Pappas ML, Broufas GD, Koveos DS (2011) Chrysopid predators and their role in biological control. J Entomol 8(3):301–326

    Article  Google Scholar 

  • Parmar BS, Gulati KC (1969) Synergists for pyrethrins (II)-karanjin. Indian J Entomol 31:239–243

    Google Scholar 

  • Parra-Henao G, García C, Cotes J (2007) Actividad insecticida de extractos vegetales sobre Rhodnius prolixus y Rhodnius pallescens (Hemiptera: Reduviidae). Bol Malariol Salud Ambient 47:125–137

    Google Scholar 

  • Parvin S, Islam E, Rahman M, Haque E (2003) Pesticidal activity of pure compound Annotemoyin-1 isolated from chloroform extract of the plant Annona squamosa Linn. against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Pak J Biol Sci 6:1088–1091

    Article  Google Scholar 

  • Paul J, Gnanam R, Jayadeepa RM, Arul L (2013) Anti cancer activity on graviola, an exciting medicinal plant extract vs various cancer cell lines and a detailed computational study on its potent anti-cancerous leads. Curr Top Med Chem 13(14):1666–1673

    Article  CAS  PubMed  Google Scholar 

  • Pavanaram SK, Ramachandra Row L (1955) New flavones from Pongamia pinnata (L.) Merr.: identification of compound D. Nature 176:1177

    Article  CAS  Google Scholar 

  • Pavela R (2012) Efficacy of three newly developed botanical insecticides based on pongam oil against Plutella xylostella L. larvae. J Biopest 5(1):62–70

    Google Scholar 

  • Pavela R, Herda G (2007a) Effect of pongam oil on adults of the greenhouse whitefly Trialeurodes vaporariorum (Homoptera: Trialeurodidae). Entomol Gen 30:193–201

    Article  Google Scholar 

  • Pavela R, Herda G (2007b) Repellent effects of pongam oil on settlement and oviposition of the common greenhouse whitefly Trialeurodes vaporariorum on Chrysanthemum. Insect Sci 14:219–224

    Article  Google Scholar 

  • Pawar PV, Joseph M, Sen A, Joshi SP (2011) Growth regulatory and toxic effects of non-edible oil seed extracts and purified extracts against Helicoverpa armigera (Hŭbner). J Agric Technol 7(5):1275–1282

    Google Scholar 

  • Pereira J (1983) The effectiveness of six vegetable oils as protectants of cowpeas and banbara groundnuts against infestation by Callosobruchus maculatus (F.). Indian J Agric Sci 51:910–912

    Google Scholar 

  • Pérez-Pacheco R, Rodríguez C, Lara J, Montes R, Valverde G (2004) Toxicidad de aceites, esencias y extractos vegetales en larvas de mosquito Culex quinquefasciatus Say (Diptera: Culicidae). Acta Zool Mex 20:141–152

    Google Scholar 

  • Pineda S, Martínez AM, Figueroa JI, Schneider MI, Del Estal P, Viñuela E, Gómez B, Smagghe G, Budia F (2009) Influence of azadirachtin and methoxyfenozide on life parameters of Spodoptera littoralis (Lepidoptera: Noctuidae). J Econ Entomol 102(4):1490–1496

    Article  CAS  PubMed  Google Scholar 

  • Prakash A, Rao J, Nandagopal VN (2008) Future of botanicals in rice, wheat, pulses and vegetables pest management. J Biopest 1(2):154–169

    CAS  Google Scholar 

  • Premchand (1989) Presence of feeding deterrent in the velvet bean, Mucuna cochinensis Roxb. Indian J Entomol 51(2):217

    Google Scholar 

  • Priestley CM, Williamson EM, Wafford KA, Sattelle DB (2003) Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABA receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Braz J Pharmacol 140:1363–1372

    Article  CAS  Google Scholar 

  • Prijono D, Gani MS, Syahputra E (1997) Insecticidal activity of annonaceous seed extracts against Crocidolomia binotalis Zeller (Lepidoptera: Pyralidae). Bull Plant Pest Dis 9:1–6

    Google Scholar 

  • Raintree Nutrition (2004) Graviola monograph. www.rain-tree.com/Graviola-Monograph.pdf. Visitado 26 Feb 2009

  • Rajasekaran B, Jayraj S, Raghuramman S, Narayanswamy T (1987) Use of neem products for the management of certain rice pests and diseases. In: Mid-term appraisal works on botanical pest control of rice based cropping system, p 13

    Google Scholar 

  • Rajguru M, Sharma AN, Banerjee S (2011) Assessment of plant extracts fortified with Bacillus thuringiensis (Bacillales: Bacillaceae) for management of Spodoptera litura (Lepidoptera: Noctuidae). Int J Trop Insect Sci 31(1–2):92–97

    Article  Google Scholar 

  • Rakshit KD, Darukeshwara J, Rathina RK, Narasimhamurthy K, Saibaba P, Bhagya S (2008) Toxicity studies of detoxified J. curcas meal (J. curcas) in rats. Food Chem Toxicol 46:3621–3625

    Article  CAS  PubMed  Google Scholar 

  • Rao GVR, Gopalakrishnan S (2009) Biopesticides research at ICRISAT: a consortium model. In: “Expert consultation on biopesticides and biofertilizers for sustainable agriculture” APAARI and council of research, Taiwan, 22–29 Oct

    Google Scholar 

  • Rao NVS, Rao JV (1941) A note on glabrin: a new component of the seeds of Pongamia glabra. Proc Indian Acad Sci 14:123–125

    Google Scholar 

  • Ratnadass A, Togola M, Cissé B, Vassal JM (2009) Potential of sorghum and physic nut (Jatropha curcas) for management of plant bugs (Hemiptera: Miridae) and cotton bollworm (Helicoverpa armigera) on cotton in an assisted trap-cropping strategy. http://ejournal.icrisat.org/Volume7/Sorghum_Millets/SG703.pdf. Accessed 13 Dec 2011

  • Ratnakumari B, Chandrasekaran S (2005) Efficacy of neem products against cotton stem weevil (Pempherulus affinis Faust) in Coimbatore. Andhra Agric J 52(1,2):295–297

    Google Scholar 

  • Ravindra V, Kshirsagar (2010) Insecticidal activity of Jatropha seed oil against Callosobruchus maculatus (Fabricius) infesting Phaseolus aconitifolius Jacq. Bioscan 5(3):415–418

    Google Scholar 

  • Reddy AV, Singh RP (1998) Fumigant toxicity of neem (Azadirachta indica A. Juss.) seed oil volatiles against pulse beetle, Callosobruchus maculatus Fab. (Col., Bruchidiae). J Appl Entomol 122:607–611

    Google Scholar 

  • Reddy AV, Devi RS, Reddy DVV (2012) Evaluation of botanical and other extracts against plant hoppers in rice. J Biopest 5(1):57–61

    Google Scholar 

  • Reena SR, Sinha BK (2012) Evaluation of Pongamia pinnata seed extracts as an insecticide against American bollworm Helicoverpa armigera (Hŭbner). Int J Agric Sci 4(6):257–261

    Article  Google Scholar 

  • Rembold H (1988) Azadirachtins: their structures and mode of action. In: Jacobson M (ed) Focus on phytochemical pesticides: the neem tree. CRC Press, Boca Raton, pp 47–67

    Google Scholar 

  • Rembold H (1989) Azadirachtins, their structure and mode of action. In: Arnason JT, Philogene BJR, Morand P (eds) Insecticides of plant origin, ACS symposium series 387. American Chemical Society, Washington, DC, pp 150–163

    Chapter  Google Scholar 

  • Rembold H (1990) Isomeric azadirachtins and their mode of action. In: Jacobson M (ed) Focus on phytochemical pesticides 1: the neem tree. CRC Press, Boca Raton, pp 47–67

    Google Scholar 

  • Ribeiro LP, Vendramim JD, Bicalho KU, Andrade MS, Fernandes JB, Moral RA, Demétrio CGB (2013) Annona mucosa Jacq. (Annonaceae): A promising source of bioactive compounds against Sitophilus zeamais Mots. (Coleoptera: Curculionidae). J Stored Prod Res 55:6–14

    Article  Google Scholar 

  • Richard AW (2000) Botanical insecticides, soaps and oils. In: Recheigl JE, Recheigl NA (eds) Biological and biotechnological control of insect pests. Lewis Publishers, London, pp 101–121

    Google Scholar 

  • Ríos MY, Castrejun F, Robledo N, Léon I, Rojas G, Navarro V (2003) Chemical composition and antimicrobial activity of the essential oils from Annona cheromola (Annonnaceae). J Mex Chem Soc 47:134–142

    Google Scholar 

  • Robledo-Reyes P, González R, Jaramillo G, Restrepo J (2008) Evaluación de la toxicidad de acetogeninas annonáceas sobre ninfas de Periplaneta americana L. (Dyctioptera: Blattidae). Bol Museo Entomol Univ Valle 9:54–61

    Google Scholar 

  • Rojano B, Gaviria C, Sáez J, Yepes F, Muñoz F, Ossa F (2007) Berenjenol aislado de Oxandra cf xylopioides (Annonaceae) como insecticida. Vitae 14:95–100

    CAS  Google Scholar 

  • Roy DC, Pande YD (1991) Effect of hyptis suaveolens (L.) Poit. leaf extract on the population of Lipaphis erysimi Kalt. In: IV National symposium on growth, development and control techniques of insect pests. Zoological Society, Muzaffarnagar, p 37

    Google Scholar 

  • Roy D, Sharma NN, Khanna RN (1977) Structure and synthesis of iso-pongaflavone, a new component of the seeds of Pongamia glabra. Indian J Chem 15:1138–1139

    Google Scholar 

  • Rozman V, Kalinovic I, Korunic Z (2007) Toxicity of naturally occurring compounds of Lamiaceae and Lauraceae to three stored product insects. J Stored Prod Res 43:349–355

    Article  CAS  Google Scholar 

  • Rupprecht JK, Hui YH, McLaughlin JL (1990) Annonaceous acetogenins: a review. J Nat Prod 53(2):237–278

    Article  CAS  PubMed  Google Scholar 

  • Sabandar CW, Ahmat N, Jaafar FM, Sahidin I (2013) Medicinal property, phytochemistry and pharmacology of several Jatropha species (Euphorbiaceae): a review. Phytochemistry 85:7–29

    Article  CAS  PubMed  Google Scholar 

  • Sathyaseelan V, Bhaskaran V (2010) Efficacy of some native botanical extracts on the repellency property against the pink mealy bug, Maconellicoccus hirsutus (Green). in Mulberry crop. Recent Res Sci Technol 2(10):35–38

    Google Scholar 

  • Sauerwein M, Sporer F, Wink M (1993) Insect-toxicity of phorbol esters from Jatropha curcas seed oil. Planta Med 59:A686

    Article  Google Scholar 

  • Savard J, Espil L (1951) Centre Tech For Trop Nogent Marne Publ 3:7

    Google Scholar 

  • Schmahl G, Al-Rasheid KAS, Abdel-Ghaffar F, Klimpel S, Mehlhorn H (2010) The efficacy of neem seed extracts (Tre-san®, MiteStop®) on a broad spectrum of pests and parasites. Parasitol Res 107:261–269

    Article  PubMed  Google Scholar 

  • Schmutterer H (1985) Which insect pests can be controlled by application of neem seed kernel extract under field conditions. Z Angew Entomol 100:468–475

    Article  Google Scholar 

  • Schmutterer H (1988) Potential of azadirachtin-containing pesticides for integrated pest control in developing and industrialized countries. J Insect Physiol 34:713–719

    Article  CAS  Google Scholar 

  • Schmutterer H (1990a) Future tasks of neem research in relation to agricultural needs worldwide. In: Locke JC, Lawson RH (eds) Proceedings of workshop on neem’s potential in pest management programs. USDA–ARS, Beltsville, ARS-86, pp 15–22

    Google Scholar 

  • Schmutterer H (1990b) Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu Rev Entomol 35:271–297

    Article  CAS  PubMed  Google Scholar 

  • Schmutterer H (2002) The neem tree. Neem Foundation, Mumbai

    Google Scholar 

  • Schroeder DR, Nakanishi KA (1987) Simplified isolation procedure for azadirachtin. J Nat Prod 50:241–244

    Article  CAS  PubMed  Google Scholar 

  • Scudeler EL, Dos Santos DC (2013) Effects of neem oil (Azadirachta indica A. Juss) on midgut cells of predatory larvae Ceraeochrysa claveri (Navás, 1911) (Neuroptera: Chrysopidae). Micron 44:125–132

    Article  CAS  PubMed  Google Scholar 

  • Secoy DM, Smith AE (1983) Use of plants in control of agricultural and domestic pests. Econ Bot 37:28–57

    Article  Google Scholar 

  • Seffrin RC, Shikano I, Akhtar Y, Isman MB (2010) Effects of crude seed extracts of Annona atemoya and Annona squamosa L. against the cabbage looper, Trichoplusia ni in the laboratory and greenhouse. Crop Prot 29:20–24

    Article  Google Scholar 

  • Shameel S, Usmanghani K, Ali MS (1996) Chemical constituents from seeds of Pongamia pinnata (L.) Pierre. Pak J Pharm Sci 9:11–20

    CAS  PubMed  Google Scholar 

  • Sharma INS, Singh AK, Singh SP (1982) Allelopathic potential of some plant substances as anti-feedants against insect pests of jute. In: Proc. first national symposium on allelopathy in agro-ecosystems. Indian Society of Allelopathy, HAU, Hisar, pp 157−176

    Google Scholar 

  • Sharma HC, Leuschner K, Sankaram AVB, Gunasekhar D, Marthandamurthi M, Bhaskaraiah K, Subrahmanyam M, Sultana N (1983) Insect antifeedants and growth inhibitors from Azadirachta indica and Plumbago zeylanica. In: Schmutterer H, Ascher KRS (eds) Natural pesticides from neem tree and other tropical plants: proceedings of the 2nd international neem conference, 1986, GTZ. Eschborn. German Society for Technical Cooperation, Eschborn

    Google Scholar 

  • Sharma HC, Sankaram AVB, Nwanze KF (1999) Utilization of natural pesticides derived from neem and custard apple in integrated pest management. In: Juss A, Singh RP, Saxena RC (eds) Azadirachta Indica A. Juss. Oxford/IBH, New Delhi, pp 199–213

    Google Scholar 

  • Sharma PR, Sharma OP, Saxena BP (2003a) Effect of Neem gold on haemocytes of tobacco armyworm, Spodoptera littoralis (Fabricius) (Lepidoptera; Noctuidae). Curr Sci 84:690–695

    Google Scholar 

  • Sharma V, Walia S, Kumar J, Nair MG, Parmar BS (2003b) An efficient method for the purification and characterization of nematicidal azadirachtins A, B and H using MPLC and ESIMS. J Agric Food Chem 51:3966–3972

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Walia S, Dhingra S, Kumar J, Balraj SP (2006) Azadirachtin-A and tetrahydroazadirachtin-A concentrates: preparation, LC-MS characterization and insect antifeedant/IGR activity against Helicoverpa armigera (Hűbner). Pest Manag Sci 62:965–975

    Article  CAS  PubMed  Google Scholar 

  • Shelke SS, Jadhav LD, Salunkhe GN (1985) Ovipositional and adult repellent action of some vegetable oils/extracts against potato tuber moth. Maharashtra Agric Univ 10:284–286

    Google Scholar 

  • Shelke SS, Jadhav LD, Salunkhe GN (1987) Ovicidal action of some vegetable oils and extracts in the storage pest of potato, Phthorimaea operculella. Zell Biovigyanam 13:40–41

    Google Scholar 

  • Shi GE, Alfonso D, Fatope MO, Zeng L, Gu ZM, Zhao GX, He K, MacDougal JM, McLaughlin JL (1995) Mucocin: a new annonaceous acetogenin bearing a tetrahydropyran ring. J Am Chem Soc 117:10409–10410

    Article  CAS  Google Scholar 

  • Shi G, Kozlowski JF, Schwedler JT, Wood KV, MacDougal JM, McLaughlin JL (1996) Muconin and mucoxin: additional non-classical bioactive acetogenins from Rollinia mucosa. J Org Chem 61:7988–7989

    Article  CAS  PubMed  Google Scholar 

  • Shrinivas M, Balikai S (2009) Evaluation of plant products in combination with cow urine and panchagavya against sorghum shootfly, Atherigona soccata Rondani. Karnataka J Agric Sci 22:618–620

    Google Scholar 

  • Shukla S, Arora R, Sharma HC (2005) Biological activity of soybean trypsin inhibitor and plant lectins against cotton bollworm/legume pod borer, Helicoverpa armigera. Plant Biotechnol 22(1):1–6

    Article  CAS  Google Scholar 

  • Sidhu OP, Behl HM (1996) Seasonal variations in azadirachtins in seeds of Azadirachta indica. Curr Sci 70(12):1084–1086

    CAS  Google Scholar 

  • Sidhu OP, Kumar V, Behl HM (2003) Variability in neem (Azadirachta indica) with respect to azadirachtin content. J Agric Food Chem 51:910–915

    Article  CAS  PubMed  Google Scholar 

  • Silva GN, Faroni LRA, Sousa AH, Freitas RS (2012) Bioactivity of Jatropha curcas L. to insect pests of stored products. J Stored Prod Res 48:111–113

    Article  Google Scholar 

  • Simin K, Ali Z, Khaliq-Uz-Zaman SM, Ahmad VU (2002) Structure and biological activity of a new rotenoid from Pongamia pinnata. Nat Prod Res 16:351–357

    CAS  Google Scholar 

  • Singh YP (2007) Efficacy of plant extracts against mustard aphid, Lipaphis erysimi on mustard. Indian J Plant Prot 35(1):116–117

    Google Scholar 

  • Singh D, Singh AK (1991) Repellent and insecticidal properties of essential oils against housefly Musca domestica L. Insect Sci Appl 12(4):487–491

    Google Scholar 

  • Singh D, Siddiqui MS, Sharma S (1989) Reproduction retardant and fumigant properties in essential oils against rice weevil (Coleoptera: Curculionidae) in stored wheat. J Econ Entomol 83(3):727–733

    Article  Google Scholar 

  • Singh R, Rup PJ, Koul O (2008) Bioefficacy of Eucalyptus camaldulensis var. obtusa and Luvanga scandens essential oils against Spodoptera litura (Lepidoptera: Noctuidae). Biopestic Int 4:128–137

    Google Scholar 

  • Sinha SH (1993) Neem in the integrated management of Helicoverpa armigera Hubn. in chickpea. In: World neem conference. Indian Society of Tobacco Science, Bangalore, p 6

    Google Scholar 

  • Sláma K, Williams CM (1965) Juvenile hormone activity for the bug Pyrrhocoris apterus. Proc Natl Acad Sci U S A 54(2):411–414

    Article  PubMed  PubMed Central  Google Scholar 

  • Solsoloy AD (1995) Pesticidal efficacy of the formulated physic nut, Jatropha curcas L. oil on pests of selected field crops. Philipp J Sci 124:59–74

    Google Scholar 

  • Solsoloy AD, Solsoloy TS (1997) Pesticidal efficacy of formulated J. curcas oil on pests of selected field crops. In: Gubitz GM, Mittelbach M, Trabi M (eds) Biofuels and industrial products from J. curcas. DBV Graz, Graz, pp 216–226

    Google Scholar 

  • Solsoloy AD, Solsoloy TS (2000) Insecticide resistance management in cotton in the Philippines. Philipp J Crop Sci 25:26

    Google Scholar 

  • Stokes JB, Redfern RE (1982) Effect of sunlight on azadirachtin antifeeding potency. J Environ Sci Health A 17:57–65

    Google Scholar 

  • Suliman R, Saker I, Namora D (2003) Importance of plant extracts in managing acarids damaging to crops. In: Eighth Arab congress of plant protection, 12–16 October, El-Beida, Libya, pp 87–91

    Google Scholar 

  • Sundaram KMS (1996) Azadirachtin biopesticide: a review of studies conducted on its analytical chemistry, environmental behaviour and biological effects. J Environ Sci Health Part B 31:913–948

    Article  Google Scholar 

  • Sundaram KMS, Curry J (1996a) Effect of some UV-light absorbers on the photostability of azadirachtin of a neem based pesticide. Chemosphere 32:649–659

    Article  CAS  Google Scholar 

  • Sundaram KMS, Curry J (1996b) Photostabilization of the botanical insecticide azadirachtin in the presence of lecithin as UV protectants. J Environ Sci Health B 31:1041–1060

    Article  Google Scholar 

  • Sundaram KMS, Sundaram A, Curry J, Sloane L (1997) Formulation selection, and investigation of azadirachtin – a persistence in some terrestrial and aquatic components of a forest environment. Pestic Sci 51:74–90

    Article  CAS  Google Scholar 

  • Susarla RS, Murthy MM, Rao BVSK, Chakrabarti PP, Prasad RBN, Kanjilal S (2012) A method for isolation of karanjin from the expelled cake of Pongamia glabra. Eur J Lipid Sci Technol 114:1097–1101

    Article  CAS  Google Scholar 

  • Talopatra B, Malik AK, Talapatra SK (1985) Triterpenoids and flavonoids from the leaves of Pongamia glabraVent. Demethylation studies on 5-methoxyfuranoflavone. J Indian Chem Soc 62:408–409

    Google Scholar 

  • Taylor DAH (1984) The chemistry of the Limonoids from Meliaceae Prog Chem Org Nat Prod 45:1–101

    CAS  Google Scholar 

  • Thebtaranonth C, Thebtaranonth Y, Wanauppathamkul S, Yuthavong Y (1995) Antimalarial sesquiterpenes from tubers of Cyperus rotundus: structure of 10, 12-peroxycalamenene, a sesquiterpene endoperoxide. Phytochemistry 540:125–128

    Article  Google Scholar 

  • Tormo JR, Gallardo T, González MC, Bermejo A, Cabedo N, Andreu I, Estornell E (1999) Annonaceous acetogenins as inhibitors of mitochondrial complex I. Curr Top Phytochem 2:69–90

    CAS  Google Scholar 

  • Tripathi AK, Rao SM, Singh D, Chakraborty RB, Bhakuni DS (1987) Antifeedant activity of plant extracts against Diacrisia oblique walk. Curr Sci 56(12):607–608

    Google Scholar 

  • Unicini Manganelli RE, Zaccaro L, Tomei PE (2005) Antiviral activity in vitro of Urtica dioica L., Parietaria diffusa M. and K., and Sambucus nigra L. J Ethnopharmacol 98:323–327

    Article  Google Scholar 

  • Valencia A, Frérot B, Guénego H, Múnera DF, Grossi De Sá MF, Calatayud PA (2006) Effect of Jatropha gossypiifolia leaf extracts on three lepidoptera species. Rev Colomb Entomol 32(1):45–48

    Google Scholar 

  • Veitch GE, Boyer A, Ley SV (2008) The azadirachtin story. Angew Chem Int Ed 47:9402–9429

    Article  CAS  Google Scholar 

  • Venkataramireddy P, Chitra KC, Rao PK (1990) Efficacy of plant extracts in the control of brinjal spotted leaf beetle, Henosepilachna vigintioctopunctata F. In: Proc of symposium of botanical pesticides in IPM, Rajahmundry, pp 225−227

    Google Scholar 

  • Venkateswarlu B, Katyal JC, Choudhari J, Mukhopadhyay K (1997) Azadirachtin content in the neem seed samples collected from different dry land regions. Neem Newsl (IARI) 14(1):7–11

    Google Scholar 

  • Vismayaa SEW, Manjunatha JR, Srinivas P, Kanyaa S TC (2010) Extraction and recovery of karanjin: a value addition to karanja (Pongamia pinnata) seed oil. Ind Crops Prod : 118–122 (32pp)

    Google Scholar 

  • Warthen JD, Stokes JR, Jacobson M, Kozempel MF (1984) Estimation of azadirachtin content in neem extract and formulations. J Liq Chromatogr 7:591–598

    Article  CAS  Google Scholar 

  • Williams LAD, Mansingh A (1996) The insecticidal and acaricidal actions of compounds from Azadirachta indica (A. Juss.) and their use in tropical pest management. Integr Pest Manag Rev 1(3):133–145

    Google Scholar 

  • Willis TE (1967) Textbook of pharmacognosy. J. and A Churchill Ltd, pp 513–524

    Google Scholar 

  • Wink M (2000) Interference of alkaloids with neuroreceptors and ion channels. In: Rahman XA (ed) Bioactive natural products. Elsevier, Amsterdam, Netherlands, pp 3–129

    Google Scholar 

  • Wink M, Koschmieder C, Sauerweien M, Sporer F (1997) Phorbol esters of J. curcas – biological activities and potential applications. In: Gubitz GM, Mittelbach M, Trabi M (eds) Biofuel and industrial products from Jatropha curcas. DBV, Graz, pp 160–166

    Google Scholar 

  • Yadav PP, Ahmad G, Maurya R (2004) Furanoflavonoids from Pongamia pinnata fruits. Phytochemistry 65:439–443

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki RB, Klocke JA (1987) Structure bioactivity relationship of azadirachtin, a potent insect control agent. J Agric Food Chem 35:467–471

    Article  CAS  Google Scholar 

  • Yamasaki RB, Klocke JA, Lee SM, Stones GA (1986) Darlington, M. V. Isolation and purification of azadirachtin from neem (Azadirachta indica) seeds using flash chromatography and high performance liquid chromatography. J Chromatogr 18:467

    Google Scholar 

  • Yin H, Zhang S, Wu J, Nan H, Long L, Yang J, Li Q (2006) Ponga flavonol: a prenylated flavonoid from Pongamia pinnata with a modified ring A. Molecules 11:786–791

    Article  CAS  PubMed  Google Scholar 

  • Yule S, Srinivasan R (2013) Evaluation of bio-pesticides against legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Pyralidae), in laboratory and field conditions in Thailand. J Asia Pac Entomol 16:357–360

    Article  Google Scholar 

  • Zeng L, Ye Q, Oberlies NH, Shi G, Gu ZM, He K, McLaughlin JL (1996) Recent advances in Annonaceous acetogenins. Nat Prod Rep 13:275–306

    Article  CAS  PubMed  Google Scholar 

  • Zoubiri S, Baaliouamer A (2011) Potentiality of plants as source of insecticide principles. J Saudi Chem Soc. doi:10.1016/j.jscs.2011.11.015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gopalakrishnan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Gopalakrishnan, S., Kumari, B.R., Vijayabharathi, R., Sathya, A., Srinivas, V., Rao, G.V.R. (2014). Efficacy of Major Plant Extracts/Molecules on Field Insect Pests. In: Singh, D. (eds) Advances in Plant Biopesticides. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2006-0_5

Download citation

Publish with us

Policies and ethics