Skip to main content

Plant Natural Products as a Source for Developing Environmentally Acceptable Insecticides

  • Chapter
Insecticides Design Using Advanced Technologies

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnason JT, Philogene BJR, Morand P, Imrie K, Iyengar S, Duval F, Soucy-Brou C, Scaino JC, Werstiuk NH, Hasspieler B, Downe AER (1989) Naturally occurring and synthetic thiopenes as photoactivated insecticides. In: Arnason JT, Philogene BJR, Morand P (eds) Insecticides of plant origin. Am Chem Soc Symp Ser 387, Washington, DC, pp 164–172

    Google Scholar 

  • Bacher M, Hofer O, Brader G, Vajrodaya SH (1999) Thapsakins: possible biogenetic intermediates towards insecticidal cyclopenta[b] benzofurans from Aglaia edulis. Phytochemistry 52:253–263

    Article  CAS  Google Scholar 

  • Bischof LJ, Enan EE (2004) Cloning, expression and functional analysis of an octopamine receptor from Periplaneta americana. Insect Biochem Molec Biol 34:511–521

    Article  CAS  Google Scholar 

  • Blaney WM, Simmonds MSJ, Ley SV, Anderson JC, Toogood PL (1990) Antifeedant effect of azadirachtin and structurally related compounds on lepidopteran larvae. Entomologia Exp Appl 55:149–160

    Article  CAS  Google Scholar 

  • Brader G, Vajrodays S, Greger H, Bacher M, Kalchhauser H, Hofer O (1998) Bisamides, lignans, triterpenes, and insecticidal cyclopenta[b]benzofurans from Aglaia species. J Nat Prod 61:1482–1490

    Article  PubMed  CAS  Google Scholar 

  • Brem B, Seger C, Pacher T, Hofer O, Vajrodaya S, Gregger H (2002) Feeding deterrence and contact toxicity of Stemona alkaloids—a source of potent natural insecticides. J Agric Food Chem 50:6383–6388

    Article  PubMed  CAS  Google Scholar 

  • Brem B, Seger C, Pacher T, Hartl M, Hadacek F, Hofer O, Vajrodaya SH (2004) Antioxidant dehydrotocopherols as a new chemical character of Stemona species. Phytochemistry 65:2719–2729

    Article  PubMed  CAS  Google Scholar 

  • Butterworth JH, Morgan ED (1968) Isolation of a substance that suppresses feeding in locusts. J Chem Soc Chem Commun 4:23–24

    Google Scholar 

  • Chaidir JH, Nugroho BW, Bohnenstengel FI, Wray V, Witte L, Hung PD, Kiet LC, Proksch P (1999) New insecticidal rocaglamide derivatives from flowers of Aglaia duperreana (Meliaceae). Phytochemistry 52:837–842

    Article  CAS  Google Scholar 

  • Enan E (2001) Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Physiol C 130:325–337

    CAS  Google Scholar 

  • Fieser LF, Berliner E, Bondhus FJ, Chang FC, Dauben WG, Ettlinger MG, Fawaz G, Fields M, Fieser M, Heidelberger C, Heymann H, Seligman AM, Vaughan WR, Wilson E, Wu M, Leffler MT, Hamlin KE, Hathaway RJ, Matson EJ, Moore EE, Moore MB, Rapala RT, Zaugg HE (1948) Naphthoquinone antimalarials. J Am Chem Soc 70:3151–3244

    Article  PubMed  CAS  Google Scholar 

  • Godfrey C, Benner J, Clough M, Dunbar S, Earley F, Russel A, Urch C, Ware A (2002) 10th IUPAC International Congress on the Chemistry of Crop Protection, vol. 1. p 236

    Google Scholar 

  • Gussregan B, Puhr M, Nugroho BW, Wray V, Witte I, Proksch P (1999) New insecticidal rocaglamide derivative from flower of Aglaia odorata. Zeitachrift fur Naturforschung 52:339–334

    Google Scholar 

  • He K, Zeng L, Ye Q, Shi G, Oberlies NH, Zha, GX, Njoku C J, McLaughlin JL (1997) Comparative SAR evaluations of Annonaceous acetogenins for pesticidal activity. Pestic Sci 49:372–378

    Article  CAS  Google Scholar 

  • Hedin PA, Hollingworth RM, Masler EP, Miyamoto J, Thompson GD (eds) (1997) Phytochemicals for pest control. Am Chem Soc Washington, DC, 372 pp

    Google Scholar 

  • Ishibashi F, Satasook C, Isman MB, Towers GHN (1993) Insecticidal 1H-cyclopentatetrahydro[b]benzofurans from Aglaia odorata (Lour.) (Meliaceae). Phytochemistry 32:307–310

    Article  CAS  Google Scholar 

  • Isman MB (2002) Lepidoptera, butterflies and moths. In: Schmutterer H (ed) In The neem tree, 2nd edn. The Neem Foundation. Mumbai, India, pp 378–401

    Google Scholar 

  • Isman MB (2004) Factors limiting commercial success of neem insecticides in North America and Western Europe. In: Koul O, Wahab S (eds) Neem: today and in the new millennium. Kluwer, Dordrecht, pp 33–41

    Chapter  Google Scholar 

  • Kaltenegger E, Brem B, Mereiter K, Kalchhauser H, Kahlig H, Hofer O, Vajrodaya SH (2003) Insecticidal pyrido[1, 2-a]azepine alkaloids and related derivatives from Stemona species. Phytochemistry 63:803–816

    Article  PubMed  CAS  Google Scholar 

  • Khambay BPS, Batty D, Niemeyer MAH (1995) Naphthoquinone derivatives. UK Patent Application 2289463A, PCT Application WO 95/32176

    Google Scholar 

  • Khambay BPS, Batty D, Beddie DG, Denholm I, Cahill M (1997a) A new group of plant-derived naphthoquinone pesticides. Pestic Sci 50:291–296

    Article  CAS  Google Scholar 

  • Khambay BPS, Beddie DG, Simmonds MSJ (1997b) In pursuit of insecticidal compounds from plants. In: Wrigley S, Hayes M, Thomas R, Chrystal E (eds) Phytochemical diversity: a source of new industrial products. R Soc Chem, Cambridge UK, pp 158–169

    Google Scholar 

  • Khambay BPS, Batty D, Cahill M, Denholm I (1999) Isolation characterization and biological activity of nephthoqionones from Calceolaria andina L. J Agric Food Chem 47:770–775

    Article  PubMed  CAS  Google Scholar 

  • Khambay BPS, Batty D, Jewess PJ, Bateman GL, Hollomon DW (2003) Mode of action and pesticidal activity of the natural product dunnione and of some analogues. Pest Manage Sci 59:174–182

    Article  CAS  Google Scholar 

  • Kostyukovsky M, Rafaeli A, Gileadi C, Demchenko N, Shaaya E (2002) Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Manage Sci 58:1101–1106

    Article  CAS  Google Scholar 

  • Koul O, and Dhaliwal GS (2001) Phytochemical biopesticides. Hardwood Acad, Amsterdam, 223 pp

    Google Scholar 

  • Koul O, Wahab S (2004) Neem: today and in the new millennium. Kluwer, Dordrecht, 276 pp

    Book  Google Scholar 

  • Koul O, Multani JS, Singh G, Wahab S (2004) Bioefficacy and mode of action of rocaglamide from Aglaia elaeagnoidea against gram pod borer, Helicoverpa armigera. J Appl Entomol 128:177–181

    CAS  Google Scholar 

  • Kraus W, Bokel M, Bruhn A, Cramer R, Klaiber I, Klenk A, Nagl G, Pohnl H, Sadlo H, Vogler B (1987) Structure determination by NMR of azadirachtin and related compounds from Azadirachta indica (Meliaceae). Tetrahedron 43:2813–2830

    Article  Google Scholar 

  • Leatemia JA, Isman MB (2004) Insecticidal activity of crude seed extracts of Annona spp, Lansium domesticum and Sandoricum koetiape against lepidopteran larvae. Phytoparasitica 32:30–37

    Article  Google Scholar 

  • Londershausen M, Leight W, Lieb F, Moeschler S (1991) Molecular mode of action of annonins. Pestic Sci 33:427–438

    Article  CAS  Google Scholar 

  • Ley SV (1994) Synthesis and chemistry of the insect antifeedant azadirachtin. Pure and Appl Chem 66:2099–2102

    Article  CAS  Google Scholar 

  • McLaughlin JL, Zeng L, Oberlies NH, Alfonso D, Johnson HA, Cummings BA (1997) Annonaceous acetogenins as new natural pesticides: recent progress. In: Hedin P, Hollingworth R, Mujamoto J, Masler E, Thompson D (eds) Phytochemical pest control agents. Am Chem Soc, Washington, DC, pp 117–133

    Chapter  Google Scholar 

  • Mikolajczak KL, McLaughlin JL, Rupprecht JK (1988) Control of pests with Annonaceous acetogenins. US Patent 4,721,727

    Google Scholar 

  • Mikolajczak KL, McLaughlin JL, Rupprecht JK (1989) Control of pests with Annonaceous acetogenins. US Patent 4, 855, 319

    Google Scholar 

  • Mordue (Luntz) AJ, Simmonds MSJ, Ley SV, Blaney WM, Mordue W, Nasiruddin M, Nisbet AJ (1998) Actions of azadirachtin, a plant allelochemical, against insects. Pestic Sci 54:277–284

    Article  Google Scholar 

  • Nugroho BW, Edrada RA, Gussregen B, Wray V, Witte L, Bringmann G, Proksch P (1997a) Insecticidal rocaglamide derivatives from Aglaia Duppereana. Phytochemistry 44: 1455–1461

    Article  CAS  Google Scholar 

  • Nugroho BW, Gussregen B, Wray V, Witte L, Bringmann G, Gehling M, Proksch P (1997b) Insecticidal rocaglamide derivatives from Aglaia elliptica and A. harmsiana. Phytochemistry 45:1579–1585

    Article  CAS  Google Scholar 

  • Nugroho BW, Edrada RA, Wray V, Witte L, Bringmann G, Proksch P (1999) An insecticidal rocaglamide derivative and related compounds from Aglaia odorata Phytochemistry 51:367–376

    Article  CAS  Google Scholar 

  • Oliviera MF, Lemos TG, de Mattos MC, Segundo TA, Santiago GM, Braz-Filho R (2002) New enamine derivatives of lapachol and biological activity. An Acad Bras Cienc 74:211–221

    Google Scholar 

  • Olliao PL, Trigg PI (1995) Status of antimalarial drugs under development. Bull World Health Org 73:565–571

    Google Scholar 

  • Perry AS, Yammamoto I, Ishaaya I, Perry RY (1998) Insecticides in agriculture and environment: retrospects and prospects. Springer, Berlin Heidelberg New York, 261 pp

    Google Scholar 

  • Pilli RA, Ferreira de Oliviera MC (2000) Recent progress in the chemistry of the Stemona alkaloids. Nat Prod Rep 17:117–127

    Article  PubMed  CAS  Google Scholar 

  • Proksch P, Edrada R, Ebel R, Bohnenstengel IF, Nugroho WB (2001) Chemistry and biological activity of rocaglamide derivatives and related compounds in Aglaia species (Meliaceae). Curr Org Chem 5:923–938

    Article  CAS  Google Scholar 

  • Regnault-Roger C, Philogene BGR, Vincent D (eds) (2005) Biopesticides of plant origin. Lavoisier, Paris, 313 pp

    Google Scholar 

  • Rembold H (1989) Azadirachtins: their structure and mode of action. In: Arnason JT, Philogene BJR, Morand P (ed) Insecticides of plant origin. Am Chem Soc Symp Ser 387, Washington, DC, pp 150–163

    Google Scholar 

  • Rice PJ, Coats JR (1994a) Insecticidal properties of several monoterpenoids to the house fly (Diptera: Muscidae), red flour beetle (Coleoptera: Tenebrionidae), and southern corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 87:1172–1179

    PubMed  CAS  Google Scholar 

  • Rice PJ, Coats JR (1994b) Insecticidal properties of monoterpenoids derivatives to the house fly (Diptera: Muscidae) and red flour beetle (Coleoptera: Tenebrionidae). Pestic Sci 41:195–202

    Article  CAS  Google Scholar 

  • Sakata K, Aoki K, Chang CF, Sakurai A, Tamura S, Murakoshi S (1978) Stemospironine, a new insecticidal alkaloid of Stemona japonica Miq. Isolation, structural determination and activity. Agric Biol Chem 42:457–463

    CAS  Google Scholar 

  • Satasook G, Isman MB, Wiriyachita P (1993) Activity of rocaglamide, an insecticidal natural product, against the variegated cut worm, Peridroma saucia, (Lepidoptera: Noctuidae). Pestic Sci 36:53–58

    Article  Google Scholar 

  • Schneider C, Bohnenstengel FI, Nugroho BW, Wray V, Witte L, Hung PD, Kiet LC, Proksch P (2000) Insecticidal rocaglamide derivatives from Aglaia spectabilis (Meliaceae). Phytochemistry 54:731–736

    Article  PubMed  CAS  Google Scholar 

  • Schmutterer G (ed) (2002) The neem tree. Mumbai Neem Foundation, 892 pp

    Google Scholar 

  • Simmonds MSJ, Blaney WM, Ley SV, Anderson JC, Bantelia R, Denholm AA, Green PCW, Grossman RB, Gutteridge C, Jennens L, Smith SC, Togwood PL, Wood A (1995) Behavioural and neurophysiological responses of Spodoptera littoralis to azadirachtin and a range of synthetic analogues. Entomol Exp Appl 77:69–80

    Article  CAS  Google Scholar 

  • Tsao R, Lee S, Rice PJ, Jensen C, Coats JR (1995) Monoterpenoids and their synthetic derivatives as leads for new insect-control agents. In: Baker DR, Fenyes JG, Basarab GS (eds) Synthesis and chemistry of agrochemicals IV. Am Chem Soc Symp Ser 584, Washington, DC, pp 312–324

    Google Scholar 

  • Velasquez J, Rojas LB, Usubillaga A (2004) Antifungal activity of naphtoquinone from Tabebuia serratifolia (Vahl, Nicholson). CIEN 12:64–69

    CAS  Google Scholar 

  • Wang B, Peng H, Huang H, Li X, Eck G, Gong X, Proksch P (2002) Rocaglamide, aglain, and other related derivatives from Aglaia testicularis (Meliaceae). Biochem Syst Ecol 32:1223–1226

    Article  Google Scholar 

  • Weber S, Puripattanavong J, Brecht V, Frahm AW (2000) Phytochemical investigation of Aglaia rubiginosa. J Nat Prod 63:636–642

    Article  PubMed  CAS  Google Scholar 

  • Xu RS, Lu YJ, Chu JH, Iwashita T, Naoki H, Naya Y, Nakanishi K (1982) Studies on some new stemona alkaloids. Tetrahedron 38:2667–2670

    Article  CAS  Google Scholar 

  • Xu RS (2000) Some bioactive natural products from Chinese medicinal plants. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol. 21. Elsevier Science Publishers, Amsterdam, pp 729–772

    Google Scholar 

  • Ye Y, Qin GW, Xu RS (1994) Alkaloids of Stemona japonica. Phytochemistry 37:1205–1208

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Isman, M.B., Akhtar, Y. (2007). Plant Natural Products as a Source for Developing Environmentally Acceptable Insecticides. In: Ishaaya, I., Horowitz, A.R., Nauen, R. (eds) Insecticides Design Using Advanced Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46907-0_10

Download citation

Publish with us

Policies and ethics