Skip to main content

Causes Underlying the Reduced Response to Simvastatin Treatment in Hypercholesterolemic Patients

  • Conference paper
Human Apolipoprotein Mutants III

Abstract

Simvastatin, a competitive inhibitor of HMG-CoA reductase, effectively reduces elevated plasma cholesterol levels by up regulating the LDL receptor expression. Therefore in patients whose hypercholesterolemia (HC) is due to a defective LDL-receptor interaction vastatins may not be as effective as expected. To verify this hypothesis we studied the possible causes for the poor response (<15% decrease of LDL cholesterol) to simvastatin (40 mg/die) in 11 HC patients. Biochemical defects were identified in 5 patients. Three patients presented with binding-defective LDL, without the 3500 mutation, and the remaining two had normal LDL but their serum contained factors interfering with the LDL-receptor interaction. From these results we conclude that distinct biochemical defects might contribute to the poor response to simvastatin in hypercholesterolemic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beaumont JL, Beaumont V (1977) Autoimmune hyperlipidemia. Atherosclerosis 26: 405–418.

    Article  PubMed  CAS  Google Scholar 

  • Bilheimer DW, Eisenberg S, Levy RI (1972) The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations. Biochim Biophys Acta. 260: 212–221.

    Google Scholar 

  • Bilheimer DW, Grundy SM, Brown MS, Goldstein JL (1983) Mevinolin and colestipol stimulate receptor-mediated clearance of low density lipoprotein from plasma in familial hypercholesterolemia heterozygotes. Proc Natl Acad Sci USA 80: 4124–4128.

    Article  PubMed  CAS  Google Scholar 

  • Brown MS, Faust JR, Goldstein JL, Kaneko I, Endo A (1978) Induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts incubated with compactin (ML-236B), a competitive inhibitor of the reductase. J Biol Chem 253: 1121–1128.

    PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1981) Lowering plasma cholesterol by raising LDL receptors. N Engl J Med 305: 515–517.

    Article  PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232: 34–47.

    Article  PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1987) The hyperlipoproteinemias and other disorders of lipid metabolism. In: Braunwald E, Isselbacher KJ, Petersdorf RG, Wilson JD, Martin JB, Fauci AS (eds) Harrison’s Principles of Internal Medicine. McGraw-Hill, New York, llth Edition, 16501661.

    Google Scholar 

  • Brown G, Albers JJ, Fisher LD, et al (1990) Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 323: 1289–1298.

    Article  PubMed  CAS  Google Scholar 

  • Corsini A, Roma P, Sommariva D, Fumagalli R, Catapano AL (1986) Autoantibodies to the low density lipoprotein receptor in a subject affected by severe hypercholesterolemia. J Clin Invest 78: 940–946.

    Article  PubMed  CAS  Google Scholar 

  • Corsini A, McCarthy BJ, Granata A, et al (1991) Familial defective apo B-100, characterization of an Italian family. Eur J Clin Invest 21: 389–397.

    Article  PubMed  CAS  Google Scholar 

  • Endo A, Tsujita Y, Kuroda M, Tanzawa K (1979) Effects of ML-236B on cholesterol metabolism in mice and rats: lack of hypocholesterolemic activity in normal animals. Biochim Biophys Abta 575: 266–276.

    CAS  Google Scholar 

  • Feingold KR, Castro GR, Ishikawa Y, Fielding PE, Fielding CR (1989) Cutaneous xanthoma in association with paraproteinemia in the absence of hyperlipidemia. J Clin Invest 83: 796–802.

    Article  PubMed  CAS  Google Scholar 

  • Fisher RA, Yates F (1953) In: Oliver and Boyd (eds) Statistical Tables for Biological, Agricultural and Medical Research, 4th Edition, 60.

    Google Scholar 

  • Grundy SM (1988) HMG-CoA reductase inhibitors for treatment of hypercholesterolemia. N Engl J Med 319: 24–33.

    Article  PubMed  CAS  Google Scholar 

  • Grundy SM, Vega GL (1990) Causes of high blood cholesterol.Circulation 81: 412–427.

    CAS  Google Scholar 

  • Grundy SM, Vega GL, Garg A (1990) Use of 3-hydroxy-3methylglutaryl coenzyme A reductase inhibitors in various forms of dyslipidemia. Am J Cardiol 66: 31B - 38B.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JL, Basu SK, Brown MS (1983) Receptor-mediated endocytosis of the low density lipoproteins in cultured cells. Methods Enzymol 98: 241–260.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JL, Brown MS (1989) Familial hypercholesterolemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic Basis of Inherited Disease. McGraw-Hill, New York, 6th Edition, 1: 1215–1250.

    Google Scholar 

  • Hagemenas FC, Pappu AS, Illingworth DR (1990) The effects of simvastatin on plasma lipoproteins and cholesterol homeostasis in patients with heterozygous familial hypercholesterolaemia. Eur J Clin Invest 20: 150–157.

    Article  PubMed  CAS  Google Scholar 

  • Havel RJ, Eder HA, Bragdon JH (1955) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 34: 1345–1354.

    Article  PubMed  CAS  Google Scholar 

  • Havel RJ, Hunninghake DB, Illingworth DR, et al (1987) A multicenter study of lovastatin (mevinolin) in the therapy of heterozygous familial hypercholesterolemia. Ann Intern Med 107: 609–615.

    PubMed  CAS  Google Scholar 

  • Illingworth D, Sexton G (1984) Hypocholesterolemic effects of mevinolin in patients with heterozygous familial hypercholesterolemia. J Clin Invest 74: 1972–1978.

    Article  PubMed  CAS  Google Scholar 

  • Innerarity TL, Mahley RW (1978) Enhanced binding by cultured human fibroblasts of apo E-containing lipoproteins as compared with low density lipoproteins. Biochemistry 17: 1440–1447.

    Article  PubMed  CAS  Google Scholar 

  • Innerarity TL, Weisgraber KH, Arnold KS, et al (1987) Familial defective apolipoprotein B-100: low density lipoproteins with abnormal receptor binding. Proc Natl Acad Sci USA 84: 1650–1661.

    Article  Google Scholar 

  • Innerarity TL, Mahley RW, Weisgraber KH, et al (1990) Familial defective apolipoprotein B-100: a mutation of apolipoprotein B that causes hypercholesterolemia. J Lipid Res 31: 1337–1349.

    PubMed  CAS  Google Scholar 

  • Kane JP, Malloy MJ, Ports TA, Phillips NR, Diehl JC, Havel RJ (1990) Regression of coronary atherosclerosis during treatment of familial hypercholesterolemia with combined drug regimens. JAMA 264: 3007–3012.

    Article  PubMed  CAS  Google Scholar 

  • Kleinman Y, Eisenberg S, Oschry Y, Gavish D, Stein O, Stein Y (1985) Defective metabolism of hypertriglyceridemic low density lipoprotein in cultured human skin fibroblasts: J Clin Invest 75: 1796–1803.

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680.

    Article  PubMed  CAS  Google Scholar 

  • Lewis LA, De Wolfe VG, Butkus A, Page IH (1975) Autoimmunehyperlipidemia in a patient. Am J Med 59: 208–218. Lipid Research Clinics Program (1984) Reduction in incidence

    Google Scholar 

  • of coronary heart disease. JAMA 251: 31–364.

    Google Scholar 

  • Lowering Blood Cholesterol to Prevent Heart Disease. Consensus Conference (1985) JAMA 253: 2080–2086.

    Article  Google Scholar 

  • Naruszewicz M, Carew TE, Pittman RC, Witztum JL, Steinberg D (1984) A novel mechanism by which probucol lowers low density lipoprotein levels demonstrated in the LDL receptor-deficient rabbit. J Lipid Res 25: 1206–1213.

    PubMed  CAS  Google Scholar 

  • Raveh D, Israeli A, Arnon R, Eisenberg S (1990) Effects of lovastatin therapy on LDL receptor activity in circulating monocytes and on structure and composition of plasma lipoproteins. Atherosclerosis 82: 19–26.

    Article  PubMed  CAS  Google Scholar 

  • Reihner E, Rudling M, Stahlberg D, et al (1990) Influence of pravastatin, a specific inhibitor of HMG-CoA reductase, on hepatic metabolism of cholesterol. N Engl J Med 323: 224–228.

    Article  PubMed  CAS  Google Scholar 

  • Riesen W, Noseda G (1975) Antibodies against lipoproteins in man, occurence and biological significance. Klin Wochenschr 53: 353–361.

    Article  PubMed  CAS  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, et al (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.

    Article  PubMed  CAS  Google Scholar 

  • Stamler J (1979) Population studies. In: Levy R, Rifkind B, Dennis B, Ernst N (eds) Nutrition, Lipids, and Coronary Heart Disease. Raven Press, New York, 25–88

    Google Scholar 

  • Stossel TP (1988) A multicenter comparison of lovastatin and cholestyramine therapy for severe primary hypercholesterolemia. JAMA 260: 359–366.

    Article  Google Scholar 

  • The Lovastatin Study Group IV (1990) A multicenter comparison of lovastatin and probucol for treatment of severe primary hypercholesterolemia. Am J Cardiol 66: 22B - 30B.

    Article  Google Scholar 

  • Trezzi E, Roma P, Bernini F, Fumagalli R, Catapano AL (1984) Effects of probucol on the in vivo plasma clearance of human low density lipoprotein receptors in vitro. Atherosclerosis 52: 309–316.

    Article  PubMed  CAS  Google Scholar 

  • Vega GL, Grundy SM (1986) In vivo evidence for reduced binding of low density lipoproteins to receptors as a cause of primary moderate hypercholesterolemia. J Clin Invest 78: 1410–1414.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto A, Yokoyama S, Yamamura T (1988) Escape phenomenon occurs by lowering cholesterol with a hydroxymethylglutaryl coenzyme A ( HMG-CoA) reductase inhibitor in patients with familial hypercholesterolemia. Atherosclerosis 71: 257–260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Corsini, A. et al. (1993). Causes Underlying the Reduced Response to Simvastatin Treatment in Hypercholesterolemic Patients. In: Sirtori, C.R., Franceschini, G., Brewer, B.H. (eds) Human Apolipoprotein Mutants III. NATO ASI Series, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84634-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84634-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84636-6

  • Online ISBN: 978-3-642-84634-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics