Feasibility and Completeness of Cryptographic Tasks in the Quantum World

  • Serge Fehr
  • Jonathan Katz
  • Fang Song
  • Hong-Sheng Zhou
  • Vassilis Zikas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7785)

Abstract

It is known that cryptographic feasibility results can change by moving from the classical to the quantum world. With this in mind, we study the feasibility of realizing functionalities in the framework of universal composability, with respect to both computational and information-theoretic security. With respect to computational security, we show that existing feasibility results carry over unchanged from the classical to the quantum world; a functionality is “trivial” (i.e., can be realized without setup) in the quantum world if and only if it is trivial in the classical world. The same holds with regard to functionalities that are complete (i.e., can be used to realize arbitrary other functionalities).

In the information-theoretic setting, the quantum and classical worlds differ. In the quantum world, functionalities in the class we consider are either complete, trivial, or belong to a family of simultaneous-exchange functionalities (e.g., XOR). However, other results in the information-theoretic setting remain roughly unchanged.

References

  1. 1.
    Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols with relaxed set-up assumptions. In: 45th Annual Symposium on Foundations of Computer Science (FOCS), pp. 186–195. IEEE (October 2004)Google Scholar
  2. 2.
    Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A., Smith, A.: Secure multiparty quantum computation with (only) a strict honest majority. In: 47th Annual Symposium on Foundations of Computer Science (FOCS), pp. 249–260. IEEE (October 2006)Google Scholar
  3. 3.
    Bennett, C., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India, pp. 175–179 (December 1984)Google Scholar
  4. 4.
    Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.-H.: Practical Quantum Oblivious Transfer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 351–366. Springer, Heidelberg (1992)Google Scholar
  5. 5.
    Bouman, N.J., Fehr, S.: Sampling in a Quantum Population, and Applications. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 724–741. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Buhrman, H., Christandl, M., Schaffner, C.: Complete insecurity of quantum protocols for classical two-party computation. Phys. Rev. Lett. 109, 160501 (2012)CrossRefGoogle Scholar
  7. 7.
    Canetti, R.: Security and composition of multiparty cryptographic protocols. Journal of Cryptology 13(1), 143–202 (2000)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 136–145. IEEE (October 2001)Google Scholar
  9. 9.
    Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally composable two-party computation without set-up assumptions. Journal of Cryptology 19(2), 135–167 (2006)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: 34th Annual ACM Symposium on Theory of Computing (STOC), pp. 494–503. ACM Press (May 2002)Google Scholar
  12. 12.
    Canetti, R., Pass, R., Shelat, A.: Cryptography from sunspots: How to use an imperfect reference string. In: 48th Annual Symposium on Foundations of Computer Science (FOCS), pp. 249–259. IEEE (October 2007)Google Scholar
  13. 13.
    Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum computation. In: 34th Annual ACM Symposium on Theory of Computing (STOC), pp. 643–652. ACM Press (May 2002)Google Scholar
  14. 14.
    Crépeau, C., Salvail, L., Simard, J.-R., Tapp, A.: Two Provers in Isolation. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 407–430. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Damgård, I., Fehr, S., Lunemann, C., Salvail, L., Schaffner, C.: Improving the Security of Quantum Protocols via Commit-and-Open. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 408–427. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Dupuis, F., Nielsen, J.B., Salvail, L.: Actively Secure Two-Party Evaluation of Any Quantum Operation. In: Safavi-Naini, R. (ed.) CRYPTO 2012. LNCS, vol. 7417, pp. 794–811. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Hallgren, S., Smith, A., Song, F.: Classical Cryptographic Protocols in a Quantum World. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 411–428. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Oblivious Transfer – Efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Katz, J.: Universally Composable Multi-party Computation Using Tamper-Proof Hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Katz, J., Kiayias, A., Kumaresan, R., Shelat, A., Zhou, H.-S.: From impossibility to completeness for deterministic two-party SFE (2011) (manuscript)Google Scholar
  21. 21.
    Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31. ACM (1988)Google Scholar
  22. 22.
    Kraschewski, D., Müller-Quade, J.: Completeness Theorems with Constructive Proofs for Finite Deterministic 2-Party Functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 364–381. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Lo, H.-K.: Insecurity of quantum secure computations. Physical Review A 56(2), 1154–1162 (1997)CrossRefGoogle Scholar
  24. 24.
    Lo, H.K., Chau, H.F.: Is quantum bit commitment really possible? Physical Review Letters 78, 3410–3413 (1997)CrossRefGoogle Scholar
  25. 25.
    Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)CrossRefGoogle Scholar
  26. 26.
    Lunemann, C., Nielsen, J.B.: Fully Simulatable Quantum-Secure Coin-Flipping and Applications. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 21–40. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Maji, H.K., Prabhakaran, M., Rosulek, M.: Complexity of Multi-party Computation Problems: The Case of 2-Party Symmetric Secure Function Evaluation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 256–273. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Maji, H.K., Prabhakaran, M., Rosulek, M.: A Zero-One Law for Cryptographic Complexity with Respect to Computational UC Security. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 595–612. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Physical Review Letters 78, 3414–3417 (1997)CrossRefGoogle Scholar
  30. 30.
    Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48(3), 351–406 (2001)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Müller-Quade, J., Renner, R.: Composability in quantum cryptography. New J. Phys. 11, 085006 (2009)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Prabhakaran, M., Rosulek, M.: Cryptographic Complexity of Multi-Party Computation Problems: Classifications and Separations. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 262–279. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  33. 33.
    Rosulek, M.: Universal Composability from Essentially Any Trusted Setup. In: Safavi-Naini, R. (ed.) CRYPTO 2012. LNCS, vol. 7417, pp. 406–423. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  34. 34.
    Salvail, L., Schaffner, C., Sotáková, M.: On the Power of Two-Party Quantum Cryptography. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 70–87. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  35. 35.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)CrossRefGoogle Scholar
  36. 36.
    Unruh, D.: Universally Composable Quantum Multi-party Computation. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  37. 37.
    Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1), 25–58 (2009); Preliminary version in STOC 2006 Google Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Serge Fehr
    • 1
  • Jonathan Katz
    • 2
  • Fang Song
    • 3
  • Hong-Sheng Zhou
    • 2
  • Vassilis Zikas
    • 4
  1. 1.Centrum Wiskunde & Informatica (CWI)The Netherlands
  2. 2.University of MarylandUSA
  3. 3.Pennsylvania State UniversityUSA
  4. 4.UCLAUSA

Personalised recommendations