Skip to main content

Fully Simulatable Quantum-Secure Coin-Flipping and Applications

  • Conference paper
Progress in Cryptology – AFRICACRYPT 2011 (AFRICACRYPT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6737))

Included in the following conference series:

Abstract

We propose a coin-flip protocol which yields a string of strong, random coins and is fully simulatable against poly-sized quantum adversaries on both sides. It can be implemented with quantum-computational security without any set-up assumptions, since our construction only assumes mixed commitment schemes which we show how to construct in the given setting. We then show that the interactive generation of random coins at the beginning or during outer protocols allows for quantum-secure realizations of classical schemes, again without any set-up assumptions. As example applications we discuss quantum zero-knowledge proofs of knowledge and quantum-secure two-party function evaluation. Both applications assume only fully simulatable coin-flipping and mixed commitments. Since our framework allows to construct fully simulatable coin-flipping from mixed commitments, this in particular shows that mixed commitments are complete for quantum-secure two-party function evaluation. This seems to be the first completeness result for quantum-secure two-party function evaluation from a generic assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  2. Blum, M.: Coin flipping by telephone. In: Advances in Cryptology: A Report on CRYPTO 1981, pp. 11–15. U.C. Santa Barbara, Dept. of Elec. and Computer Eng., ECE Report No 82-04 (1981)

    Google Scholar 

  3. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. Journal of Compututer and System Sciences 37(2), 156–189 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Damgård, I., Fehr, S., Lunemann, C., Salvail, L., Schaffner, C.: Improving the security of quantum protocols via commit-and-open. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 408–427. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Damgård, I.B., Fehr, S., Salvail, L.: Zero-knowledge proofs and string commitments withstanding quantum attacks. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 254–272. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Damgård, I.B., Fehr, S., Salvail, L., Schaffner, C.: Secure identification and QKD in the bounded-quantum-storage model. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 342–359. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Damgård, I.B., Lunemann, C.: Quantum-secure coin-flipping and applications. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 52–69. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Damgård, I.B., Nielsen, J.B.: Perfect hiding and perfect binding universally composable commitment schemes with constant expansion factor. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Fehr, S., Schaffner, C.: Composing quantum protocols in a classical environment. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 350–367. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems (extended abstract). In: 17th Annual ACM Symposium on Theory of Computing (STOC), pp. 291–304 (1985)

    Google Scholar 

  11. van de Graaf, J.: Towards a formal definition of security for quantum protocols. PhD thesis, Université de Montréal (Canada) (1997)

    Google Scholar 

  12. Hallgren, S., Smith, A., Song, F.: Classical cryptographic protocols in a quantum world (2011), Extended abstract available at qip2011.quantumlah.org/scientificprogramme/abstract/183.pdf

  13. Kilian, J.: Founding cryptography on oblivious transfer. In: 20th Annual ACM Symposium on Theory of Computing (STOC), pp. 20–31 (1988)

    Google Scholar 

  14. Lunemann, C.: Cryptographic Protocols under Quantum Attacks. PhD thesis, Aarhus University (Denmark) (November 2010), arXiv:1102.0885 [quant-ph]

    Google Scholar 

  15. Lunemann, C., Nielsen, J.B.: Fully simulatable quantum-secure coin-flipping and applications (2011), Full version available at eprint.iacr.org/2011/065

  16. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008), Full version available at eprint.iacr.org/2007/348.pdf

  17. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: 37th Annual ACM Symposium on Theory of Computing (STOC), pp. 84–93 (2005)

    Google Scholar 

  18. Smith, A.: Personal communication (2009)

    Google Scholar 

  19. Watrous, J.: Zero-knowledge against quantum attacks. SIAM Journal on Computing 39(1), 25–58 (2009); Preliminary version in 38th Annual ACM Symposium on Theory of Computing (STOC), pp. 296–305 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lunemann, C., Nielsen, J.B. (2011). Fully Simulatable Quantum-Secure Coin-Flipping and Applications. In: Nitaj, A., Pointcheval, D. (eds) Progress in Cryptology – AFRICACRYPT 2011. AFRICACRYPT 2011. Lecture Notes in Computer Science, vol 6737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21969-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21969-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21968-9

  • Online ISBN: 978-3-642-21969-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics