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Abstract. It is known that cryptographic feasibility results can change
by moving from the classical to the quantum world. With this in mind, we
study the feasibility of realizing functionalities in the framework of univer-
sal composability, with respect to both computational and information-
theoretic security. With respect to computational security, we show that
existing feasibility results carry over unchanged from the classical to the
quantum world; a functionality is “trivial” (i.e., can be realized without
setup) in the quantum world if and only if it is trivial in the classical world.
The same holds with regard to functionalities that are complete (i.e., can
be used to realize arbitrary other functionalities).

In the information-theoretic setting, the quantum and classical worlds
differ. In the quantum world, functionalities in the class we consider are
either complete, trivial, or belong to a family of simultaneous-exchange
functionalities (e.g., XOR). However, other results in the information-
theoretic setting remain roughly unchanged.

1 Introduction

In a classical setting of cryptography, participants in a protocol (both the hon-
est parties and the adversary), are modeled as being able to perform classical
computation only. In the quantum setting, however, parties are able to send
and receive quantum states and process quantum information. It is well known
that cryptographic feasibility results in these two settings differ; for example,
key exchange with information-theoretic security is possible in the quantum
world, but not in the classical world. In this paper we focus on protocols for
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universally composable two-party computation, and study the relationships be-
tween feasibility /impossibility results in the classical and quantum settings.

1.1 TUniversally Composable Computation in the Classical World

Our focus in on secure computation within the framework of universal compos-
ability [8], which provides strong composition guarantees when arbitrary proto-
cols are executed concurrently. Soon after the introduction of this framework,
Canetti and Fischlin [9] showed that, without honest majority, UC commitment
is impossible to achieve. This was later extended to rule out protocols for securely
achieving most other “interesting” tasks [10/32].

On the positive side, it is known that (under suitable cryptographic assump-
tions) any functionality can be securely computed, without honest majority, if
we are willing to assume some form of trusted setup such as a common refer-
ence string [QTI]. Subsequent work has identified other complete setup assump-
tions [IT9YI8ITZ]. Completeness results in the information-theoretic (or statisti-
cal) setting, where the adversary is computationally unbounded, have also been
shown [21]18].

Maji et al. [28] proved a zero/one law: every two-party deterministic function
with polynomial-size input domain is either triviall (i.e, can be realized in the
UC framework with no setup assumptions), or complete (i.e., sufficient for com-
puting arbitrary other functions, under appropriate complexity assumptions).
This characterization was extended by Katz et al. [20], who showed complete-
ness for deterministic functions with exponential-size input domains, and by
Rosulek [33], who showed completeness for randomized, reactive functions as
well. In the setting of information-theoretic security, Kraschewski et al. [22] give
a characterization of completeness for two-party deterministic functionalities,
and show that a zero/one laws does not hold. In fact, Maji et al. [27] show there
is an infinite hierarchy of function complexity in the statistical setting.

1.2 The Shift to a Quantum World

How do the results described in the previous section change when we move to
the quantum world? The answer, a priori, is unclear. Feasibility results in the
classical setting may not hold in the quantum setting since quantum adversaries
are more powerful than classical ones. This is true even if “quantum-resistant”
cryptographic assumptions are used, since techniques such as rewinding that
are used to prove security against classical adversaries may not apply in the
quantum setting. Even in the case of statistical security, feasibility results may
not translate from the classical world to the quantum world [14].

In the other direction, impossibility results in the classical setting might po-
tentially be circumvented in the quantum setting since honest parties can rely
on quantum mechanics, too. As a notable example of this, statistically secure
key exchange is possible in the quantum world [3] but not in the classical one.

! We use trivial and feasible exchangeably hereafter.
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While several impossibility results for statistically secure two-party computation
in the quantum setting are known [29/24123|34/6], these results say nothing about
the computational setting. They also say nothing about what might be possi-
ble given trusted setup. An example here, that also demonstrates the power of
quantum protocols, arises in the context of building oblivious transfer (OT) from
commitment. Classically, this is impossible [27]. However, there is a construc-
tion of OT from commitment in the quantum world [AIT5365]; as a consequence,
commitment is complete for UC computation in that setting [36].

Given the above, the situation regarding triviality and completeness of func-
tionalities within the quantum UC framework (see Section [2]) is unclear, though
partial answers are known. In the statistical setting, Unruh [36] gives a generic
“lifting” theorem asserting that classically secure protocols remain (statistically)
secure in the quantum world. So any functionalities that are classically trivial (in
a statistical sense) are also trivial in a quantum setting. Moreover, any functional-
ity that is classically complete in a statistical sense (and so in particular OT [36])
is complete with respect to the quantum UC framework as well. The situation
is less clear with regard to computational security. A recent work by Hallgren
et al. [I7] “salvages” a few classically complete functionalities, showing that,
for example, coin-flipping and zero-knowledge are still complete in the quantum
world. But this does not rule out the possibility that some classically complete
functionalities are no longer complete in the quantum setting.

1.3 Owur Results

We study feasibility and completeness of an interesting class of two-party, deter-
ministic functionalities on polynomial-size domains. We prove generic, quantum-
lifting theorems and use them to show that feasibility in the quantum world
is equivalent to classical feasibility, in both the computational and statistical
settings. An important ingredient here is a quantum analogue of the Canetti-
Fischlin result [9], showing that there is no quantum protocol realizing UC com-
mitment against computationally bounded quantum adversaries in the plain
model@ This result extends the known impossibility results mentioned earlier
for statistically secure protocols in the quantum setting.

At the core of our quantum-lifting theorems is a quantum construction of sta-
tistically secure OT from the “2-bit cut-and-choose” functionality Focc. (Note
that Face is not complete in the classical setting.) Our construction is a modi-
fication of the BBCS protocol [4], but existing techniques do not seem to apply
for arguing its security. Instead, we introduce and analyze an adaptive version
of the sampling technique from [5], and use this to prove the security of our OT
protocol. The adaptive-sampling analysis may be of independent interest.

Our lifting theorems for the case of computational security, together with
Unruh’s lifting theorem for the statistical case [36], imply that any classically
complete functionality remains complete in the quantum setting. On the other
hand, we identify tasks that are statistically complete using quantum protocols
but are incomplete classically. Our results show, roughly, that every functionality

2 A similar result was stated in [31] with no proof.
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in our class is either trivial or complete in the quantum computational setting;
thus, the situation here is analogous to the classical case [28]. In the quantum
statistical setting, however, functionalities fall into one of three different classes;
this is in contrast with the (more complicated) classical picture [27122].

1.4 Additional Related Work

Proving security of quantum protocols has been challenging and nontrivial. In-
deed, it was only several years after the invention of quantum key-exchange
protocols that rigorous proofs of security were given [30J25/35]. With regard
to secure computation, the first broad feasibility results were in the setting of
multi-party protocols with information-theoretic security, assuming honest ma-
jority [I3l2]. Positive results for computational security in the quantum world,
without honest majority, have only recently been shown [3726/17/16].

1.5 Outline of the Paper

In Section 2, we describe the classical and the quantum UC models as well as
our terminology. We prove our lifting theorems for completeness in Section 3,
and for feasibility in Section 4. In Section 5, we apply our lifting theorems to
classify the cryptographic complexity of functionalities in the class we consider.

2 The Model

In this section we describe the model and our terminology. We consider two types
of security statements, namely classical and quantum. The classical statements
are done in Canetti’s (classical) UC framework [§]. For quantum statements
we use the recently developed quantum-UC framework [36]. In this work, we
assume static, i.e., non-adaptive corruption. Namely an adversary chooses the
set of parties to corrupt before execution of the protocol.

The UC Framework. The security of protocols is argued via the simulation
paradigm. Intuitively, a protocol securely realizes a given ideal functionality F,
if the adversary cannot gain more in the protocol (real-world) than what she
could in an ideal-evaluation of F where a trusted party computes the function
values and hand them to designated players (ideal-world). More formally, a pro-
tocol 7 securely realizes a functionality F if for every real-world adversary A
there exists an ideal-world adversary S, called the simulator, such that no envi-
ronment can distinguish whether it is witnessing the real-world execution with
adversary A or the ideal-world execution with simulator S. The parties, the
adversary, the simulator, the functionalities, and the environment, are modeled
as interactive Turing-machines (ITMs). Depending on the assumed computing
power of the adversaries and the environment we distinguish between computa-
tional security, where they are all considered to be polynomially bounded I'TMs,
and information-theoretic (i.t.), also known as statistical security, where they
are assumed to be computationally unbounded.
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Universal Composability and the Hybrid Model. The most important
feature of the simulation-based security definition is that it allows to argue about
security of protocols in a composable way. In particular, let = be a protocol which
securely realizes a functionality F. If we can prove that a protocol 7’ securely
realizes a functionality F' using invocations of F as in the ideal world, then it
follows automatically that if we replace in 7’ the invocations of F by invocations
of 7, the resulting protocol also securely realizes F'. Therefore we only need to
prove the security of 7’ in the so-called F-hybrid model, where the players run
' and are allowed to make invocations to F.

Reductions and Cryptographic Complexity. For two ideal functionalities
F and F', we say that F computationally (classical) UC reduces to F', denoted
as F COCOMP F if there exists a F'-hybrid protocol 77 which computationally
securely realizes F. If the protocol 77 ' statistically securely realizes F, then we
say that F statistically (classical) UC reduces to F', denoted as F C™ F'. As

syntactic sugar, we say that F and F' are computationally (resp. statistically)
ccom; cstat

UC equivalent, denoted as F = F (resp. F = F), if F CO F and
]:/ ECCOMP F (resp. ]_‘ECSTAT ]:/ and ]:! ECSTAT ]:)

The reduction-relation C is “transitive” in the sense that if 7/ T F, then any
task which is implementable in the F'-hybrid world is also implementable in the
F-hybrid world. This implies a notion of cryptographic complexity for functions,
where F' C F implies that F is at least as high in the hierarchy as F.

Feasibility and Completeness. Let Fggc denote the secure channels function-
ality. We say that a functionality F is computationally (resp. statistically) UC
feasible if F COOM Fepe (resp. F CO™T Fepe). Furthermore, we say that F is
computationally (resp. statistically) UC complete if for any well-formed function-
ality F' : F CCCOMP T (resp. F' CST™T F),

The Quantum UC Framework [36]. The quantum-UC framework general-
izes the classical UC model, in which the players (including the adversaries and
the environment) are quantum machines. A quantum universal composition the-
orem was proved in [36]. We point out that in this work we only consider ideal
functionalities with classical inputs and outputs. For two ideal functionalities
F and F', we say that F computationally quantum-UC reduces to F', denoted
as F COCOMP F'if there exists a F'-hybrid protocol 7% which computationally
securely realizes F. If the protocol 77 ' statistically securely realizes F, then we
say that F statistically quantum-UC reduces to F', denoted as F CTO™T F'. We
say that a functionality F is computationally (resp. statistically) quantum-UC
feasible if F can be computationally (resp. statistically) quantum-UC realized in
the plain quantum-UC model, i.e., without assuming any hybridsE Furthermore,
we say that F is computationally (resp. statistically) quantum-UC complete if for
any well-formed (classical) functionality F' : F' CQOMP F (resp. F' COST™T F),

3 We point out that quantum secure channel is implied by authentication channel
due to QKD protocols, which is by default provided in the quantum-UC framework,
hence there is no need to assume quantum secure channels.
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The definitions of computation and statistical quantum-UC equivalence is also
analogous to the classical setting.

In [36] the so-called (statistical) quantum lifting theorem was proved which,
roughly speaking shows that if a classical protocol is statistically UC secure then
it is also statistically quantum-UC secure.

Fact 1 ([36, Theorem 15] — The Quantum Lifting Theorem). If a proto-
col w statistically UC realizes a functionality F, then w statistically quantum-UC
realizes the functionality F.

Remark 1 (Polynomial Simulation). In all the security definitions considered in
this work we explicitly require that the simulator’s running time is polynomial to
the running time of the adversary. We call this property polynomial simulation.
The property ensures that when a protocol statistically realizes a functionality,
then it also computationally realizes it [7I8]. We point out that the definition of
statistical quantum-UC security in [36] explicitly requires polynomial simulation.

Ideal Functionalities and the Class ¢/~. Ideally, we would like our state-
ments to cover the whole class U of finite, deterministic, two-party functional-
ities, which is the central class studied in [27|28]. However, we were unable to
prove or disprove (quantum-UC) neither completeness nor feasibility of the 1-
bit cut-and-choose functionality Ficc € U (also denoted as Fec). We were able
to prove statistical quantum-UC completeness of its “closest sibling;” namely,
the 2-bit cut-and-choose functionality }'QCCE Therefore, our results are for the
slightly smaller class &/~ which is & excluding the small fraction of function-
alities that are sufficient for (statistically classically) realizing Ficc but not for
realizing Focc. Formally:

U™ = {F | (F eU) A (Faee 5 F)V (Fuoe 2 F)}:

Note that, as demonstrated in [28], the missing fraction, i.e., Y \ U™, is indeed
very small as, roughly, it corresponds to the lowest primitive of an infinite strict
hierarchy of (statistically classically) incomplete “cut-and-choose” primitivesEl
Nevertheless, it remains an open problem to prove quantum-UC feasibility or
completeness of Fige (which would complete the characterization of U) as it
does not follow from any known classical or quantum results.

For completeness, we list a few two-party ideal functionalities that are used as
setups in this work.Consistently with existing literature we use the names Alice
and Bob for the parties:

e 1-out-of-2 Oblivious Transfer For: Alice (the sender) inputs 2 bits (sg, $1) and
Bob (the receiver) inputs a selection bit ¢ € {0,1}. Bob receives s. from For.

4 Our conjecture is that Ficc is also statistically quantum-UC complete. Recall that
classically neither Fec nor Faec is statistically UC complete [28].

5 These are variations of Fucc parameterized by the size of Bob’s input, i.e., Fucc
behaves as Fec where Bob’s input is a string of length m. (Fiec is the lowest and
Facc is the second lowest primitive in this hierarchy.) [28].
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We also consider the more general string OT, where (sg, s1) are £-bit strings.
Our OT protocol in Sect. Bl realizes string OT.

e Commitment Feoy: Alice (the committer) inputs a bit b and Bob (the receiver)
receives from Fgoy a notification that a bit was received. At a later point, Alice
can input the command open to Feoy in which case Bob receives b.

e XOR Fxor: Alice and Bob input bits b4 and bp, respectively. They both receive
the output y = b4 @ bp.
e 2-bit Cut-and-Choose Face: Bob inputs a 2-bit string b = (bg, b1), an Alice
inputs a selection bit s4; informally, s indicates whether or not Alice wishes
to learn b. Bob receives output s4 and Alice receives output b if s4 = 1, and
receives L if s4 = 0.
e Coin Tossing Feomn: Alice and Bob input a request to Feomn, and Feory randomly
chooses a fair coin r € {0,1} and it then sends delayed output r to both Alice
and Bob.

Note that the functionalities For, Fxor, Facc, and Feon are in the set U ™.

Notational Conventions. Throughout the paper we use small 7 to denote
a classical protocol in classical UC model, while we use capital IT to denote a
classical or quantum protocol in quantum UC model.

3 Quantum Lifting for Completeness

In this section we prove that statements about completeness of functionalities
in the classical setting are preserved in the quantum setting. More precisely, we
prove the following theorem:

Theorem 1. For any F € U™ the following statements hold:

1. (Statistical Setting) If F is statistically classical-UC complete then F is sta-
tistically quantum-UC complete.

2. (Computational Setting) If F is computationally classical-UC complete under
the semi-honest OT assumption shOT then F is computationally quantum-
UC complete under the assumptions of existence of a quantum-secure pseu-
dorandom generator and a dense encryption that is quantum IND-CPA.

The statistical statement follows easily from Unruh’s quantum lifting theorem
(Fact [[) and the definition of completeness. In the remaining of this section
we prove the computational statement. To this direction we follow a structure
similar to that of [28]: First, in Section Bl we show that for any F € U™,
either F is computationally quantum-UC feasible or for a functionality F &
{ Fxar, For, Facc, Feou}, there exists a statistically quantum-UC secure protocol
which reduces F’ to F. Second, in Section 3.2} we show that Fxgr, For, Facc, and
Feon are computationally quantum-UC complete. Statement 2 of the theorem
follows then immediately by combining the above steps and using the fact that
any statistically quantum-UC secure protocol is also computationally quantum-
UC secure.
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3.1 Non-feasibility Implies fXOR, foT, fgcc, or fCOM

To show that every infeasible F € U™, there is some F' € {Fxor, For, Facc, Fcou
such that F' CQOMP T we use the following result that is proved in [28, Theo-
rems 1,4]: if F € U is not UC feasible, then for F' C®™* F. Using this result on
U~ we obtain the following:

Fact 2 ([28]). Let F € U~. If F is not compuationally (UC) feasible, then for
some F' € {Fxor, For, Face, Feau} the following holds: F' COS™ F.

Because the reductions in Fact [ are information-theoretic (with polynomial-
simulation), the statement can be translated to the quantum-UC setting by
Fact [[l This proves the following lemma:

Lemma 1. Let F € U™ . If F is not statistically quantum-UC feasible , then for
some F € {Fxor, For, Facc, Feou} the following holds: F "™ F,

Proof. First observe that F is not statistically classical-UC feasible, because oth-
erwise the lifting lemma (Fact [[l) will impy that F is also statistically quantum-
UC feasible, contradicting the assumption. Then by our lifting theorem for fea-
sibility in later section (Sect. @l Theorem PI), statistical UC infeasibility of F
implies that F is not computationally UC feasible. Then Fact 2l tells us that for
some F € {Fxor, For, Face, Feou} : F CS™T F | which, in turns implies that
F CO™ F by Fact [

3.2 Quantum-UC Completeness of Fxgr, For, Facc, and Feoyu

We next prove that each of the functionalities Fxgr, For, Facc and Feoy is compu-
tationally quantum-UC completeﬁ. The quantum-UC completeness of Fyr and
Feon was proved in [36]:

Lemma 2. Fgr and Feon are statistically quantum-UC complete.

This immediately gives us the desired computational quantum-UC completeness
of For and Feon. Next, we show completeness for the XOR functionality. To this
direction we use the following idea: first we use the straight-forward classical
Fxor-hybrid coin-tossing protocol (each party chooses a random bit and sends it
to Fxor; the output of every party is the value they receive from Fxog) to construct
Feorn; subsequently, we apply the results of [I7] who proved computationally
quantum-UC completeness of Feory under proper assumptions.

Lemma 3. Assuming existence of a quantum-secure pseudorandom generator
and a dense encryption that is quantum IND-CPA, then Fxgr is computationally
quantum-UC complete.

6 Actually, as will be shown, Feou, For, Face are statistically quantum-UC complete.
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The most involved completeness proof is the one concerning the cut-and-choose
functionality Facc. In [28], they constructed a classical protocol realizing Feon
from Ficc. However, their security proof involves rewinding, and it is unclear
how to make it go through against quantum adversaries

Instead, we demonstrate completeness of Facc by constructing a quantum
protocol that statistically quantum-UC realizes For in Face-hybrid world (and
then applying Lemma[2)). The idea is motivated by the quantum OT construction
in the Feon hybrid world by Bennett et al [4]. In this protocol, roughly speaking,
Feon is used in a checking subroutine to ensure that malicious Bob measures
his qubits upon arrival (and does not store them until Alice informs him about
the bases used). More specifically, Alice sends several qubits encoded in random
bases, and Bob measures all of them and commits, for each qubit, to the pair
(#B,08), where 7P is the outcome of the measurement of the i*" qubit and 67
is the corresponding basis Bob used. Alice then asks Bob to open a randomly
chosen subset of the committed pairs, and she checks consistency with how she
had prepared the qubits. Intuitively, this indeed ensures that Bob has measures
most of the qubits, as otherwise he would not know what to commit to. Formally
proving this intuition turned out to be non-trivial, with the first rigorous proofs
given in [I5J3615].

Our protocol uses, instead of commitments, invocations to Facc to implement
the checking step (see the protocol ITgor below). Intuitively, this should enforce
Bob to measure all the qubits as in the original protocol based on commitments.
Unfortunately, the formal proof does not carry over. The problem arises from
the fact that in the original protocol, Bob has to commit to all the §7 and &2
before he gets to see the random subset that Alice chooses for testing consistency,
whereas in our protocol based on Focc, Bob can make his input (éf , :%? ) to Facc
adaptively, and dependent on which prior positions Alice has tested. Current
proofs, like [I5J5], cannot deal with that.

In order to deal with this issue, we introduce an adaptive version of the sam-
pling framework of [5]. We then show, analogous to the static setting as in [5],
that the security of the OT scheme reduces to the analysis of a quantum sampling
problem in our adaptive sampling framework. Analyzing the quantum sampling
problem can further be reduced to a classical probabilistic analysis, which can
be handled by standard techniques (e.g., Azuma’s inequality).

In the following, we describe the Fyoce-hybrid OT protocol Igor and state its
security in Lemma [l The formal proof can be found in the full version.

Lemma 4. There exists an Foce-hybrid protocol which statistically quantum-UC
realizes Fgr.

The following corollary follows from Lemma [ and the completeness of For
(Lemma [2]), by applying the quantum-UC composition theorem.

"It is in general hard to clearly define what it means for a security proof to “not
use rewinding”. It is not enough for the protocol to have a straight-line simulator,
which [28] actually satisfies. The subtlety is that the correctness of the simulator
might still involve rewinding argument (e.g., in defining hybrid experiments).
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Protocol [
Parameters: A family F = {f : {0,1}" — {0,1}*} of universal hash functions.
Parties: The sender Alice and the recipient Bob.
Inputs: Alice gets two ¢-bit strings so and s1, Bob gets a bit c.

1. (Initialization)

1.1 Alice chooses &4 = (Z1,...,%2) er {0,1}" and 0* = (67,...,02) cr
{+, x}" uniformly at random and sends |#“)54 to Bob who denotes the
received state by [¢).

2.2 Bob chooses 8% = (0F,...,08) €r {+,x}" uniformly at random and
measures the qubits of [1) in the bases 7; denote the result by z% :=
(&8,...,zD).

2. (Checking)
2.1 For i =1,...n the following steps are executed sequentially:
(a) Alice chooses a bit b; €r {0,1} uniformly at random.
(b) Alice and Bob invoke Faee with inputs b; and (Z7Z, 68 ), respectively.

2.2 If in some iteration i of Step 2.1 Alice receives 87 = 6 but #2 # 7, then
Alice aborts. If in Step 2.1 Bob receives (as output of Facc) the bit b; = 1
more than 3n/5 times then Bob aborts.

2.3 Let 4 be the string resulting from removing in % the bits at positions 4
with b; = 1. Define 6*, 27, 7 analogously.

3. (Partition Index Set) Alice sends 0* to Bob. Bob sets I. := {i : 6 = 67}
and I1—. := {i : §* # 6F}. Then Bob sends (Io, I1) to Alice.
4. (Secret Transferring)

4.1 Alice picks a function f €g F; for i = 0,1 : Alice computes m; := s; ® f(z}),
where z is the n-bit string that consists of j:A| 1; padded with zeros, and
sends (f,mo, m1) to Bob.

4.2 Bob outputs s := m. ® f(x’z), where z'5 is the n-bit string that consists of
#P1;, padded with zeros.

Corollary 1. Focc is statistically quantum-UC complete.

The proof of Theorem 3 follows easily from Lemmas [0 Bl Bl and Corollary[dl by
applying the quantum-UC composition theorem.

4 Quantum Lifting for Feasibility

In this section we show a bi-directional lifting theorem for feasibility statements.
Informally, we show that if a functionality F € U~ is feasible in the classical
UC setting, then F is also feasible in the quantum-UC setting and vise versa.
In fact, we can even show a stronger statement, namely that the set of feasible
functionalities in U~ is the same set irrespective of whether we are considering
the classical or the quantum setting and independent of the level of security (i.e,
computational or statistical). We point out that the computational statements
in the following theorem are under that semi-honest OT assumption for the
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classical setting, and under the assumptions of existence of a quantum-secure
pseudorandom generator and a dense encryption that is quantum IND-CPA| for
the quantum setting.

Theorem 2. Let F € U~. The following statements are equivalent

1. F is computationally (classical) UC feasible.
2. F is statistically (classical) UC feasible.

3. F is statistically quantum-UC feasible.

4. F is computationally quantum-UC feasible.

Proof. (1 = 2) is already implicit in [28]. For F € U~, if F is computationally
feasible, then such F is splittable and we can construct a trivial protocol [32].
Then we can show the same trivial protocol can realize F information theoreti-
cally, which means F is statistically feasible.

(2 = 3) is immediate from Unruh’s quantum lifting lemma. (3 = 4) follows
because we require poly-time simulation in statistical UC model, and hence
statistical UC security in particular implies computational UC security. We are
left to show (4 = 1).

Assume for contradiction that F is computationally quantum-UC feasible but
classically not computationally classical-UC feasible. Invoke Fact Bl again, we
have that for some F' € {For, Facc, Foom, Fxor} : F CS™T F, which by Theo-
rem[I] implies that F is computationally quantum-UC complete. This, combined
with the assumption that F is computationally quantum-UC feasible, implies
that every F € U~ is computationally quantum-UC feasible. This is a contra-
diction because one can prove that Fcgy is not computationally quantum-UC
feasible, i.e., there exists no (quantum) protocol that realizes Feoy with compu-
tational quantum-UC security. The argument is similar the classical impossibility
proof of UC commitments [9], and the details can be found in the full version.

5 Putting it Together

In this section we bring the pieces together and describe the cryptographic-
complexity landscape for U~ in the quantum world. In the case of computational
quantum-UC security, we can derive a zero/one law in the flavor of [28]. For
statistical quantum-UC security we show that, roughly speaking, every F € U~
is either statistically quantum-UC feasible, or F is statistically quantum-UC
complete, or Fyogr statistically quantum-UC reduces to F.

5.1 Computational Security: A Zero/One Law

Our quantum lifting theorems for feasibility and completeness imply that all
computational UC complete (resp. UC feasible) functionalities in U/~ are also
computational quantum-UC complete (resp. quantum-UC feasible). Using this
fact along with the classical zero/one law, one can derive a zero-one law for the
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computational quantum-UC setting in a straight-forward manner (under the
assumptions of existence of a quantum-secure pseudorandom generator and a
dense encryption that is quantum IND-CPA). This proves the following theorem

(see Figure [Ta):

Theorem 3 (A Computational Zero/One Law). Every functionality F €
U~ is either computationally quantum-UC feasible or computationally quantum-
UC complete.

As a straightforward corollary of the above theorem we can conclude that the
quantum lifting theorem for completeness can be made bi-directional in the com-
putational setting. Theorem [ already states that computational completeness
of some F € U~ in the classical setting implies computational completeness of F
in the quantum setting. In the other direction, if F is quantumly-UC complete,
then Theorem [B] implies that it is not quantum-UC feasible, which implies (by
Theorem [) that it is not (classically) UC feasible; hence, the computational
(classical) zero/one law implies that F is computationally (classically) UC com-
plete. This proves the following:

Corollary 2. Let F € U™ be a functionality. F is computationally UC complete
under the semi-honest OT assumption shOT if and only if F is computationally
quantum-UC complete under the assumptions of existence of a quantum-secure
pseudorandom generator and a dense encryption that is quantum IND-CPA.

5.2 Statistical Security: Three Classes

We next turn to the setting of statistical security. In the classical setting, the
cryptographic-complexity landscape is complicated, as, apart from the com-
plete/feasible functionalities, there is a partition of the set &~ in clusters for
which the exact relation is not known. In contrast we can show a “[zero/xor/onel-
law” in the statistical quantum-UC setting. In other words we can divide the
class U~ into functionalities that are either complete, or feasible, or we can re-
duce Fxgr to them. This considerably simplifies the landscape of the classical
statistical setting, as the hierarchy of functionalities that we can reduce Facc to
collapses at the second level (i.e, to Facc) which as it follows from Lemma H] is
in fact complete in the quantum setting. This illustrates, as [36] mentioned also,
that the inverse of the Unruh’s quantum lifting lemma is in general not true.
Namely, there exist classical well-formed infeasible functionalities F and F such
that there exist an F-hybrid quantum protocol which statistically quantum-UC
securely realizes F', but there exists no F-hybrid classical protocol which statis-
tically classical-UC realizes F.
The following theorem states the aforementioned zero/xor/one-law:

Theorem 4 (A [Zero/Xor/One]-Law for the Information-Theoretic
Setting). Let F € U~. Then exactly one of the following statements holds: (1)
F is quantum-UC feasible, (2) F is quantum-UC complete, and (3) F is neither
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Fig. 1. Cryptographic complexity in the quantum-UC framework: the box denotes the
class of deterministic finite two-party functionalities. The set U~ corresponds to the
white area. The solid lines represent separations between non-equivalent primitives.
The dotted lines represent separations that exist only in the classical-UC setting.

quantum-UC complete nor quantum-UC feasible and Fxor T™" F. Further-
more, for each of the three statements, there exists at least one F € U™ which
satisfies it.

Proof (Sketch). By Lemma [2] and because statistically, Faocc, Fcom and For are
quantum-UC complete and Fxgr is not quantum-UC feasible (since otherwise
Fxor 1s also classical-UC feasible, contradicting the classical impossibility result
in [27]), we can see that that for any F € U™, either F is quantum-UC feasible,
or at least one of the following two statements holds: (1) F is quantum-UC
complete and (2) Fyxop CH™T F.

We then show that Fygg is not quantum-UC complete by proving that there
is no quantum protocol that UC realizes F¢gy in the Fyor-hybrid world. Proof of
this statement is reminiscence of Lo and Chau’s proof that quantum protocols
are impossible to implement commitment [24]. The essence there is a so called
“purification” attack where a dishonest sender can purify the protocol in the
commit phase which allows him to apply a transformation on his local system,
by which he can open to a value other than what he committed to. In our case,
the only difference is that a quantum protocol can use Fyor as an extra setup.
However, Fyor is nothing but a classical fair-exchange channel. In particular,
the classical information in the protocol is symmetric to both parties, and we
can argue that a dishonest committer can make the overall quantum state pure
conditioned on shared classical information at the end of commit phase, so that
the purification attack still applies. We defer a formal proof to the full version.
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Finally, [27] showed that classically the class of functionalities that Fxor
reduces to and are not complete, denoted &, are exactly those of the form
Fexea7%): simultaneous exchange channels that trasmit ¢1 (resp. £3) bits from
one party to the other. The above argument that Fxgg is not quantum-UC com-
plete extends straightforwardly to all such Fgyqy, thus we conclude that any
functionality in the Fxogp family £ are neither statistically quantum-UC complete
nor statistically quantum-UC feasible. Thus we can derive the quantum-UC sta-
tistical landscape for U~ as in Figure
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