Nano-phytoremediation of Pollutants from Contaminated Soil Environment: Current Scenario and Future Prospects

  • Akansha Srivastav
  • Krishna Kumar Yadav
  • Sunita Yadav
  • Neha Gupta
  • Jitendra Kumar Singh
  • Ravi Katiyar
  • Vinit Kumar


Soil contamination is a worldwide concern; for that reason effective remediation methods are necessary. Soil pollution caused by different organic, inorganic, persistent, and nonpersistent pollutants heavily alters the ecosystem structure and function and adversely affects the human health directly and indirectly. Anthropogenic sources i.e heavy metal pollutants and organic pollutants are responsible for these contaminants which accumulated in the soil and are taken up by the plants. Different remediation techniques are available for soil pollution, but all methods are having their own merit and demerits. Phytoremediation is an environment-friendly technology with good community acceptance and ultimate natural solution of contaminants. Nano-phytoremediation (nanomaterials inclusion with phytoremediation) is a green technology which includes the nanoscale materials used for adsorption of pollutants and their degradation and plants used to accumulate the degraded but still pollution-prone matter. Use of nanomaterial with phytoremediation can have the potential to increase the decontamination efficiency and turnover than the other phytoremediation process alone. In this chapter, we focused on the remediation of contaminated soil by using plants and nanomaterials to clean up the environment as well as the challenges and future prospects of nano-phytoremediation.


Pollutants Phytotechnologies Nanomaterials Nano-phytoremediation 


  1. 1.
    Kanwar JS (1994) Relevance of soil management in sustainable agriculture in dryland areas. Bull Ind Soc Soil Sci 16:1–11Google Scholar
  2. 2.
    Bhatia A, Singh SD, Kumar A (2015) Heavy metal contamination of soil, irrigation water and vegetables in peri urban agricultural areas and markets of Delhi. Water Environ Res 87(11):2027–2034PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere process involved in phytoremediation of metal-contaminated soils. Plant and Soil 232(1/2):207–214CrossRefGoogle Scholar
  4. 4.
    Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air water and soils by trace metals. Nature 333(6169):134–139PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Schalscha BE, Ahumada TI (1998) Heavy metals in rivers and soils of central Chile. Water Sci Technol 37(8):251–255CrossRefGoogle Scholar
  6. 6.
    Gupta N, Yadav KK, Kumar V (2015) A review on current status of municipal solid waste management in India. J Environ Sci 37:206–217CrossRefGoogle Scholar
  7. 7.
    Yadav KK, Gupta N, Kumar V, Singh JK (2017a) Bioremediation of heavy metals from contaminated sites using potential species: a review. Ind J Environ Prot 37(1):65–84Google Scholar
  8. 8.
    Jain N, Johnson TA, Kumar A, Mishra S, Gupta N (2015) Biosorption of Cd(II) on jatropha fruit coat and seed coat. Environ Monit Assess 187:411PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Yadav KK, Singh JK, Gupta N, Kumar V (2017b) A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J Mater Environ Sci 8(2):740–757Google Scholar
  10. 10.
    Singh B, Shan YH, Beeebout SEJ, Singh Y, Buresh RJ (2008) Crop residue management for lowland rice-based cropping systems in Asia. Adv Agron 98:118–199Google Scholar
  11. 11.
    Greenberg BM (2006) Development and field tests of a multi-process phytoremediation system for decontamination of soils. Can Reclam 1:27–29Google Scholar
  12. 12.
    Frick CM, Farrell RE, Germida JJ (2008) Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites. Petroleum Technology Alliance of Canada Report. Scholar
  13. 13.
    Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Wiltse CC, Rooney WL, Chen Z, Schwab AP, Bank MK (1998) Greenhouse evaluation of agronomic and crude oil-phytoremediation potential among alfalfa genotypes. J Environ Qual 27:169–173CrossRefGoogle Scholar
  15. 15.
    Yadav KK, Gupta N, Kumar V, Khan SA, Kumar A (2018) A review of emerging adsorbents and current demand for defluoridation of water: bright future in water sustainability. Environ Int 111:80–108PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Khan I, Saeed K, Khan T (2017) Nanoparticles: properties, applications and toxicities. Arabian J Chem. Scholar
  17. 17.
    Ruffini-Castiglione M, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62(2):161–165CrossRefGoogle Scholar
  18. 18.
    Lin DH, Xing BS (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250CrossRefGoogle Scholar
  19. 19.
    Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Chiapusio G, Pujol S, Toussaint ML, Badot PM, Binet P (2007) Phenanthrene toxicity and dissipation in rhizosphere of grassland plants (Lolium perenne L. and Trifolium pratense L.) in three spiked soils. Plant and Soil 294:103–112CrossRefGoogle Scholar
  21. 21.
    Fang C, Radosevich M, Fuhrman JJ (2001) Atrazine and phenanthrene degradation in grass rhizosphere soil. Soil Biol Biochem 33:671–678CrossRefGoogle Scholar
  22. 22.
    Wang J, Zhang Z, Su Y, He W, He F, Song H (2008) Phytoremediation of petroleum polluted soil. Pet Sci 5:167–171CrossRefGoogle Scholar
  23. 23.
    Jansson S, Douglas CJ (2007) Populus: a model system for plant biology. Annu Rev Plant Biol 58:435–458PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Subhashini V, Swamy AVVS (2013) Phytoremediation of Pb and Ni contaminated soils using Catharanthus roseus (L.). Univer J Environ Res Technol 3:465–472Google Scholar
  25. 25.
    Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S (2011) Phytoremediation potential of Populus alba and Morus alba for cadmium, chromium and nickel absorption from polluted soil. Int J Environ Res 5:961–970Google Scholar
  26. 26.
    Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184(1-4):105–126CrossRefGoogle Scholar
  27. 27.
    Barcelo J, Poschenrieder C (2003) Phytoremediation: principles and perspectives. Contrib Sci 2:333–344Google Scholar
  28. 28.
    Mukhopadhyay S, Maiti SK (2010) Phytoremediation of metal enriched mine waste: a review. Glo J Environ Res 4:135–150Google Scholar
  29. 29.
    Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley and Sons, New York, NY, pp 53–70Google Scholar
  30. 30.
    McGrath SP (1998) Phytoextraction for soil remediation. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, New York, NY, pp 109–128Google Scholar
  31. 31.
    Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658CrossRefGoogle Scholar
  32. 32.
    Dec J, Bollag JM (1994) Use of plant material for the decontamination of water polluted with phenols. Biotechnol Bioeng 44:1132–1139PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Strand SE, Newman L, Ruszaj M, Wilmoth J, Shurtleff B, Brandt M, Choe N, Ekuan G, Duffy J, Massman JW, Heilman PE, Gordon MP (1995) Removal of trichloroethylene from aquifers using trees. In: Vidic RD, Pohland FG (eds) Innovative technologies for site remediation and hazardous waste management, Proceedings of the national Conference of the Environmental Engineering. Division of the American Society of Civil Engineers, New York, NYGoogle Scholar
  34. 34.
    Cunningham SD, Anderson TA, Schwab P, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56:55–114CrossRefGoogle Scholar
  35. 35.
    Terry N, Zayed A, Pilon-Smits E, Hansen D (1995) Can plants solve the selenium problem? In: Proc. 14th Annu.Symp. Curr. Top. Plant Biochem. Physiolo Mol Biol Will Plants have a role in Bioremediation? Univer. Missour., Columbia. April 19-22, pp 63–64Google Scholar
  36. 36.
    Grove JK, Stein OR (2005) Polar organic solvent removal in microcosm constructed wetlands. Water Res 39:4040–4050PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Polprasert C, Dan NP, Thayalakumaran N (1996) Application of constructed wetlands to treat some toxic wastewaters under tropical conditions. Water Sci Technol 34(11):165–171CrossRefGoogle Scholar
  38. 38.
    MacLeod CJA (1999) The fate of chlorinated organic pollutants in a reed-bed system. In: Leeson A, Alleman BC (eds) Phytoremediation and innovative strategies for specialized remedial applications: the Fifth International In situ and On-Site Bioremediation Symposium. San Diego, CA. Batelle Press, Columbus, OH, pp 19–22Google Scholar
  39. 39.
    Bankston JL, Sola DL, Komor AT, Dwyer DF (2002) Degradation of trichloroethylene in wetland microcosms containing broad-leaved cattail and eastern cottonwood. Water Res 36:1539–1546PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Ma X, Burken JG (2003) TCE diffusion to the atmosphere in phytoremediation applications. Environ Sci Technol 37:2534–2539PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Wallace SD (1999) On-site remediation of petroleum contact wastes using subsurface-flow wetlands. In: Wetlands & Remediation II: Second International Conference on Wetlands and Remediation. Battelle Press, Columbus, OH, pp 125–132Google Scholar
  42. 42.
    Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Environ Sci Technol 27:2630–2636CrossRefGoogle Scholar
  43. 43.
    Anderson TA, Kruger EL, Coats JR (1994) Enhanced degradation of a mixture of three herbicides in the rhizosphere of a herbicide-tolerant plant. Chemosphere 28:1551–1557CrossRefGoogle Scholar
  44. 44.
    Jordahl JL, Foster L, Schnoor JL, Alvarez PJJ (1997) Effect of hybrid poplar trees on microbial populations important to hazardous waste bioremediation. Environ Toxicol Chem 16:1318–1321CrossRefGoogle Scholar
  45. 45.
    Schwab AP, Banks MK, Arunachalam M (1995) Biodegradation of polycyclic aromatic hydrocarbons in rhizosphere soil. In: Hinchee RE, Anderson DB, Hoeppel RE (eds) Bioremediation of recalcitrant organics. Battelle Press, Columbus, OHGoogle Scholar
  46. 46.
    Siciliano SD, Germida JJ (1998) Bacterial inoculants of forage grasses enhance degradation of 2-chlorobenzoic acid in soil. Environ Toxicol Chem 16:1098–1104CrossRefGoogle Scholar
  47. 47.
    Kumar R, Pandey S, Pandey A (2006) Plant roots and carbon sequestration. Curr Sci 91:885–890Google Scholar
  48. 48.
    Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30CrossRefGoogle Scholar
  49. 49.
    Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Burken JG (2001) Advancement of phytoremediation. Pract Period Hazard Toxic Radioact Waste Manag 5(3):120. Scholar
  51. 51.
    Henry HF, Burken JG, Maier RM, Newman LA, Rock S, Schnoor JL, Suk WA (2013) Phytotechnologies: preventing exposures, improving public health. Int J Phytoremediation 15:889–899PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Singh BK (2009) Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 7(2):156–164PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Davis AS, Prakash P, Thamaraiselvi K (2017) Nanobioremediation technologies for sustainable environment. In: Prashanthi M (ed) Bioremediation and sustainable technologies for cleaner environment. Environmental Science. Springer International Publishing AG, Cham, pp 13–33Google Scholar
  54. 54.
    Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211:112–125PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Jiamjitrpanich W, Parkpian P, Polprasert C, Kosanlavit R (2013) Trinitrotoluene and its metabolites in shoots and roots of Panicum maximum in nano-phytoremediation. Int J Environ Sci Dev 4(1):7CrossRefGoogle Scholar
  56. 56.
    Reddy A, Madhavi V, Reddy KG, Madhavi G (2012) Remediation of chlorpyrifos-contaminated soils by laboratory-synthesized zero-valent nano iron particles: effect of pH and aluminium salts. J Chem 2013:7. Scholar
  57. 57.
    Satapanajaru T, Anurakpongsatorn P, Pengthamkeerati P, Boparai H (2008) Remediation of atrazine-contaminated soil and water by nanozerovalent iron. Water Air Soil Pollut 192:349–359CrossRefGoogle Scholar
  58. 58.
    Singh R, Misra V, Mudiam MKR, Chauhan LKS, Singh RP (2012) Degradation of γ-HCH spiked soil using stabilized Pd/Fe0 bimetallic nanoparticles: pathways, kinetics and effect of reaction conditions. J Hazard Mater 237–238:355–364PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Li Q, Chen X, Zhuang J, Chen X (2016) Decontaminating soil organic pollutants with manufactured nanoparticles. Environ Sci Pollut Res 23(12):11533–11548CrossRefGoogle Scholar
  60. 60.
    Makarova OV, Rajh T, Thurnauer MC, Martin A, Kemme PA, Cropek D (2000) Surface modification of TiO2 nanoparticles for photochemical reduction of nitrobenzene. Environ Sci Technol 34:4797–4803CrossRefGoogle Scholar
  61. 61.
    Kalidhasan S, Dror I, Berkowitz B (2017) Atrazine degradation through PEI-copper nanoparticles deposited onto montmorillonite and sand. Sci Rep 7(1):1415PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    He S, Feng Y, Ni J, Sun Y, Xue L, Feng Y, Yang L (2016) Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere 147:195–202PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Ma X, Wang C (2010) Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems. Environ Eng Sci 27(11):989–992CrossRefGoogle Scholar
  64. 64.
    Pillai HPS, Kottekottil J (2016) Nano-phytotechnological remediation of endosulfan using zero valent iron nanoparticles. J Environ Prot 7:734–744CrossRefGoogle Scholar
  65. 65.
    Souri Z, Karimi N, Sarmadi M, Rostami E (2017) Salicylic acid nanoparticle (SANPs) improves growth and phytoremediation efficiency of Isatis cappadocica Desv. under arsenic stress. IET Nanobiotechnol 11(6):650–655CrossRefGoogle Scholar
  66. 66.
    Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR (2015) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants-critical review. Nanotoxicology 10:257–278PubMedPubMedCentralGoogle Scholar
  67. 67.
    Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 149:167–192. Scholar
  68. 68.
    Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124CrossRefGoogle Scholar
  69. 69.
    Burken JG, Schnoor JL (1996) Phytoremediation: plant uptake of atrazine and role of root exudates. J Environ Sci 122(11):958–963Google Scholar
  70. 70.
    Ahmadpour P, Ahmadpour F, Mahmud TMM, Abdu A, Soleimani M, Tayefeh FH (2012) Phytoremediation of heavy metals: a green technology. Afr J Biotechnol 11(76):14036–14043Google Scholar
  71. 71.
    Sajid M, Ilyas M, Basheer C, Tariq M, Daud M, Baig N, Shehzad F (2014) Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environ Sci Pollut Res 22:4122–4143CrossRefGoogle Scholar
  72. 72.
    Khan N, Bano A (2016) Modulation of phytoremediation and plant growth by the treatment with PGPR, Ag nanoparticle and untreated municipal wastewater. Int J Phytoremediation 18(12):1258–1269CrossRefGoogle Scholar
  73. 73.
    Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision 2(1):2Google Scholar
  74. 74.
    Bao-shan L, Chun-hui L, Li-jun F, Shu-chun Q, Min Y (2004) Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J For Res 15(2):138–140CrossRefGoogle Scholar
  75. 75.
    Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14(9):1125CrossRefGoogle Scholar
  76. 76.
    Rui MM, Ma CX, Hao Y, Guo J, Rui YK, Tang XL, Zhao Q, Fan X, Zhang ZT, Hou TQ, Zhu SY (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:1–10CrossRefGoogle Scholar
  77. 77.
    Liu R, Zhang H, Lal R (2016) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut 227(1):42CrossRefGoogle Scholar
  78. 78.
    Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Goswami A (2013) Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol 47(22):13122–13131PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Pradhan S, Patra P, Mitra S, Dey KK, Jain S, Sarkar S, Goswami A (2014) Manganese nanoparticles: impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro. J Agric Food Chem 62(35):8777–8785PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27(9):1922–1931PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Anjum NA, Singh N, Singh MK, Sayeed I, Duarte AC, Pereira E, Ahmad I (2014) Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Sci Total Environ 472:834–841PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TSP, Sajanlal R, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927CrossRefGoogle Scholar
  84. 84.
    Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Wu SG, Huang L, Head J, Chen DR, Kong IC, Tang YJ (2012) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J Pet Environ Biotechnol 3:126Google Scholar
  87. 87.
    Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Subramanian KS, Manikandan A, Thirunavukkarasu M, Rahale CS (2015) Nano-fertilizers for balanced crop nutrition. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnol food agricul. Springer, Cham, pp 69–80Google Scholar
  90. 90.
    Varma A, Khanuja AM (2017) Role of nanoparticles on plant growth with special emphasis on Piriformospora indica: a review. In: Ghorbanpour M, Manika K, Varma A (eds) Nanoscience and plant–soil systems. Soil biology, vol 48. Springer, Cham, pp 387–403CrossRefGoogle Scholar
  91. 91.
    Yang J, Cao W, Rui Y (2017) Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J Plant Interact 12(1):158–169CrossRefGoogle Scholar
  92. 92.
    Ji P, Sun T, Song Y, Ackland ML, Liu Y (2011) Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L. Environ Pollut 159:762–768CrossRefGoogle Scholar
  93. 93.
    Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, Van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Akansha Srivastav
    • 1
  • Krishna Kumar Yadav
    • 2
  • Sunita Yadav
    • 1
  • Neha Gupta
    • 2
  • Jitendra Kumar Singh
    • 3
  • Ravi Katiyar
    • 1
  • Vinit Kumar
    • 2
  1. 1.Center for Environmental Science and Climate Resilient AgricultureIndian Agriculture Research InstituteNew DelhiIndia
  2. 2.Institute of Environment and Development StudiesBundelkhand UniversityJhansiIndia
  3. 3.School of Environment and Sustainable DevelopmentCentral University of GujaratGandhinagarIndia

Personalised recommendations