Cochlear Inflammation Associated with Noise-Exposure

  • Elizabeth M. KeithleyEmail author


While we know a great deal about the anatomical and physiological changes that occur within the cochlea as a result of noise exposure of various spectra, intensities and durations, we know relatively little about the inflammatory response to these noises. Some cochlear cells up-regulate their expression of inflammatory mediators in response to noise and presumably thereby, recruit circulating macrophages into the cochlea or activate resident cells. The mechanisms that mediate these process are not yet known. The value of the inflammatory response in terms of cochlear repair is not known. Investigators have described immune responses within the stria vascularis, the spiral ligament, the mesothelial cells below the basilar membrane and the epithelial cells of the organ of Corti. The cooperation and/or interactions among these various cells are not known. This chapter is an attempt to identify what is known of the inflammatory response and stimulate new research to clarify the response and its function.


Inflammation Cochlea Basilar membrane Spiral ligament Organ of Corti Stria vascularis Macrophages 



I thank Allen F. Ryan, Ph.D. for reviewing and providing meaningful discussions concerning this manuscript, Jeffery P. Harris, M.D., Ph.D. for introducing me to immunity in the inner ear, and Gary S. Firestein, M.D. and Joe C. Adams, Ph.D. for their many years of collaboration and contributions towards gaining an understanding of inflammatory mechanisms in the inner ear. This work was supported in part by VA Merit grant BX001205 and NIH/NIDCD grant DC012595.


  1. Abrashkin KA, Izumikawa M, Miyazawa T, Wang CH, Crumling MA, Swiderski DL, Beyer LA, Gong TW, Raphael Y. The fate of outer hair cells after acoustic or ototoxic insults. Hear Res. 2006;218:20–9.CrossRefPubMedGoogle Scholar
  2. Adams JC. Immunocytochemical traits of type IV fibrocytes and their possible relations to cochlear function and pathology. J Assoc Res Otolaryngol. 2009;10:369–82.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Adams JC, Seed B, Lu N, Landry A, Xavier RJ. Selective activation of nuclear factor kappa B in the cochlea by sensory and inflammatory stress. Neuroscience. 2009;160:530–9.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anttonen T, Belevich I, Kirjavainen A, Laos M, Brakebusch C, Jokitalo E, Pirvola U. How to bury the dead: elimination of apoptotic hair cells from the hearing organ of the mouse. J Assoc Res Otolaryngol. 2014;15:975–92.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arslan HH, Satar B, Serdar MA, Ozler M, Yilmaz E. Effects of hyperbaric oxygen and dexamethasone on proinflammatory cytokines of rat cochlea in noise-induced hearing loss. Otol Neurotol. 2012;33:1672–8.CrossRefPubMedGoogle Scholar
  6. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212:991–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Axelsson A. The vascular anatomy of the cochlea in the guinea pig and in man. Acta Otolaryngol. 1968;Suppl 243:1–134.Google Scholar
  8. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81:1–5.CrossRefPubMedGoogle Scholar
  9. Cai Q, Vethanayagam RR, Yang S, Bard J, Jamison J, Cartwright D, Dong Y, Hu BH. Molecular profile of cochlear immunity in the resident cells of the organ of Corti. J Neuroinflammation. 2014;11:173.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dai M, Yang Y, Omelchenko I, Nuttall AL, Kachelmeier A, Xiu R, Shi X. Bone marrow cell recruitment mediated by inducible nitric oxide synthase/stromal cell-derived factor-1alpha signaling repairs the acoustically damaged cochlear blood-labyrinth barrier. Am J Pathol. 2010;177:3089–99.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Du X, Choi CH, Chen K, Cheng W, Floyd RA, Kopke RD. Reduced formation of oxidative stress biomarkers and migration of mononuclear phagocytes in the cochleae of chinchilla after antioxidant treatment in acute acoustic trauma. Int J Otolaryngol. 2011;2011:612690.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Eldredge DH, Mills JH, Bohne BA. Anatomical, behavioral, and electrophysiological observations on chinchillas after long exposures to noise. Adv Otorhinolaryngol. 1973;20:64–81.PubMedGoogle Scholar
  13. Fujioka M, Kanzaki S, Okano HJ, Masuda M, Ogawa K, Okano H. Proinflammatory cytokines expression in noise-induced damaged cochlea. J Neurosci Res. 2006;83:575–83.CrossRefPubMedGoogle Scholar
  14. Furness DN, Lawton DM, Mahendrasingam S, Hodierne L, Jagger DJ. Quantitative analysis of the expression of the glutamate-aspartate transporter and identification of functional glutamate uptake reveal a role for cochlear fibrocytes in glutamate homeostasis. Neuroscience. 2009;162:1307–21.CrossRefPubMedGoogle Scholar
  15. Gratton MA, Eleftheriadou A, Garcia J, Verduzco E, Martin GK, BL L–M, Vázquez AE. Noise-induced changes in gene expression in the cochleae of mice differing in their susceptibility to noise damage. Hear Res. 2011;277:211–26.CrossRefPubMedGoogle Scholar
  16. Harris JP. Immunology of the inner ear: response of the inner ear to antigen challenge. Otolaryngol Head Neck Surg. 1983;91:18–32.CrossRefPubMedGoogle Scholar
  17. Hashimoto S, Billings P, Harris JP, Firestein GS, Keithley EM. Innate immunity contributes to cochlear adaptive immune responses. Audiol Neurootol. 2005;10:35–43.CrossRefPubMedGoogle Scholar
  18. Henderson D, Hamernik RP, Sitler RW. Audiometric and histological correlates of exposure to 1-msec noise impulses in the chinchilla. J Acoust Soc Am. 1974;56:1210–21.CrossRefPubMedGoogle Scholar
  19. Hillerdal M, Jansson B, Engstrom B, Hultcrantz E, Borg E. Cochlear blood flow in noise-damaged ears. Acta Otolaryngol. 1987;104:270–8.CrossRefPubMedGoogle Scholar
  20. Hirose K, Liberman MC. Lateral wall histopathology and endocochlear potential in the noise-damaged mouse cochlea. J Assoc Res Otolaryngol. 2003;4:339–52.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hirose K, Discolo C, Keasler J, Ransohoff R. Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J Comp Neurol. 2005;489:180–94.CrossRefPubMedGoogle Scholar
  22. Johnsson LG, Hawkins JE Jr. Degeneration patterns in human ears exposed to noise. Ann Otol Rhinol Laryngol. 1976;85:725–39.CrossRefPubMedGoogle Scholar
  23. Kariya S, Okano M, Maeda Y, Hirai H, Higaki T, Noyama Y, Haruna T, Nishihira J, Nishizaki K. Macrophage migration inhibitory factor deficiency causes prolonged hearing loss after acoustic overstimulation. Otol Neurotol. 2015;36:1103–8.CrossRefPubMedGoogle Scholar
  24. Kaur T, Zamani D, Tong L, Rubel EW, Ohlemiller KK, Hirose K, Warchol ME. Fractalkine signaling regulates macrophage recruitment into the cochlea and promotes the survival of spiral ganglion neurons after selective hair cell lesion. J Neurosci. 2015;35:15050–61.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Keithley EM, Harris JP. Late sequelae of cochlear infection. Laryngoscope. 1996;106:341–5.CrossRefPubMedGoogle Scholar
  26. Keithley EM, Sharp P, Woolf NK, Harris JP. Temporal sequence of viral antigen expression in the cochlea induced by cytomegalovirus. Acta Otolaryngol. 1988;106:46–54.CrossRefPubMedGoogle Scholar
  27. Keithley EM, Wang X, Barkdull GC. Tumor necrosis factor alpha can induce recruitment of inflammatory cells to the cochlea. Otol Neurotol. 2008;29:854–9.CrossRefPubMedGoogle Scholar
  28. Knoops B, Argyropoulou V, Becker S, Ferté L, Kuznetsova O. Multiple roles of peroxiredoxins in inflammation. Mol Cells. 2016;39:60–4.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kujawa SG, Liberman MC. Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J Neurosci. 2006;26:2115–23.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lang H, Ebihara Y, Schmiedt RA, Minamiguchi H, Zhou D, Smythe N, Liu L, Ogawa M, Schulte BA. Contribution of bone marrow hematopoietic stem cells to adult mouse inner ear: mesenchymal cells and fibrocytes. J Comp Neurol. 2006a;496:187–201.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lang H, Schulte BA, Zhou D, Smythe N, Spicer S, Schmiedt RA. Nuclear factor kappaβ deficiency is associated with auditory nerve degeneration and increased noise-induced hearing loss. J Neurosci. 2006b;26:3541–50.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lau LF. Cell surface receptors for CCN proteins. J Cell Commun Signal. 2016;10:121–7.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liberman MC. Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am. 1978;63:442–55.CrossRefGoogle Scholar
  34. Liberman MC, Dodds LW. Acute ultrastructural changes in acoustic trauma: serial-section reconstruction of stereocilia and cuticular plates. Hear Res. 1987;26:45–64.CrossRefPubMedGoogle Scholar
  35. Liberman MC, Kiang NY. Acoustic trauma in cats. Cochlear pathology and auditory-nerve activity. Acta Otolaryngol Suppl. 1978;358:1–63.PubMedGoogle Scholar
  36. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337–41.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Masuda M, Nagashima R, Kanzaki S, Fujioka M, Ogita K, Ogawa K. Nuclear factor-kappa B nuclear translocation in the cochlea of mice following acoustic overstimulation. Brain Res. 2006;1068:237–47.CrossRefPubMedGoogle Scholar
  38. Miller JM, Ren T-Y, Dengerink HA, Nuttall AL. Cochlear blood flow changes with short sound stimulation. In: Axelsson A, Borchgrevink H, Hamernik RP, Hellstrom P-A, Henderson D, Salvi RJ, editors. Scientific basis of noise-induced hearing loss. New York: Thieme; 1996. p. 95–109.Google Scholar
  39. Miller JM, Brown JN, Schacht J. 8-Iso-Prostaglandin F2, a product of noise exposure, reduces inner ear blood flow. Audiol Neurootol. 2003;8:207–21.CrossRefPubMedGoogle Scholar
  40. Miyao M, Firestein GS, Keithley EM. Acoustic trauma augments the cochlear immune response to antigen. Laryngoscope. 2008;118(10):1801–8.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Murillo-Cuesta S, Rodríguez-de la Rosa L, Contreras J, Celaya AM, Camarero G, Rivera T, Varela-Nieto I. Transforming growth factor β1 inhibition protects from noise-induced hearing loss. Front Aging Neurosci. 2015;20:7–32.Google Scholar
  42. Nakamoto T, Mikuriya T, Sugahara K, Hirose Y, Hashimoto T, Shimogori H, Takii R, Nakai A, Yamashita H. Geranylgeranylacetone suppresses noise-induced expression of proinflammatory cytokines in the cochlea. Auris Nasus Larynx. 2012;39:270–4.CrossRefPubMedGoogle Scholar
  43. Ohashi K, Burkart V, Flohé S, Kolb H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol. 2000;164:558–61.CrossRefPubMedGoogle Scholar
  44. Ohlemiller KK, Gagnon PM. Genetic dependence of cochlear cells and structures injured by noise. Hear Res. 2007;224:34–50.CrossRefPubMedGoogle Scholar
  45. Okano T, Nakagawa T, Kita T, Kada S, Yoshimoto M, Nakahata T, Ito J. Bone marrow-derived cells expressing Iba1 are constitutively present as resident tissue macrophages in the mouse cochlea. J Neurosci Res. 2008;86:1758–67.CrossRefPubMedGoogle Scholar
  46. Peri F, Calabrese V. Toll-like Receptor 4 (TLR4) modulation by synthetic and natural compounds: an update. J Med Chem. 2014;57:3612–22.CrossRefPubMedGoogle Scholar
  47. Pujol R, Puel JL, Gervais d'Aldin C, Eybalin M. Pathophysiology of the glutamatergic synapses in the cochlea. Acta Otolaryngol. 1993;113:330–4.CrossRefPubMedGoogle Scholar
  48. Quirk WS, Avinash G, Nuttall AL, Miller JM. The influence of loud sound on red blood cell velocity and blood vessel diameter in the cochlea. Hear Res. 1992;63:102–7.CrossRefPubMedGoogle Scholar
  49. Raphael Y, Altschuler RA. Reorganization of cytoskeletal and junctional proteins during cochlear hair cell degeneration. Cell Motil Cytoskeleton. 1991;18:215–27.CrossRefPubMedGoogle Scholar
  50. Ryan AF, Keithley EM, Harris JP. Autoimmune inner ear disorders. Curr Opin Neurol. 2001;14:35–40.CrossRefPubMedGoogle Scholar
  51. Santi PA, Aldaya R, Brown A, Johnson S, Stromback T, Cureoglu S, Rask-Andersen H. Scanning electron microscopic examination of the extracellular matrix in the decellularized mouse and human cochlea. J Assoc Res Otolaryngol. 2016;17:159–71.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sato E, Shick HE, Ransohoff RM, Hirose K. Repopulation of cochlear macrophages in murine hematopoietic progenitor cell chimeras: the role of CX3CR1. J Comp Neurol. 2008;506:930–42.CrossRefPubMedGoogle Scholar
  53. Satoh H, Firestein GS, Billings PB, Harris JP, Keithley EM. Tumor necrosis factor-alpha, an initiator, and etanercept, an inhibitor of cochlear inflammation. Laryngoscope. 2002;112:1627–34.CrossRefPubMedGoogle Scholar
  54. Sautter NB, Shick EH, Ransohoff RM, Charo IF, Hirose K. CC chemokine receptor 2 is protective against noise-induced hair cell death: studies in CX3CR1(+/GFP) mice. J Assoc Res Otolaryngol. 2006;7:361–72.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Scheibe F, Haupt H, Ludwig C. Intensity-related changes in cochlear blood flow in the guinea pig during and following acoustic exposure. Eur Arch Otorhinolaryngol. 1993;250:281–5.CrossRefPubMedGoogle Scholar
  56. Seidman MD, Quirk WS, Shirwany NA. Mechanisms of alterations in the microcirculation of the cochlea. Ann N Y Acad Sci. 1999;884:226–32.CrossRefPubMedGoogle Scholar
  57. Seidman MD, Tang W, Shirwany N, Bai U, Rubin CJ, Henig JP, Quirk WS. Anti-intercellular adhesion molecule-1 antibody's effect on noise damage. Laryngoscope. 2009;119:707–12.CrossRefPubMedGoogle Scholar
  58. Shi X. Resident macrophages in the cochlear blood-labyrinth barrier and their renewal via migration of bone-marrow-derived cells. Cell Tissue Res. 2010;342:21–30.CrossRefPubMedGoogle Scholar
  59. Shi X. Physiopathology of the cochlear microcirculation. Hear Res. 2011;282:10–24.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Shi X. Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hear Res. 2016;338:52–63.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Shi X, Nuttall AL. Expression of adhesion molecular proteins in the cochlear lateral wall of normal and PARP-1 mutant mice. Hear Res. 2007;224:1–14.CrossRefPubMedGoogle Scholar
  62. Shi X, Dai C, Nuttall AL. Altered expression of inducible nitric oxide synthase (iNOS) in the cochlea. Hear Res. 2003;177:43–52.CrossRefPubMedGoogle Scholar
  63. Spicer SS, Schulte BA. Differentiation of inner ear fibrocytes according to their ion transport related activity. Hear Res. 1991;56:53–64.CrossRefPubMedGoogle Scholar
  64. Spicer SS, Schulte BA. The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear Res. 1996;100:80–100.CrossRefPubMedGoogle Scholar
  65. Spicer SS, Schulte BA. Evidence for a medial K+ recycling pathway from inner hair cells. Hear Res. 1998;118:1–12.CrossRefPubMedGoogle Scholar
  66. Syka J, Melichar I, Ulehlová L. Longitudinal distribution of cochlear potentials and the K+ concentration in the endolymph after acoustic trauma. Hear Res. 1981;4:287–98.CrossRefPubMedGoogle Scholar
  67. Takahashi M, Harris JP. Analysis of immunocompetent cells following inner ear immuno-stimulation. Laryngoscope. 1988;98:1133–8.CrossRefPubMedGoogle Scholar
  68. Tan BTG, Lee MMG, Ruan R. Bone marrow-derived cells that home to acoustic deafened cochlea preserved their hematopoietic identity. J Comp Neurol. 2008;509:167–79.CrossRefPubMedGoogle Scholar
  69. Tan WJT, Thorne PR, Vlajkovic SM. Characterization of cochlear inflammation in mice following acute and chronic noise exposure. Histochem Cell Biol. 2016;146:219–30.CrossRefPubMedGoogle Scholar
  70. Thorne PR, Nuttall AL. Alterations in oxygenation of cochlear endolymph during loud sound exposure. Acta Otolaryngol (Stockh). 1989;107:71–9.CrossRefGoogle Scholar
  71. Tornabene SV, Sato K, Pham L, Billings P, Keithley EM. Immune cell recruitment following acoustic trauma. Hear Res. 2006;222:115–24.CrossRefPubMedGoogle Scholar
  72. Vethanayagam RR, Yang W, Dong Y, Hu BH. Toll-like receptor 4 modulates the cochlear immune response to acoustic injury. Cell Death Dis. 2016;7:e2245.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wakabayashi K, Fujioka M, Kanzaki S, Okano HJ, Shibata S, Yamashita D, Masuda M, Mihara M, Ohsugi Y, Ogawa K, Okano H. Blockade of interleukin-6 signaling suppressed cochlear inflammatory response and improved hearing impairment in noise-damaged mice cochlea. Neurosci Res. 2010;66:345–52.CrossRefPubMedGoogle Scholar
  74. Wang Y, Hirose K, Liberman MC. Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol. 2002;3:248–68.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wangemann P. K+ cycling and the endocochlear potential. Hear Res. 2002;165:1–9.CrossRefPubMedGoogle Scholar
  76. Wangemann P. Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol. 2006;576:11–21.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Warchol ME. Macrophage activity in organ cultures of the avian cochlea: demonstration of a resident population and recruitment to sites of hair cell lesions. J Neurobiol. 1997;33:724–34.CrossRefPubMedGoogle Scholar
  78. Yang W, Vethanayagam RR, Dong AY, Cai Q, Hu BH. Activation of the antigen presentation function of mononuclear phagocyte populations associated with the basilar membrane of the cochlea after acoustic overstimulation. Neuroscience. 2015;303:1–15.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Yang S, Cai Q, Vethanayagam RR, Wang J, Yang W, Hu BH. Immune defense is the primary function associated with the differentially expressed genes in the cochlea following acoustic trauma. Hear Res. 2016;333:283–94.CrossRefPubMedGoogle Scholar
  80. Yimtae K, Song H, Billings P, Harris JP, Keithley EM. Connection between the inner ear and the lymphatic system. Laryngoscope. 2001;111:1631–5.CrossRefPubMedGoogle Scholar
  81. Zhang W, Dai M, Fridberger A, Hassan A, Degagne J, Neng L, Zhang F, He W, Ren T, Trune D, Auer M, Shi X. Perivascular-resident macrophage-like melanocytes in the inner ear are essential for the integrity of the intrastrial fluid-blood barrier. Proc Natl Acad Sci U S A. 2012;109:10388–93.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zhang F, Dai M, Neng L, Zhang JH, Zhi Z, Fridberger A, Shi X. Perivascular macrophage-like melanocyte responsiveness to acoustic trauma--a salient feature of strial barrier associated hearing loss. FASEB J. 2013;27:3730–40.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Otolaryngology/Head and Neck SurgeryUniversity of California, San DiegoLa JollaUSA

Personalised recommendations