Skip to main content

Cochlear Inflammation Associated with Noise-Exposure

  • Chapter
  • First Online:
Inflammatory Mechanisms in Mediating Hearing Loss

Abstract

While we know a great deal about the anatomical and physiological changes that occur within the cochlea as a result of noise exposure of various spectra, intensities and durations, we know relatively little about the inflammatory response to these noises. Some cochlear cells up-regulate their expression of inflammatory mediators in response to noise and presumably thereby, recruit circulating macrophages into the cochlea or activate resident cells. The mechanisms that mediate these process are not yet known. The value of the inflammatory response in terms of cochlear repair is not known. Investigators have described immune responses within the stria vascularis, the spiral ligament, the mesothelial cells below the basilar membrane and the epithelial cells of the organ of Corti. The cooperation and/or interactions among these various cells are not known. This chapter is an attempt to identify what is known of the inflammatory response and stimulate new research to clarify the response and its function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrashkin KA, Izumikawa M, Miyazawa T, Wang CH, Crumling MA, Swiderski DL, Beyer LA, Gong TW, Raphael Y. The fate of outer hair cells after acoustic or ototoxic insults. Hear Res. 2006;218:20–9.

    Article  PubMed  Google Scholar 

  • Adams JC. Immunocytochemical traits of type IV fibrocytes and their possible relations to cochlear function and pathology. J Assoc Res Otolaryngol. 2009;10:369–82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Adams JC, Seed B, Lu N, Landry A, Xavier RJ. Selective activation of nuclear factor kappa B in the cochlea by sensory and inflammatory stress. Neuroscience. 2009;160:530–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anttonen T, Belevich I, Kirjavainen A, Laos M, Brakebusch C, Jokitalo E, Pirvola U. How to bury the dead: elimination of apoptotic hair cells from the hearing organ of the mouse. J Assoc Res Otolaryngol. 2014;15:975–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arslan HH, Satar B, Serdar MA, Ozler M, Yilmaz E. Effects of hyperbaric oxygen and dexamethasone on proinflammatory cytokines of rat cochlea in noise-induced hearing loss. Otol Neurotol. 2012;33:1672–8.

    Article  PubMed  Google Scholar 

  • Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212:991–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axelsson A. The vascular anatomy of the cochlea in the guinea pig and in man. Acta Otolaryngol. 1968;Suppl 243:1–134.

    Google Scholar 

  • Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81:1–5.

    Article  CAS  PubMed  Google Scholar 

  • Cai Q, Vethanayagam RR, Yang S, Bard J, Jamison J, Cartwright D, Dong Y, Hu BH. Molecular profile of cochlear immunity in the resident cells of the organ of Corti. J Neuroinflammation. 2014;11:173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai M, Yang Y, Omelchenko I, Nuttall AL, Kachelmeier A, Xiu R, Shi X. Bone marrow cell recruitment mediated by inducible nitric oxide synthase/stromal cell-derived factor-1alpha signaling repairs the acoustically damaged cochlear blood-labyrinth barrier. Am J Pathol. 2010;177:3089–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du X, Choi CH, Chen K, Cheng W, Floyd RA, Kopke RD. Reduced formation of oxidative stress biomarkers and migration of mononuclear phagocytes in the cochleae of chinchilla after antioxidant treatment in acute acoustic trauma. Int J Otolaryngol. 2011;2011:612690.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eldredge DH, Mills JH, Bohne BA. Anatomical, behavioral, and electrophysiological observations on chinchillas after long exposures to noise. Adv Otorhinolaryngol. 1973;20:64–81.

    PubMed  CAS  Google Scholar 

  • Fujioka M, Kanzaki S, Okano HJ, Masuda M, Ogawa K, Okano H. Proinflammatory cytokines expression in noise-induced damaged cochlea. J Neurosci Res. 2006;83:575–83.

    Article  CAS  PubMed  Google Scholar 

  • Furness DN, Lawton DM, Mahendrasingam S, Hodierne L, Jagger DJ. Quantitative analysis of the expression of the glutamate-aspartate transporter and identification of functional glutamate uptake reveal a role for cochlear fibrocytes in glutamate homeostasis. Neuroscience. 2009;162:1307–21.

    Article  CAS  PubMed  Google Scholar 

  • Gratton MA, Eleftheriadou A, Garcia J, Verduzco E, Martin GK, BL L–M, Vázquez AE. Noise-induced changes in gene expression in the cochleae of mice differing in their susceptibility to noise damage. Hear Res. 2011;277:211–26.

    Article  CAS  PubMed  Google Scholar 

  • Harris JP. Immunology of the inner ear: response of the inner ear to antigen challenge. Otolaryngol Head Neck Surg. 1983;91:18–32.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto S, Billings P, Harris JP, Firestein GS, Keithley EM. Innate immunity contributes to cochlear adaptive immune responses. Audiol Neurootol. 2005;10:35–43.

    Article  PubMed  Google Scholar 

  • Henderson D, Hamernik RP, Sitler RW. Audiometric and histological correlates of exposure to 1-msec noise impulses in the chinchilla. J Acoust Soc Am. 1974;56:1210–21.

    Article  CAS  PubMed  Google Scholar 

  • Hillerdal M, Jansson B, Engstrom B, Hultcrantz E, Borg E. Cochlear blood flow in noise-damaged ears. Acta Otolaryngol. 1987;104:270–8.

    Article  CAS  PubMed  Google Scholar 

  • Hirose K, Liberman MC. Lateral wall histopathology and endocochlear potential in the noise-damaged mouse cochlea. J Assoc Res Otolaryngol. 2003;4:339–52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirose K, Discolo C, Keasler J, Ransohoff R. Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J Comp Neurol. 2005;489:180–94.

    Article  PubMed  Google Scholar 

  • Johnsson LG, Hawkins JE Jr. Degeneration patterns in human ears exposed to noise. Ann Otol Rhinol Laryngol. 1976;85:725–39.

    Article  CAS  PubMed  Google Scholar 

  • Kariya S, Okano M, Maeda Y, Hirai H, Higaki T, Noyama Y, Haruna T, Nishihira J, Nishizaki K. Macrophage migration inhibitory factor deficiency causes prolonged hearing loss after acoustic overstimulation. Otol Neurotol. 2015;36:1103–8.

    Article  PubMed  Google Scholar 

  • Kaur T, Zamani D, Tong L, Rubel EW, Ohlemiller KK, Hirose K, Warchol ME. Fractalkine signaling regulates macrophage recruitment into the cochlea and promotes the survival of spiral ganglion neurons after selective hair cell lesion. J Neurosci. 2015;35:15050–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keithley EM, Harris JP. Late sequelae of cochlear infection. Laryngoscope. 1996;106:341–5.

    Article  CAS  PubMed  Google Scholar 

  • Keithley EM, Sharp P, Woolf NK, Harris JP. Temporal sequence of viral antigen expression in the cochlea induced by cytomegalovirus. Acta Otolaryngol. 1988;106:46–54.

    Article  CAS  PubMed  Google Scholar 

  • Keithley EM, Wang X, Barkdull GC. Tumor necrosis factor alpha can induce recruitment of inflammatory cells to the cochlea. Otol Neurotol. 2008;29:854–9.

    Article  PubMed  Google Scholar 

  • Knoops B, Argyropoulou V, Becker S, Ferté L, Kuznetsova O. Multiple roles of peroxiredoxins in inflammation. Mol Cells. 2016;39:60–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kujawa SG, Liberman MC. Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J Neurosci. 2006;26:2115–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang H, Ebihara Y, Schmiedt RA, Minamiguchi H, Zhou D, Smythe N, Liu L, Ogawa M, Schulte BA. Contribution of bone marrow hematopoietic stem cells to adult mouse inner ear: mesenchymal cells and fibrocytes. J Comp Neurol. 2006a;496:187–201.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lang H, Schulte BA, Zhou D, Smythe N, Spicer S, Schmiedt RA. Nuclear factor kappaβ deficiency is associated with auditory nerve degeneration and increased noise-induced hearing loss. J Neurosci. 2006b;26:3541–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau LF. Cell surface receptors for CCN proteins. J Cell Commun Signal. 2016;10:121–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liberman MC. Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am. 1978;63:442–55.

    Article  CAS  Google Scholar 

  • Liberman MC, Dodds LW. Acute ultrastructural changes in acoustic trauma: serial-section reconstruction of stereocilia and cuticular plates. Hear Res. 1987;26:45–64.

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC, Kiang NY. Acoustic trauma in cats. Cochlear pathology and auditory-nerve activity. Acta Otolaryngol Suppl. 1978;358:1–63.

    PubMed  CAS  Google Scholar 

  • Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masuda M, Nagashima R, Kanzaki S, Fujioka M, Ogita K, Ogawa K. Nuclear factor-kappa B nuclear translocation in the cochlea of mice following acoustic overstimulation. Brain Res. 2006;1068:237–47.

    Article  CAS  PubMed  Google Scholar 

  • Miller JM, Ren T-Y, Dengerink HA, Nuttall AL. Cochlear blood flow changes with short sound stimulation. In: Axelsson A, Borchgrevink H, Hamernik RP, Hellstrom P-A, Henderson D, Salvi RJ, editors. Scientific basis of noise-induced hearing loss. New York: Thieme; 1996. p. 95–109.

    Google Scholar 

  • Miller JM, Brown JN, Schacht J. 8-Iso-Prostaglandin F2, a product of noise exposure, reduces inner ear blood flow. Audiol Neurootol. 2003;8:207–21.

    Article  CAS  PubMed  Google Scholar 

  • Miyao M, Firestein GS, Keithley EM. Acoustic trauma augments the cochlear immune response to antigen. Laryngoscope. 2008;118(10):1801–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murillo-Cuesta S, Rodríguez-de la Rosa L, Contreras J, Celaya AM, Camarero G, Rivera T, Varela-Nieto I. Transforming growth factor β1 inhibition protects from noise-induced hearing loss. Front Aging Neurosci. 2015;20:7–32.

    Google Scholar 

  • Nakamoto T, Mikuriya T, Sugahara K, Hirose Y, Hashimoto T, Shimogori H, Takii R, Nakai A, Yamashita H. Geranylgeranylacetone suppresses noise-induced expression of proinflammatory cytokines in the cochlea. Auris Nasus Larynx. 2012;39:270–4.

    Article  PubMed  Google Scholar 

  • Ohashi K, Burkart V, Flohé S, Kolb H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol. 2000;164:558–61.

    Article  CAS  PubMed  Google Scholar 

  • Ohlemiller KK, Gagnon PM. Genetic dependence of cochlear cells and structures injured by noise. Hear Res. 2007;224:34–50.

    Article  CAS  PubMed  Google Scholar 

  • Okano T, Nakagawa T, Kita T, Kada S, Yoshimoto M, Nakahata T, Ito J. Bone marrow-derived cells expressing Iba1 are constitutively present as resident tissue macrophages in the mouse cochlea. J Neurosci Res. 2008;86:1758–67.

    Article  CAS  PubMed  Google Scholar 

  • Peri F, Calabrese V. Toll-like Receptor 4 (TLR4) modulation by synthetic and natural compounds: an update. J Med Chem. 2014;57:3612–22.

    Article  CAS  PubMed  Google Scholar 

  • Pujol R, Puel JL, Gervais d'Aldin C, Eybalin M. Pathophysiology of the glutamatergic synapses in the cochlea. Acta Otolaryngol. 1993;113:330–4.

    Article  CAS  PubMed  Google Scholar 

  • Quirk WS, Avinash G, Nuttall AL, Miller JM. The influence of loud sound on red blood cell velocity and blood vessel diameter in the cochlea. Hear Res. 1992;63:102–7.

    Article  CAS  PubMed  Google Scholar 

  • Raphael Y, Altschuler RA. Reorganization of cytoskeletal and junctional proteins during cochlear hair cell degeneration. Cell Motil Cytoskeleton. 1991;18:215–27.

    Article  CAS  PubMed  Google Scholar 

  • Ryan AF, Keithley EM, Harris JP. Autoimmune inner ear disorders. Curr Opin Neurol. 2001;14:35–40.

    Article  CAS  PubMed  Google Scholar 

  • Santi PA, Aldaya R, Brown A, Johnson S, Stromback T, Cureoglu S, Rask-Andersen H. Scanning electron microscopic examination of the extracellular matrix in the decellularized mouse and human cochlea. J Assoc Res Otolaryngol. 2016;17:159–71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato E, Shick HE, Ransohoff RM, Hirose K. Repopulation of cochlear macrophages in murine hematopoietic progenitor cell chimeras: the role of CX3CR1. J Comp Neurol. 2008;506:930–42.

    Article  PubMed  Google Scholar 

  • Satoh H, Firestein GS, Billings PB, Harris JP, Keithley EM. Tumor necrosis factor-alpha, an initiator, and etanercept, an inhibitor of cochlear inflammation. Laryngoscope. 2002;112:1627–34.

    Article  CAS  PubMed  Google Scholar 

  • Sautter NB, Shick EH, Ransohoff RM, Charo IF, Hirose K. CC chemokine receptor 2 is protective against noise-induced hair cell death: studies in CX3CR1(+/GFP) mice. J Assoc Res Otolaryngol. 2006;7:361–72.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheibe F, Haupt H, Ludwig C. Intensity-related changes in cochlear blood flow in the guinea pig during and following acoustic exposure. Eur Arch Otorhinolaryngol. 1993;250:281–5.

    Article  CAS  PubMed  Google Scholar 

  • Seidman MD, Quirk WS, Shirwany NA. Mechanisms of alterations in the microcirculation of the cochlea. Ann N Y Acad Sci. 1999;884:226–32.

    Article  CAS  PubMed  Google Scholar 

  • Seidman MD, Tang W, Shirwany N, Bai U, Rubin CJ, Henig JP, Quirk WS. Anti-intercellular adhesion molecule-1 antibody's effect on noise damage. Laryngoscope. 2009;119:707–12.

    Article  CAS  PubMed  Google Scholar 

  • Shi X. Resident macrophages in the cochlear blood-labyrinth barrier and their renewal via migration of bone-marrow-derived cells. Cell Tissue Res. 2010;342:21–30.

    Article  PubMed  Google Scholar 

  • Shi X. Physiopathology of the cochlear microcirculation. Hear Res. 2011;282:10–24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi X. Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hear Res. 2016;338:52–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X, Nuttall AL. Expression of adhesion molecular proteins in the cochlear lateral wall of normal and PARP-1 mutant mice. Hear Res. 2007;224:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Dai C, Nuttall AL. Altered expression of inducible nitric oxide synthase (iNOS) in the cochlea. Hear Res. 2003;177:43–52.

    Article  CAS  PubMed  Google Scholar 

  • Spicer SS, Schulte BA. Differentiation of inner ear fibrocytes according to their ion transport related activity. Hear Res. 1991;56:53–64.

    Article  CAS  PubMed  Google Scholar 

  • Spicer SS, Schulte BA. The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear Res. 1996;100:80–100.

    Article  CAS  PubMed  Google Scholar 

  • Spicer SS, Schulte BA. Evidence for a medial K+ recycling pathway from inner hair cells. Hear Res. 1998;118:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Syka J, Melichar I, Ulehlová L. Longitudinal distribution of cochlear potentials and the K+ concentration in the endolymph after acoustic trauma. Hear Res. 1981;4:287–98.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Harris JP. Analysis of immunocompetent cells following inner ear immuno-stimulation. Laryngoscope. 1988;98:1133–8.

    Article  CAS  PubMed  Google Scholar 

  • Tan BTG, Lee MMG, Ruan R. Bone marrow-derived cells that home to acoustic deafened cochlea preserved their hematopoietic identity. J Comp Neurol. 2008;509:167–79.

    Article  PubMed  Google Scholar 

  • Tan WJT, Thorne PR, Vlajkovic SM. Characterization of cochlear inflammation in mice following acute and chronic noise exposure. Histochem Cell Biol. 2016;146:219–30.

    Article  CAS  PubMed  Google Scholar 

  • Thorne PR, Nuttall AL. Alterations in oxygenation of cochlear endolymph during loud sound exposure. Acta Otolaryngol (Stockh). 1989;107:71–9.

    Article  CAS  Google Scholar 

  • Tornabene SV, Sato K, Pham L, Billings P, Keithley EM. Immune cell recruitment following acoustic trauma. Hear Res. 2006;222:115–24.

    Article  CAS  PubMed  Google Scholar 

  • Vethanayagam RR, Yang W, Dong Y, Hu BH. Toll-like receptor 4 modulates the cochlear immune response to acoustic injury. Cell Death Dis. 2016;7:e2245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakabayashi K, Fujioka M, Kanzaki S, Okano HJ, Shibata S, Yamashita D, Masuda M, Mihara M, Ohsugi Y, Ogawa K, Okano H. Blockade of interleukin-6 signaling suppressed cochlear inflammatory response and improved hearing impairment in noise-damaged mice cochlea. Neurosci Res. 2010;66:345–52.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Hirose K, Liberman MC. Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol. 2002;3:248–68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wangemann P. K+ cycling and the endocochlear potential. Hear Res. 2002;165:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Wangemann P. Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol. 2006;576:11–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warchol ME. Macrophage activity in organ cultures of the avian cochlea: demonstration of a resident population and recruitment to sites of hair cell lesions. J Neurobiol. 1997;33:724–34.

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Vethanayagam RR, Dong AY, Cai Q, Hu BH. Activation of the antigen presentation function of mononuclear phagocyte populations associated with the basilar membrane of the cochlea after acoustic overstimulation. Neuroscience. 2015;303:1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Cai Q, Vethanayagam RR, Wang J, Yang W, Hu BH. Immune defense is the primary function associated with the differentially expressed genes in the cochlea following acoustic trauma. Hear Res. 2016;333:283–94.

    Article  CAS  PubMed  Google Scholar 

  • Yimtae K, Song H, Billings P, Harris JP, Keithley EM. Connection between the inner ear and the lymphatic system. Laryngoscope. 2001;111:1631–5.

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Dai M, Fridberger A, Hassan A, Degagne J, Neng L, Zhang F, He W, Ren T, Trune D, Auer M, Shi X. Perivascular-resident macrophage-like melanocytes in the inner ear are essential for the integrity of the intrastrial fluid-blood barrier. Proc Natl Acad Sci U S A. 2012;109:10388–93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Dai M, Neng L, Zhang JH, Zhi Z, Fridberger A, Shi X. Perivascular macrophage-like melanocyte responsiveness to acoustic trauma--a salient feature of strial barrier associated hearing loss. FASEB J. 2013;27:3730–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank Allen F. Ryan, Ph.D. for reviewing and providing meaningful discussions concerning this manuscript, Jeffery P. Harris, M.D., Ph.D. for introducing me to immunity in the inner ear, and Gary S. Firestein, M.D. and Joe C. Adams, Ph.D. for their many years of collaboration and contributions towards gaining an understanding of inflammatory mechanisms in the inner ear. This work was supported in part by VA Merit grant BX001205 and NIH/NIDCD grant DC012595.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth M. Keithley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keithley, E.M. (2018). Cochlear Inflammation Associated with Noise-Exposure. In: Ramkumar, V., Rybak, L. (eds) Inflammatory Mechanisms in Mediating Hearing Loss. Springer, Cham. https://doi.org/10.1007/978-3-319-92507-3_5

Download citation

Publish with us

Policies and ethics