Skip to main content

Advertisement

Log in

Resident macrophages in the cochlear blood-labyrinth barrier and their renewal via migration of bone-marrow-derived cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

A large population of perivascular cells was found to be present in the area of the blood-labyrinth barrier in the stria vascularis of normal adult cochlea. The cells were identified as perivascular resident macrophages (PVMs), as they were positive for several macrophage surface molecules including F4/80, CD68, and CD11b. The macrophages, which were closely associated with microvessels and structurally intertwined with endothelial cells and pericytes, constitutively expressed scavenger receptor classes A1 and B1 and accumulated blood-borne proteins such as horseradish peroxidase and acetylated low-density lipoprotein. The PVMs were demonstrated to proliferate slowly, as evidenced by the absence of 5-bromo-2-deoxyuridine (BrdU)-positive PVMs at 3–14 days in normal mice injected with BrdU. However, in irradiated mice, the majority of the PVMs turned over via bone-marrow-cell migration within a 10-month time-frame. The existence of PVMs in the vascular wall of the blood-labyrinth barrier might therefore serve as a source for progenitor cells for postnatal vasculogenesis and might contribute to the repair of damaged vessels in the context of a local inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamson R (2009) Role of macrophages in normal wound healing: an overview. J Wound Care 18:349–351

    CAS  PubMed  Google Scholar 

  • Albini TA, Wang RC, Reiser B, Zamir E, Wu GS, Rao NA (2005) Microglial stability and repopulation in the retina. Br J Ophthalmol 89:901–903

    Article  CAS  PubMed  Google Scholar 

  • Ando M, Kakigi A, Takeuchi S (1999) Elongated pericyte-like cells connect discrete capillaries in the cochlear stria vascularis of gerbils and rats. Cell Tissue Res 296:673–676

    Article  CAS  PubMed  Google Scholar 

  • Bauer J, Huitinga I, Zhao W, Lassmann H, Hickey WF, Dijkstra CD (1995) The role of macrophages, perivascular cells, and microglial cells in the pathogenesis of experimental autoimmune encephalomyelitis. Glia 15:437–446

    Article  CAS  PubMed  Google Scholar 

  • Bechmann I, Priller J, Kovac A, Bntert M, Wehner T, Klett FF, Bohsung J, Stuschke M, Dirnagl U, Nitsch R (2001) Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages. Eur J Neurosci 14:1651–1658

    Article  CAS  PubMed  Google Scholar 

  • Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    Article  CAS  PubMed  Google Scholar 

  • Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  CAS  PubMed  Google Scholar 

  • Brigitte M, Schilte C, Plonquet A, Baba-Amer Y, Henri A, Charlier C, Tajbakhsh S, Albert M, Gherardi RK, Chretien F (2009) Muscle resident macrophages control the immune cell reaction in a mouse model of notexin-induced myoinjury. Arthritis Rheum 62:268–279

    Article  Google Scholar 

  • Caicedo A, Espinosa-Heidmann DG, Pina Y, Hernandez EP, Cousins SW (2005) Blood-derived macrophages infiltrate the retina and activate Muller glial cells under experimental choroidal neovascularization. Exp Eye Res 81:38–47

    Article  CAS  PubMed  Google Scholar 

  • Chan-Ling T, Baxter L, Afzal A, Sengupta N, Caballero S, Rosinova E, Grant MB (2006) Hematopoietic stem cells provide repair functions after laser-induced Bruch's membrane rupture model of choroidal neovascularization. Am J Pathol 168:1031–1044

    Article  CAS  PubMed  Google Scholar 

  • Cheret C, Gervais A, Lelli A, Colin C, Amar L, Ravassard P, Mallet J, Cumano A, Krause KH, Mallat M (2008) Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci 28:12039–12051

    Article  CAS  PubMed  Google Scholar 

  • Chinnery HR, Humphries T, Clare A, Dixon AE, Howes K, Moran CB, Scott D, Zakrzewski M, Pearlman E, McMenamin PG (2008) Turnover of bone marrow-derived cells in the irradiated mouse cornea. Immunology 125:541–548

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Salmon M, Regnault B, Cayet N, Caille D, Demuth K, Hardelin J-P, Janel N, Meda P, Petit C (2007) Connexin30 deficiency causes intrastrial fluid-blood barrier disruption within the cochlear stria vascularis. Proc Natl Acad Sci USA 104:6229–6234

    Article  CAS  PubMed  Google Scholar 

  • Cuadros MA, Navascues J (1998) The origin and differentiation of microglial cells during development. Prog Neurobiol 56:173–189

    Article  CAS  PubMed  Google Scholar 

  • Cui Q, Yin Y, Benowitz LI (2009) The role of macrophages in optic nerve regeneration. Neuroscience 158:1039–1048

    Article  CAS  PubMed  Google Scholar 

  • Dace DS, Khan AA, Kelly J, Apte RS (2008) Interleukin-10 promotes pathological angiogenesis by regulating macrophage response to hypoxia during development. PLoS ONE 3:e3381

    Article  PubMed  Google Scholar 

  • Dai M, Yang Y, Omelchenko I, Nuttall AL, Xiu R, Shi X (2010) The blood-labyrinth-barrier repair after loud sound injury through bone marrow cell recruitment mediated by a local iNOS signal pathway (abstract). Assoc Res Otolaryngol Abs 2010:abstract 207

    Google Scholar 

  • Davies MH, Eubanks JP, Powers MR (2006) Microglia and macrophages are increased in response to ischemia-induced retinopathy in the mouse retina. Mol Vis 12:467–477

    CAS  PubMed  Google Scholar 

  • Davoust N, Vuaillat C, Androdias G, Nataf S (2008) From bone marrow to microglia: barriers and avenues. Trends Immunol 29:227–234

    Article  CAS  PubMed  Google Scholar 

  • Dirkx AE, Oude Egbrink MG, Wagstaff J, Griffioen AW (2006) Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol 80:1183–1196

    Article  CAS  PubMed  Google Scholar 

  • Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158:1021–1029

    Article  CAS  PubMed  Google Scholar 

  • Freisinger E, Cramer C, Xia X, Murthy SN, Slakey DP, Chiu E, Newsome ER, Alt EU, Izadpanah R (2010) Characterization of hematopoietic potential of mesenchymal stem cells. J Cell Physiol (in press)

  • Galimi F, Summers RG, Praag H van, Verma IM, Gage FH (2005) A role for bone marrow-derived cells in the vasculature of noninjured CNS. Blood 105:2400–2402

    Article  CAS  PubMed  Google Scholar 

  • Gillessen S, Mach N, Small C, Mihm M, Dranoff G (2001) Overlapping roles for granulocyte-macrophage colony-stimulating factor and interleukin-3 in eosinophil homeostasis and contact hypersensitivity. Blood 97:922–928

    Article  CAS  PubMed  Google Scholar 

  • Guerin CJ, Nolan CC, Mavroudis G, Lister T, Davidson GM, Holton JL, Ray DE (2001) The dynamics of blood-brain barrier breakdown in an experimental model of glial cell degeneration. Neuroscience 103:873–883

    Article  CAS  PubMed  Google Scholar 

  • Guth AM, Janssen WJ, Bosio CM, Crouch EC, Henson PM, Dow SW (2009) Lung environment determines unique phenotype of alveolar macrophages. Am J Physiol 296:L936–L946

    Article  CAS  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  CAS  PubMed  Google Scholar 

  • Hibino H, Nin F, Tsuzuki C, Kurachi Y (2010) How is the highly positive endocochlear potential formed? The specific architecture of the stria vascularis and the roles of the ion-transport apparatus. Pflügers Arch 459:521–533

    Article  CAS  PubMed  Google Scholar 

  • Hirose K, Discolo CM, Keasler JR, Ransohoff R (2005) Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J Comp Neurol 489:180–194

    Article  PubMed  Google Scholar 

  • Iijima N, Linehan MM, Saeland S, Iwasaki A (2007) Vaginal epithelial dendritic cells renew from bone marrow precursors. Proc Natl Acad Sci USA 104:19061–19066

    Article  PubMed  Google Scholar 

  • Kezic J, McMenamin PG (2008) Differential turnover rates of monocyte-derived cells in varied ocular tissue microenvironments. J Leukoc Biol 84:721–729

    Article  CAS  PubMed  Google Scholar 

  • Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13444

    Article  CAS  PubMed  Google Scholar 

  • Kim W-K, Alvarez X, Fisher J, Bronfin B, Westmoreland S, McLaurin J, Williams K (2006) CD163 identifies perivascular macrophages in normal and viral encephalitic brains and potential precursors to perivascular macrophages in blood. Am J Pathol 168:822–834

    Article  CAS  PubMed  Google Scholar 

  • Kraft AD, McPherson CA, Harry GJ (2009) Heterogeneity of microglia and TNF signaling as determinants for neuronal death or survival. Neurotoxicology 30:785–793

    Article  CAS  PubMed  Google Scholar 

  • Lin DW, Trune DR (1997) Breakdown of stria vascularis blood-labyrinth barrier in C3H/lpr autoimmune disease mice. Otolaryngol Head Neck Surg 117:530–534

    Article  CAS  PubMed  Google Scholar 

  • Marella M, Gaggioli C, Batoz M, Deckert M, Tartare-Deckert S, Chabry J (2005) Pathological prion protein exposure switches on neuronal mitogen-activated protein kinase pathway resulting in microglia recruitment. J Biol Chem 280:1529–1534

    Article  CAS  PubMed  Google Scholar 

  • Mendes-Jorge L, Ramos D, Luppo M, Llombart C, Alexandre-Pires G, Nacher V, Melgarejo V, Correia M, Navarro M, Carretero A, Tafuro S, Rodriguez-Baeza A, Esperanca-Pina JA, Bosch F, Ruberte J (2009) Scavenger function of resident autofluorescent perivascular macrophages and their contribution to the maintenance of the blood-retinal barrier. Invest Ophthalmol Vis Sci 50:5997–6005

    Article  PubMed  Google Scholar 

  • Mitrasinovic OM, Murphy GM Jr (2002) Accelerated phagocytosis of amyloid-beta by mouse and human microglia overexpressing the macrophage colony-stimulating factor receptor. J Biol Chem 277:29889–29896

    Article  CAS  PubMed  Google Scholar 

  • Mitrasinovic OM, Grattan A, Robinson CC, Lapustea NB, Poon C, Ryan H, Phong C, Murphy GM Jr (2005) Microglia overexpressing the macrophage colony-stimulating factor receptor are neuroprotective in a microglial-hippocampal organotypic coculture system. J Neurosci 25:4442–4451

    Article  CAS  PubMed  Google Scholar 

  • Naito H, Watanabe K (1997) Alteration in capillary permeability of horseradish peroxidase in the stria vascularis and movement of leaked horseradish peroxidase after administration of furosemide. ORL J Otorhinolaryngol Relat Spec 59:248–257

    CAS  PubMed  Google Scholar 

  • Napoli I, Kierdorf K, Neumann H (2009) Microglial precursors derived from mouse embryonic stem cells. Glia 57:1660–1671

    Article  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Nocito A, Dahm F, Jochum W, Jang JH, Georgiev P, Bader M, Graf R, Clavien PA (2008) Serotonin regulates macrophage-mediated angiogenesis in a mouse model of colon cancer allografts. Cancer Res 68:5152–5158

    Article  CAS  PubMed  Google Scholar 

  • Ohlemiller KK, Rice MER, Gagnon PM (2008) Strial microvascular pathology and age-associated endocochlear potential decline in NOD congenic mice. Hear Res 244:85–97

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Murr MM (2007) Establishment of immortalized rat Kupffer cell lines. Cytokine 37:185–191

    Article  CAS  PubMed  Google Scholar 

  • Pilling D, Fan T, Huang D, Kaul B, Gomer RH (2009) Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS ONE 4:e7475

    Article  PubMed  Google Scholar 

  • Pufe T, Petersen W, Fandrich F, Varoga D, Wruck CJ, Mentlein R, Helfenstein A, Hoseas D, Dressel S, Tillmann B, Ruhnke M (2008) Programmable cells of monocytic origin (PCMO): a source of peripheral blood stem cells that generate collagen type II-producing chondrocytes. J Orthop Res 26:304–313

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    Article  CAS  PubMed  Google Scholar 

  • Ritter MR, Banin E, Moreno SK, Aguilar E, Dorrell MI, Friedlander M (2006) Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy. J Clin Invest 116:3266–3276

    Article  CAS  PubMed  Google Scholar 

  • Ruckenstein MJ, Hu L (1999) Antibody deposition in the stria vascularis of the MRL-Faslpr mouse. Hear Res 127:137–142

    Article  CAS  PubMed  Google Scholar 

  • Salt AN, Melichar I, Thalmann R (1987) Mechanisms of endocochlear potential generation by stria vascularis. Laryngoscope 97:984–991

    Article  CAS  PubMed  Google Scholar 

  • Sato E, Shick HE, Ransohoff RM, Hirose K (2008) Repopulation of cochlear macrophages in murine hematopoietic progenitor cell chimeras: the role of CX3CR1. J Comp Neurol 506:930–942

    Article  PubMed  Google Scholar 

  • Seki M, Miyasaka H, Edamatsu H, Watanabe K (2001) Changes in permeability of strial vessels following vibration given to auditory ossicle by drill. Ann Otol Rhinol Laryngol Suppl 110:122–126

    CAS  Google Scholar 

  • Sengupta N, Caballero S, Mames RN, Butler JM, Scott EW, Grant MB (2003) The role of adult bone marrow-derived stem cells in choroidal neovascularization. Invest Ophthalmol Vis Sci 44:4908–4913

    Article  PubMed  Google Scholar 

  • Shi XR (2009) Cochlear pericyte responses to acoustic trauma and the involvement of hypoxia-inducible factor-1a and vascular endothelial growth factor. Am J Pathol 174:1692–1704

    Article  CAS  PubMed  Google Scholar 

  • Simard AR, Rivest S (2004) Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J 18:998–1000

    CAS  PubMed  Google Scholar 

  • Soulas C, Donahue RE, Dunbar CE, Persons DA, Alvarez X, Williams KC (2009) Genetically modified CD34+ hematopoietic stem cells contribute to turnover of brain perivascular macrophages in long-term repopulated primates. Am J Pathol 174:1808–1817

    Article  CAS  PubMed  Google Scholar 

  • Spicer SS, Schulte BA (1996) The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear Res 100:80–100

    Article  CAS  PubMed  Google Scholar 

  • Spicer SS, Schulte BA (2005) Novel structures in marginal and intermediate cells presumably relate to functions of apical versus basal strial strata. Hear Res 200:87–101

    Article  PubMed  Google Scholar 

  • Suh W, Kim KL, Kim JM, Shin IS, Lee YS, Lee JY, Jang HS, Lee JS, Byun J, Choi JH, Jeon ES, Kim DK (2005) Transplantation of endothelial progenitor cells accelerates dermal wound healing with increased recruitment of monocytes/macrophages and neovascularization. Stem Cells 23:1571–1578

    Article  PubMed  Google Scholar 

  • Takagi K, Kudo A (2008) Bone marrow stromal cell lines having high potential for osteoclast-supporting activity express PPARgamma1 and show high potential for differentiation into adipocytes. J Bone Miner Metab 26:13–23

    Article  PubMed  Google Scholar 

  • Thomopoulos GN, Spicer SS, Gratton MA, Schulte BA (1997) Age-related thickening of basement membrane in stria vascularis capillaries. Hear Res 111:31–41

    Article  CAS  PubMed  Google Scholar 

  • Vallieres L, Sawchenko PE (2003) Bone marrow-derived cells that populate the adult mouse brain preserve their hematopoietic identity. J Neurosci 23:5197–5207

    CAS  PubMed  Google Scholar 

  • Wangemann P (2002) K+ cycling and the endocochlear potential. Hear Res 165:1–9

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Tanaka Y (1997) Horseradish peroxidase permeation from the capillaries of the stria vascularis after inoculation of endotoxin into the middle ear. Ann Otol Rhinol Laryngol 106:394–398

    CAS  PubMed  Google Scholar 

  • Xu H, Chen M, Mayer EJ, Forrester JV, Dick AD (2007) Turnover of resident retinal microglia in the normal adult mouse. Glia 55:1189–1198

    Article  PubMed  Google Scholar 

  • Yang I, Han SJ, Kaur G, Crane C, Parsa AT (2009) The role of microglia in central nervous system immunity and glioma immunology. J Clin Neurosci 17:6–10

    Article  PubMed  Google Scholar 

  • Zeng HY, Zhu XA, Zhang C, Yang LP, Wu LM, Tso MO (2005) Identification of sequential events and factors associated with microglial activation, migration, and cytotoxicity in retinal degeneration in rd mice. Invest Ophthalmol Vis Sci 46:2992–2999

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Drs. Dai Min and Yang Yue (Oregon Hearing Research Center, Oregon Health & Science University) for their assistance with bone-marrow-cell transplantation and injection of BrdU. I am also grateful to Dr. Alfred Nuttall (Oregon Hearing Research Center, Oregon Health & Science University) for his critical review and valuable discussion of the manuscript. Finally, my thanks are extended to Janice Moore and Elizabeth Servin for their editorial help with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaorui Shi.

Additional information

This work was supported by the National Institute of Deafness and Other Communications Disorders (grants R01 DC00844, R03 DC008888-02, and P30 DC005983).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, X. Resident macrophages in the cochlear blood-labyrinth barrier and their renewal via migration of bone-marrow-derived cells. Cell Tissue Res 342, 21–30 (2010). https://doi.org/10.1007/s00441-010-1040-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1040-2

Keywords

Navigation