Advertisement

Insights into Fungal Xylose Reductases and Its Application in Xylitol Production

  • Yogita Lugani
  • Balwinder Singh Sooch
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Xylose reductase (EC 1.1.1.21), an aldo-keto reductase enzyme, catalyzes the conversion of xylose into xylitol. It is present in animals, plants, and many microorganisms. In microorganisms, in addition to its production by many fungal (yeasts and molds) cultures, a few members of bacteria such as Corynebacterium sp. and Enterobacter sp. have also been reported to produce NADPH-dependent xylose reductase (XR). In fungi, XR directly converts xylose into xylitol during the metabolism of xylose by using NADH and/or NADPH as coenzyme. The tetrad of amino acids (Tyr, His, Asp, and Lys) at catalytic site is responsible for XR activity. Several attempts have been made to improve XR production using recombinant DNA technology by introducing xylose reductase gene (xyl1) into different fungal strains from other microorganisms for efficient conversion of xylose to xylitol. Site-directed mutagenesis at the catalytic site is another approach to increase the turnover number and catalytic efficiency of XRs. Xylitol is a rare pentol sugar whose global market is increasing at a very fast pace due to its applications in food, cosmetic, odontological, pharmaceutical, and medical sector. The microbial production of xylitol is emerging as a good alternative due to abundance of agriculture waste material. The present chapter will describe the different aspects of fungal XRs including their structural characteristics, sources, production, purification and characterization, immobilization, patent status, and xylitol applications.

Keywords

Xylose reductase Xylan Xylose Xylitol Aldo-keto reductase Agriculture waste 

Notes

Acknowledgments

The authors are thankful to the Department of Biotechnology, Punjabi University, Patiala, India, for providing necessary facilities and also thankful to Bhai Kahn Singh Nabha Library of the university for providing access to scientific literature available with them.

References

  1. Abril JR, Stull JW, Taylor RR, Angus RC, Daniel TC (1982) Characteristics of frozen desserts sweetened with xylitol and fructose. Food Sci 47(2):472–475CrossRefGoogle Scholar
  2. Agrawal M, Chen RR (2011) Discovery and characterization of a xylose reductase from Zymomonas mobilis ZM4. Biotechnol Lett 33(11):2127–2133PubMedCrossRefGoogle Scholar
  3. Aguiar C, Oetterer M, Menezes TJB (1999) Caracterizacao e aplicacoes do xylitol na industria alimenticia. Boletim SBCTA 33(2):184–193Google Scholar
  4. Ahmed YM, Ibrahim IH, Khan JA, Kumosani TA (2011) Oxidation and reduction of D-xylose by cell-free extract of Hansenula polymorpha. Aust J Basic Appl Sci 5(12):95–100Google Scholar
  5. Alexander NJ (1985) Temperature sensitivity of the induction ofxylose reductase in Pachysolen tannophilus. Biotechnol Bioeng 27(12):1739–1744PubMedCrossRefGoogle Scholar
  6. Attfield PV, Bell PJ (2006) Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEMS Yeast Res 6(6):862–868PubMedCrossRefGoogle Scholar
  7. Banta S, Boston M, Jarnagin A, Anderson S (2002) Mathematical modeling of in vitro enzymatic production of 2-keto-L-gulonic acid using NAD(H) or NADP(H) as cofactors. Metab Eng 4(4):273–284PubMedCrossRefGoogle Scholar
  8. Barski OA, Tipparaju SM, Bhatnagar A (2008) The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 40(4):553–624PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bicho PA, Runnals PL, Cunningham JD, Lee H (1988) Induction of xylose reductase and xylitol dehydrogenase activities in Pachysolen tannophilus and Pichia stipitis on mixed sugars. Appl Environ Microbiol 54(1):50–54PubMedPubMedCentralGoogle Scholar
  10. Billard P, Menart S, Fleer R, Fukuhara MB (1995) Isolation and characterization of the gene encoding xylose reductase from Kluyveromyces lactis. Gene 162(1):93–97PubMedCrossRefPubMedCentralGoogle Scholar
  11. Biswas D, Pandya V, Singh AK, Mondal AK, Kumaran S (2012) Co-factor binding confers substrate specificity to xylose reductase from Debaryomyces hansenii. PLoS One 7(9):1–11CrossRefGoogle Scholar
  12. Bolen PL, Detroy RW (1985) Induction of NADPH-linked D-xylose reductase and NAD-linked xylitol dehydrogenase activities in Pachysolen tannophilus by D-xylose, L-arabinose or D- galactose. Biotechnol Bioeng 27(3):302–307PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bolen PL, Bietz JA, Detroy RW (1985) Aldose reductase in the yeast Pachysolen tannophilus: purification, characterization and N-terminal sequence. Biotechnol Bioeng Symp 15:129–148Google Scholar
  14. Bolen PL, Roth KA, Freer SN (1986) Affinity purifications of aldose reductase and xylitol dehydrogenase from the xylose fermenting yeast Pachysolen tannophilus. Appl Environ Microbiol 52(4):660–664PubMedPubMedCentralGoogle Scholar
  15. Boonmee A (2012) Hydrolysis of various Thai agricultural biomasses using the crude enzyme from Aspergillus aculeatusiizuka FR60 isolated from soil. Braz J Microbiol 43(2):456–466PubMedPubMedCentralCrossRefGoogle Scholar
  16. Boontham W, Srisuk N, Kokaew K, Treeyoung P, Limtong S, Thamchaipenet A, Yurimoto H (2014) Xylitol production by thermotolerant methylotrophic yeast Ogataea siamensis and its xylose reductase gene (xyl1) cloning. Chiang Mai J Sci 41(3):491–502Google Scholar
  17. Branco RF, Santos JC, Pessoa A, Silva SS (2009) Profiles of xylose reductase, xylitol dehydrogenase and xylitol production under different oxygen transfer volumetric coefficient values. J Chem Technol Biotechnol 84(3):326–330CrossRefGoogle Scholar
  18. Branco RF, Santos JC, Silva SS (2011) A solid and robust model for xylitol enzymatic production optimization. J Bioproces Biotechniq 1(4):1–6Google Scholar
  19. Branden CI (1991) The TIM barrel- the most frequently occurring folding motif in proteins. Curr Opin Struct Biol 1(6):978–983CrossRefGoogle Scholar
  20. Brown CL, Graham SM, Cable BB, Ozer EA, Taft PJ, Zabner J (2004) Xylitol enhances bacterial killing in the rabbit maxillary sinus. Laryngoscope 114(11):2021–2024PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bruinenberg PM, But PHM, Dijken JP, Scheffers WA (1984) NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 19(4):256–260CrossRefGoogle Scholar
  22. Cauwenberge JE, Bolen PL, McCracken DA, Bothast RJ (1989) Effect of growth conditions on cofactor linked xylose reductase activity in Pachysolen tannophilus. Enzym Microb Technol 11(10):662–667CrossRefGoogle Scholar
  23. Chen RR, Agrawal M (2012) Industrial applications of a novel aldo/keto reductase of Zymomonas mobilis. US Patent 0,196,342, 2 Aug 2012Google Scholar
  24. Chi DL, Tut OK, Milgrom P (2014) Cluster-randomized xylitol toothpaste trial for early childhood caries prevention. J Dent Child (Chic) 81(1):27–32Google Scholar
  25. Clementine T, Yue CC, Xiaoling W, Marine P, Alex H, Larry M, Daniel W, Laetitia GD (2016) Maltitol and xylitol sweetened chewing gums could modulate salivary parameters involved in dental caries prevention. J Interdiscipl Med Dent Sci 4(2):1–8CrossRefGoogle Scholar
  26. Converti A, Perego P, Dominguez JM (1999) Microaerophilic metabolism of Pachysolen tannophilus at different pH values. Biotechnol Lett 21(8):719–723CrossRefGoogle Scholar
  27. Cortez EV, Pessoa A, Felipe MGA, Roberto IC, Vitolo M (2006) Characterization of xylose reductase extracted by CTAB-reversed micelles from Candida guilliermondii homogenate. Braz J Pharm Sci 42(2):251–257Google Scholar
  28. Costanzo L, Penning TM, Christianson DW (2009) Aldo-keto reductases in which the conserved catalytic histidine is substituted. Chem Biol Interact 178(1–3):127–133PubMedCrossRefPubMedCentralGoogle Scholar
  29. Cunha MAA, Converti A, Santos JC, Silva SS (2006) Yeast immobilization in Lentikats: a new strategy for xylitol bioproduction from sugarcane bagasse. World J Microbiol Biotechnol 22(1):65–72CrossRefGoogle Scholar
  30. Dahn KM, Davis BP, Pittman PE, Kenealy WR, Jeffries TW (1996) Increased xylose reductase activity in the xylose-fermenting yeast Pichia stipitis by overexpression of xyl1. Appl Biochem Biotechnol 57-58:267–276PubMedCrossRefGoogle Scholar
  31. Dasgupta D, Ghosh D, Bandhu S, Agarwal D, Suman SK, Adhikari DK (2016) Purification, characterization and molecular docking study of NADPH dependent xylose reductase from thermotolerant Kluyveromyces sp. IIPE453. Process Biochem 51(1):124–133CrossRefGoogle Scholar
  32. Decker RT, Loveren C (2003) Sugars and dental caries. Am J Clin Nutr 78(l):881–892CrossRefGoogle Scholar
  33. Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Lett 32(3–4):199–224CrossRefGoogle Scholar
  34. Ditzelmuller G, Kubicek CP, Wohrer W, Rohr M (1984) Xylose metabolism in Pachysolen tannophilus purification and properties of xylose reductase. Can J Microbiol 30(11):1330–1336CrossRefGoogle Scholar
  35. Ellis EM (2002) Microbial aldo-keto reductases. FEMS Microbiol Lett 216(2):123–131PubMedCrossRefGoogle Scholar
  36. Emodi A (1978) Xylitol: its properties and food applications. Food Technol 32:20–32Google Scholar
  37. Erdei B, Barta Z, Sipos B, Reczey K, Galbe M, Zacchi G (2010) Research ethanol production from mixtures of wheat straw and wheat meal. Biotechnol Biofuels 3(1):1–9CrossRefGoogle Scholar
  38. Feldmann SD, Sahm H, Sprenger GA (1992) Pentose metabolism in Zymomonas mobilis wild-type and recombinant strains. Appl Microbiol Biotechnol 38:354–361CrossRefGoogle Scholar
  39. Fernandes S, Tuohy MG, Murray PG (2009) Xylose reductase from the thermophilic fungus Talaromyces emersonii: cloning and heterologous expression of the native gene (TeXR) and a double mutant (TeXRK 271R + N273D) with altered coenzyme specificity. J Biosci 34(6):881–890PubMedCrossRefGoogle Scholar
  40. Granstrom T, Aristidou AA, Leisola M (2002) Metabolic flux analysis of Candida tropicalis growing on xylose in an oxygen-limited chemostat. Metab Eng 4(3):248–256PubMedCrossRefGoogle Scholar
  41. Granstrom TB, Takata G, Tokuda M, Izumori K (2004) A novel and complete strategy for bioproduction of rare sugars. J Biosci Bioeng 97(2):89–94PubMedCrossRefGoogle Scholar
  42. Granstrom TB, Izumori K, Leisola M (2007) A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl Microbiol Biotechnol 74(2):273–276PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gross W, Seipold P, Schnarrenberger C (1997) Characterization and purification of an aldose reductase from the acidophilic and thermophilic red alga Galdieria sulphuraria. Plant Physiol 114(1):231–236PubMedPubMedCentralCrossRefGoogle Scholar
  44. Guo C, Zhao C, He P, Lu D, Shen A, Jiang N (2006) Screening and characterization of yeasts for xylitol production. J Appl Microbiol 101(5):1096–1104PubMedCrossRefGoogle Scholar
  45. Gurpilhares DB, Hasmann FA, Pessoa A, Roberto IC (2009) The behavior of key enzymes of xylose metabolism on the xylitol production by Candida guilliermondii grown in hemicellulosic hydrolysate. J Ind Microbiol Biotechnol 36(1):87–93PubMedCrossRefGoogle Scholar
  46. Hagerdal BH, Jeppsson H, Olsson L, Mohagheghi A (1994) An interlaboratory comparison of the performance of ethanol producing microorganisms in a xylose rich acid hydrolysate. Appl Microbiol Biotechnol 41(1):62–72Google Scholar
  47. Hallborn J, Walfridsson M, Airaksinen U, Ojamo H, Hahnhagrbdal B, Penttila M, Kerasnen S (1991) Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology 9(11):1090–1095PubMedCrossRefGoogle Scholar
  48. Hallborn J, Penttila M, Ojamo H, Walfridsson M, Airaksinen U, Keranen S, Hagerdal BH (1999) Xylose utilization by recombinant yeasts. US Patent 5,866,382, 2 Feb 1999Google Scholar
  49. Handumrongkul C, Ma DP, Silva JL (1998) Cloning and expression of Candida guilliermondii xylose reductase gene (xyl1) in Pichia pastoris. Appl Microbiol Biotechnol 49(4):399–404PubMedCrossRefGoogle Scholar
  50. Hong Y, Dashtban M, Kepka G, Chen S, Qin W (2014) Overexpression of D-xylose reductase (xyl1) gene and antisense inhibition of D-xylulokinase (xyiH) gene increase xylitol production in Trichoderma reesei. Biomed Res Int 2014:1–8Google Scholar
  51. Horitsu H, Yahashi Y, Takamizawa K, Kawai K, Suzuki T, Watanabe N (1992) Production of xylitol from D-xylose by Candida tropicalis: optimization of production rate. Biotechnol Bioeng 40(9):1085–1091PubMedCrossRefGoogle Scholar
  52. Hyatt MP, Lickteig AJ, Klaassen CD (2013) Tissue distribution, ontogeny and chemical induction of aldo-keto reductases in mice. Drug Metab Dispos 41(8):1480–1487CrossRefGoogle Scholar
  53. Hyvonen L, Slotte M (1983) Alternative sweetening of yoghurt. J Food Technol 18(1):97–112CrossRefGoogle Scholar
  54. Jeon WY, Yoon BH, Ko BS, Shim WY, Kim JH (2012) Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioprocess Biosyst Eng 35(1–2):191–198PubMedPubMedCentralCrossRefGoogle Scholar
  55. Jez JM, Penning TM (2001) The aldo-keto reductase (AKR) superfamily: an update. Chem Biol Interact 130-132(1–3):499–525PubMedCrossRefGoogle Scholar
  56. Kaneda J, Sasaki K, Gomi K, Shintani T (2011) Heterologous expression of Aspergillus oryzae xylose reductase and xylitol dehydrogenase genes facilitated xylose utilization in the yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 75(1):168–170PubMedCrossRefGoogle Scholar
  57. Kapoor R, Metzger LE (2008) Process cheese: scientific and technological aspects: a review. Compr Rev Food Sci Food Saf 7(2):194–214CrossRefGoogle Scholar
  58. Karimi K, Kheradmandinia S, Taherzadeh MJ (2006) Conversion of rice straw to sugar by dilute acid hydrolysis. Biomass Bioenergy 30(3):247–253CrossRefGoogle Scholar
  59. Kauko K, Makinen KK (2010) Sugar alcohols, caries incidence and remineralization of caries lesions: a literature review. Int J Dent 2010:1–23Google Scholar
  60. Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK (2002) The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis. Biochem J 41(28):8785–8795CrossRefGoogle Scholar
  61. Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK (2003) Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases. Biochem J 373(2):319–326PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kern M, Nidetzky B, Kulbe KD, Haltrich D (1998) Effect of nitrogen sources on the levels of aldose reductase and xylitol dehydrogenase activities in the xylose fermenting yeast Candida tenuis. J Ferment Bioeng 85(2):196–202CrossRefGoogle Scholar
  63. Khoury GA, Fazelinia H, Chin JW, Pantazes RJ, Cirino PC, Maranas CD (2009) Computational design of Candida boidinii xylose reductase for altered cofactor specificity. Protein Sci 18(10):2125–2138PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kim S, Kim J, Oh D (1997) Improvement of xylitol production by controlling oxygen supply in Candida parapsilosis. J Ferment Bioeng 83(3):267–270CrossRefGoogle Scholar
  65. Kim MD, Jeun YS, Kim SG, Ryu YW, Seo JH (2002) Comparison of xylitol production in recombinant Saccharomyces cerevisiae strains harboring xyl1 gene of Pichia stipitis and GRE3 gene of S. cerevisiae. Enzym Microb Technol 31(6):862–866CrossRefGoogle Scholar
  66. Kim SR, Park YC, Jin YS, Seo JH (2013) Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv 31(6):851–861PubMedCrossRefGoogle Scholar
  67. Kinami Y, Kitagawa I (1969) Fluctuation of blood sugar, urine sugar and ketone body levels in surgical stress and application of xylitol. Shujutsu 23(11):1487–1491PubMedGoogle Scholar
  68. Klimacek M, Szekely M, GrieMler R, Nidetzky B (2001) Exploring the active site of yeast xylose reductase by site-directed mutagenesis of sequence motifs characteristic of two dehydrogenase/reductase family types. FEBS Lett 500(3):149–152PubMedCrossRefGoogle Scholar
  69. Kogje A, Ghosalkar A (2016) Xylitol production by Saccharomyces cerevisiae overexpressing different xylose reductases using non-detoxified hemicellulosic hydrolysate of corncob. 3 Biotech 6(2):1–10CrossRefGoogle Scholar
  70. Kokaew K, Srisuk N, Limtong S, Thamchaipenet A (2009) Cloning and nucleotide sequence analysis of xylose reductase (XR) gene from thermotolerant methylotrophic yeast Ogataea siamensis N22. Thai J Genet 2(1):66–71Google Scholar
  71. Kommineni A, Amamcharla J, Metzger LE (2012) Effect of xylitol on the functional properties of low-fat process cheese. J Dairy Sci 95(11):6252–6259PubMedCrossRefGoogle Scholar
  72. Kuhn A, Zyl C, Tonder AV, Prior BA (1995) Purification and partial characterization of an aldo-keto-reductase from Saccharomyces cerevisiae. Appl Environ Microbiol 61(4):1580–1585PubMedPubMedCentralGoogle Scholar
  73. Kumar S, Gummadi SN (2011) Purification and biochemical characterization of a moderately halotolerant NADPH dependent xylose reductase from Debaryomyces nepalensis NCYC 3413. Bioresour Technol 102(20):9710–9717PubMedCrossRefGoogle Scholar
  74. Ladisch MR, Lin KW, Voloch M, Tsao GT (1983) Process considerations in enzymatic hydrolysis of biomass. Enzym Microb Technol 5(2):82–102CrossRefGoogle Scholar
  75. Lakshmi SV, Yadav HKS, Mahesh KP, Raizaday A, Manne N, Ayaz A, Nagavarma NBV (2014) Medicated chewing gum: an overview. Res Rev J Dent Sci 2(2):50–64Google Scholar
  76. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) Procheck: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291CrossRefGoogle Scholar
  77. Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56(1):1–24PubMedCrossRefGoogle Scholar
  78. Lee H (1998) The structure and function of yeast xylose (aldose) reductases. Yeast 14(11):977–984PubMedCrossRefGoogle Scholar
  79. Lee H, Sopher CR, Yau KYF (1996) Induction of xylose reductase and xylitol dehydrogenase activities on mixed sugars in Candida guilliermondii. J Chem Technol Biotechnol 65(4):375–379CrossRefGoogle Scholar
  80. Lee JK, Koo BS, Kim SY (2003) Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis and its functional expression in Candida tropicalis. Appl Environ Microbiol 69(10):6179–6188PubMedPubMedCentralCrossRefGoogle Scholar
  81. Llop MR, Jimeno FG, Acien RM, Dalmau LJB (2010) Effects of xylitol chewing gum on salivary flow rate, pH, buffering capacity and presence of Streptococcus mutans in saliva. Eur J Paediatr Dent 11(1):9–14Google Scholar
  82. Lourenco MVM, Andreote FD, Vildoso CIA, Basso LC (2014) Biotechnological potential of Candida sp. for the bioconversion of D-xylose to xylitol. Afr J Microbiol Res 8(20):2030–2036CrossRefGoogle Scholar
  83. Loveren C (2004) Sugar alcohols: what is the evidence for caries-preventive and caries-therapeutic effects? Caries Res 38(3):286–293PubMedCrossRefPubMedCentralGoogle Scholar
  84. Luccio E, Elling RA, Wilson DK (2006) Identification of a novel NADH-specific aldo-keto reductase using sequence and structural homologies. Biochem J 400(1):105–114PubMedPubMedCentralCrossRefGoogle Scholar
  85. Lugani Y, Sooch BS (2017) Xylitol, an emerging prebiotic: a review. Int J Appl Pharm Biol Res 2(2):67–73Google Scholar
  86. Lugani Y, Oberoi S, Sooch BS (2017) Xylitol: a sugar substitute for patients of diabetes mellitus. World J Pharm Pharm Sci 6(4):741–749Google Scholar
  87. Lunzer R, Mamnun Y, Haltrich D, Kulbe KD, Nidetzky B (1998) Structural and functional properties of a yeast xylitol dehydrogenase, a Zn2+-containing metalloenzyme similar to medium-chain sorbitol dehydrogenases. Biochem J 336(1):91–99PubMedPubMedCentralCrossRefGoogle Scholar
  88. Ly KA, Milgrom P, Rothen M (2006) Xylitol, sweeteners and dental caries. Pediatr Dent 28(2):154–163PubMedGoogle Scholar
  89. Machiulskiene V, Nyvad B, Baelum V (2001) Caries preventive effect of sugar-substituted chewing gum. Community Dent Oral Epidemiol 29:278–288PubMedCrossRefPubMedCentralGoogle Scholar
  90. Makinen KK (1976) Possible mechanisms for the cariostatic effect of xylitol. In: Ritzel G, Brubacher G (eds) Monosaccharides and polyalcohols in nutrition, therapy and dietetics. Huber, Bern, pp 368–380Google Scholar
  91. Makinen KK (1992) Dietary prevention of dental caries by xylitol-clinical effectiveness and safety. J Appl Nutr 44:16–28Google Scholar
  92. Makinen KK (2000) The rocky road of xylitol to its clinical application. J Dent Res 79(6):1352–1355PubMedCrossRefPubMedCentralGoogle Scholar
  93. Makinen KK (2009) An end to crossover designs for studies on the effect of sugar substitutes on caries? Caries Res 43(5):331–333PubMedCrossRefPubMedCentralGoogle Scholar
  94. Makinen KK, Alanen P, Isokangas P, Isotupa K, Soderling E, Makinen PL, Wenhui W, Weijian W, Xiaochi C, Yi W, Boxue Z (2008) Thirty-nine-month xylitol chewing-gum programme in initially 8-year-old school children: a feasibility study focusing on mutans Streptococci and Lactobacilli. Int Dent J 58(1):41–50PubMedCrossRefPubMedCentralGoogle Scholar
  95. Markets and Markets (2016) Industrial enzymes market. http://www.marketsandmarkets.com/PressReleases/industrial-enzymes.asp. Accessed 21 April 2017
  96. Mayerhoff ZDVL, Roberto IC, Franco TT (2004) Purification of xylose reductase from Candida mogii in aqueous two-phase systems. Biochem Eng J 18(3):217–223CrossRefGoogle Scholar
  97. Mayr P, Bruggler K, Kulbe KD, Nidetzky B (2000) D-xylose metabolism by Candida intermedia: isolation and characterization of two forms of aldose reductase with different coenzyme specificities. J Chromatogr B Biomed Sci Appl 737(1–2):195–202PubMedCrossRefPubMedCentralGoogle Scholar
  98. Mayr P, Petschacher B, Nidetzky B (2003) Xylose reductase from the basidiomycete fungus Cryptococcus flavus: purification, steady-state kinetic characterization and detailed analysis of the substrate binding pocket using structure-activity relationships. J Biochem 133(4):553–562PubMedCrossRefPubMedCentralGoogle Scholar
  99. Melaja J, Hamalainen L (1977) Process for making xylitol. US Patent 4008285, 15 Feb 1977Google Scholar
  100. Milessi TSS, Chandel AK, Branco RF, Silva SS (2011) Effect of dissolved oxygen and inoculum concentration on xylose reductase production from Candida guilliermondii using sugarcane bagasse hemicellulosic hydrolysate. Food Nutr Sci 2(3):235–240Google Scholar
  101. Moyses DN, Reis VC, Almeida JR, Moraes LM, Torres FA (2016) Xylose fermentation by Saccharomyces cerevisiae: challenges and prospects. Int J Mol Sci 17(3):1–18CrossRefGoogle Scholar
  102. Mueller M, Wilkins MR, Banat IM (2011) Production of xylitol by the thermotolerant Kluyveromyces marxianus IMB strains. J Bioprocess Biotechniq 1(2):1–5CrossRefGoogle Scholar
  103. Nayak PA, Nayak UA, Khandelwal V (2014) The effect of xylitol on dental caries and oral flora. Clin Cosmet Investig Dent 6:89–94PubMedPubMedCentralCrossRefGoogle Scholar
  104. Neuhauser W, Haltrich D, Kulbe KD, Nidetzky B (1997) NAD(P)H-dependent aldose reductase from the xylose-assimilating yeast Candida tenuis. Biochem J 326(3):683–692PubMedPubMedCentralCrossRefGoogle Scholar
  105. Nigam P, Singh D (1995) Processes for fermentative production of xylitol- a sugar substitute. Process Biochem 30(2):117–124Google Scholar
  106. Nyyssola A, Pihlajaniemi A, Palva A, Weymarn N, Leisola M (2005) Production of xylitol from D-xylose by recombinant Lactococcus lactis. J Biotechnol 118(1):55–66PubMedCrossRefPubMedCentralGoogle Scholar
  107. Parajo JC, Dominguez H, Dominguez JM (1998) Biotechnological production of xylitol Part 2: operation in culture media made with commercial sugars. Bioresour Technol 65(3):203–212CrossRefGoogle Scholar
  108. Pepper T, Olinger PM (1998) Xylitol in sugar-free confections. Food Technol 42:98–106Google Scholar
  109. Pereira AFF, Silva TC, Silva TL, Caldana ML, Baston JRM, Buzalaf MAR (2012) Xylitol concentrations in artificial saliva after application of different xylitol dental varnishes. J Appl Oral Sci 20(2):146–150PubMedCentralCrossRefPubMedGoogle Scholar
  110. Rafiqul ISM, Sakinah AMM (2012) A perspective: bioproduction of xylitol by enzyme technology and future prospects. Int Food Res J 19(2):405–408Google Scholar
  111. Rafiqul SM, Sakinah AM (2015) Biochemical properties of xylose reductase prepared from adapted strain of Candida tropicalis. Appl Biochem Biotechnol 175(1):387–399PubMedCrossRefGoogle Scholar
  112. Rehman A, Gulfraz M, Raja GK, Haq MI, Anwar Z (2015) Comprehensive approach to utilize an agricultural pea peel (Pisum sativum) waste as a potential source for bio-ethanol production. Rom Biotechnol Lett 20(3):10422–10430Google Scholar
  113. Ronzon YC, Zaldo MZ, Lozano MLC, Uscanga MGA (2012) Preliminary characterization of xylose reductase partially purified by reversed micelles from Candida tropicalis IEC5-ITV, an indigenous xylitol-producing strain. Adv Chem Eng Sci 2(1):9–14CrossRefGoogle Scholar
  114. Rosa SMA, Felipe MGA, Silva SS, Vitolo M (1998) Xylose reductase production by Candida guilliermondii. Appl Biochem Biotechnol 70(72):127–135CrossRefGoogle Scholar
  115. Russo JR (1977) Xylitol: anti-carie sweetener? Food Eng 79:37–40Google Scholar
  116. Saha BC, Bothast RJ (1997) Microbial production of xylitol. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass. American Chemical Society, Washington, DC, pp 307–319CrossRefGoogle Scholar
  117. Saha BC, Bothast RJ (1999) Production of xylitol by Candida peltata. J Ind Microbiol Biotechnol 22(6):633–636PubMedCrossRefGoogle Scholar
  118. Sattur AP, Rao KC, Babu KN, Soundar D, Karanth NG, Tumkur RS (2003) Aldose reductase inhibitor and process for preparation thereof. US Patent 0,134,399, 17 Jul 2003Google Scholar
  119. Scheie AA, Fejerskov O, Danielsen B (1998) The effects of xylitol containing chewing gums on dental plaque and acidogenic potential. J Dent Res 77:1547–1542PubMedCrossRefPubMedCentralGoogle Scholar
  120. Scheinin A, Makinen KK, Ylitalo K (1976) Turku sugar studies. V. Final report on the effect of sucrose, fructose and xylitol diets on the caries incidence in man. Acta Odontol Scand 34(4):179–216PubMedCrossRefPubMedCentralGoogle Scholar
  121. Schneider H (1989) Conversion of pentoses to ethanol by yeasts and fungi. Crit Rev Biotechnol 9(1):1–40PubMedCrossRefPubMedCentralGoogle Scholar
  122. Sene L, Vitolo M, Felipe MGA, Silva SS (2000) Effects of environmental conditions on xylose reductase and xylitol dehydrogenase production by Candida guilliermondii. Appl Biochem Biotechnol 84(1):371–380PubMedCrossRefPubMedCentralGoogle Scholar
  123. Sharma A (2014) Production of xylitol by catalytic hydrogenation of xylose. Pharm Innov 2(12):1–6Google Scholar
  124. Silva DDV, Felipe MGA (2006) Effect of glucose:xylose ratio on xylose reductase and xylitol dehydrogenase activities from Candida guilliermondii in sugarcane bagasse hydrolysate. J Chem Technol Biotechnol 81(7):1294–1300CrossRefGoogle Scholar
  125. Sirisansaneeyakul S, Staniszewski M, Rizzi M (1995) Screening of yeasts for production of xylitol from D-xylose. J Ferment Bioeng 80(6):565–570CrossRefGoogle Scholar
  126. Soderling EM (2009) Xylitol, mutans streptococci and dental plaque. Adv Dent Res 21(1):74–78PubMedCrossRefGoogle Scholar
  127. Su Y, Li W, Zhu W, Yu R, Fei B, Wen T, Cao Y, Qiao D (2010) Characterization of xylose reductase from Candida tropicalis immobilized on chitosan bead. Afr J Biotechnol 9(31):4954–4965Google Scholar
  128. Takuma S, Nakashima N, Tantirungkij M, Kinoshita S, Okada H, Seki T, Yoshida T (1991) Isolation of xylose reductase gene of Pichia stipitis and its expression in Saccharomyces cerevisiae. Appl Biochem Biotechnol 28-29:327–340PubMedCrossRefPubMedCentralGoogle Scholar
  129. Tamburini E, Bianchini E, Bruni A, Forlani G (2010) Cosubstrate effect on xylose reductase and xylitol dehydrogenase activity levels and its consequence on xylitol production by Candida tropicalis. Enzym Microb Technol 46(5):352–359CrossRefGoogle Scholar
  130. Tomotani EJ, Arruda PVD, Vitolo M, Felipe MGA (2009) Obtaining partial purified xylose reductase from Candida guilliermondii. Braz J Microbiol 40(3):631–635PubMedPubMedCentralCrossRefGoogle Scholar
  131. Twetman S (2009) Consistent evidence to support the use of xylitol and sorbitol containing chewing gum to prevent dental caries. Evid Based Dent 10(1):10–11PubMedCrossRefGoogle Scholar
  132. Uhari M, Tapiainen T, Kontiokari T (2000) Xylitol in preventing acute otitis media. Vaccine 19(1):144–147CrossRefGoogle Scholar
  133. Vandeska E, Kuzmanova S, Jeffries TW (1995) Xylitol formation and key enzyme activities in Candida boidinii under different oxygen transfer rates. J Ferment Bioeng 80(5):513–516CrossRefGoogle Scholar
  134. Velazquez Pereda MDC, Polezel MA, Dieamant GC, Cecilia Nogueira C, Mussi L, Rossan MR, Carlos Correia RD, Camilo NS (2011) Xylitol esters and ethers applied as alternative emulsifier, solvents, co-emulsions and preservative systems for pharmaceutical and cosmetic products. US Patent 0,251,415, 13 Oct 2011Google Scholar
  135. Verduyn C, Jzn JF, Dijken JPV, Scheffers WA (1985a) Multiple forms of xylose reductase in Pachysolen tannophilus CBS4044. FEMS Microbiol Lett 30(3):313–317CrossRefGoogle Scholar
  136. Verduyn C, Kleef RV, Frank J, Schreuder H, Dijken JPV, Scheffers WA (1985b) Properties of the NAD(P)H-dependent xylose reductase from the xylose fermenting yeast Pichia stipitis. Biochem J 226(3):669–677PubMedPubMedCentralCrossRefGoogle Scholar
  137. Vogl M, Kratzer R, Nidetzky B, Brecker L (2011) Candida tenuis xylose reductase catalysed reduction of acetophenones: the effect of ring-substituents on catalytic efficiency. Org Biomol Chem 9(16):5863–5870PubMedCrossRefGoogle Scholar
  138. Vongsuvanlert V, Tani Y (1988) Purification and characterization of xylose isomerase of a methanol yeast, Candida boidinii, which is involved in sorbitol production from glucose. Agric Biol Chem 52(7):1817–1824Google Scholar
  139. Webb SR, Lee H (1991) Inhibition of xylose reductase from the yeast Pichia stipitis. Appl Biochem Biotechnol 30:325–337CrossRefGoogle Scholar
  140. Woodyer R, Simurdiak M, Donk WA, Zhao HM (2005) Heterologous expression, purification, and characterization of a highly active xylose reductase from Neurospora crassa. Appl Environ Microbiol 71(3):1642–1647PubMedPubMedCentralCrossRefGoogle Scholar
  141. Yablochkova EN, Bolotnikova OI, Mikhailova NP, Nemova NN, Ginak AI (2003) Specific features of fermentation of D-xylose and D-glucose by xylose-assimilating yeasts. Appl Biochem Biotechnol 39(3):265–269Google Scholar
  142. Ye Q, Hyndman D, Green NC, Li L, Jia Z, Flynn TG (2001) The crystal structure of an aldehyde reductase Y50F mutant NADP complex and its implications for substrate binding. Chem Biol Interact 130-132(1–3):651–658PubMedCrossRefGoogle Scholar
  143. Yin SY, Kim HJ, Kim HJ (2014) Protective effect of dietary xylitol on influenza: a virus infection. PLoS One 9(1):1–7Google Scholar
  144. Yokoyama S, Suzuki T, Kawai K, Horitsu H, Takamizawa K (1995) Purification, characterization and structure analysis of NADPH-dependent D-xylose reductases from Candida tropicalis. J Ferment Bioeng 79(3):217–223CrossRefGoogle Scholar
  145. Yoshitake J, Ohiwa H, Shimamura M, Imai T (1971) Production of polyalcohol by a Corynebacterium sp. Part I Production of pentitol from aldopentose. Agric Biol Chem 35(6):905–911Google Scholar
  146. Yoshitake J, Ishizaki H, Shimamura M, Imai T (1973) Xylitol production by an Enterobacter species. Agric Biol Chem 37(10):2261–2266CrossRefGoogle Scholar
  147. Zeid AAA, Fouly MZ, Zawahry YA, Mongy TM, Aziz ABA (2008) Bioconversion of rice straw xylose to xylitol by a local strain of Candida tropicalis. J Appl Sci Res 4(8):975–986Google Scholar
  148. Zhang F, Qiao D, Xu H, Lio C, Li S, Cao Y (2009) Cloning, expression and characterization of xylose reductase with higher activity from Candida tropicalis. J Microbiol 47(3):351–357PubMedCrossRefGoogle Scholar
  149. Zhang Y, Gao F, Zhang SP, Su ZG, Ma GH, Wang P (2011) Simultaneous production of 1,3-dihydroxyacetone and xylitol from glycerol and xylose using a nanoparticle supported multi-enzyme system with in situ cofactor regeneration. Bioresour Technol 102(2):1837–1843PubMedCrossRefGoogle Scholar
  150. Zhang B, Zhang J, Wang D, Gao X, Sun L, Hong J (2015a) Data for rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP(H)-preferring xylose reductase-xylitol dehydrogenase pathway. Data Brief 5:179–186PubMedPubMedCentralCrossRefGoogle Scholar
  151. Zhang M, Jiang ST, Zheng Z, Li XJ, Luo SZ, Wu XF (2015b) Cloning, expression, and characterization of a novel xylose reductase from Rhizopus oryzae. J Basic Microbiol 55(7):907–921PubMedCrossRefGoogle Scholar
  152. Zhao H, Nair NU (2010) Xylose reductase mutants and uses thereof. US Patent 0,291,645, 18 Nov 2010Google Scholar
  153. Zhao X, Gao P, Wang Z (1998) The production and properties of a new xylose reductase from fungus. Appl Biochem Biotechnol 70–72(1):405–414PubMedCrossRefGoogle Scholar
  154. Zhao H, Woodyer R, Simurdiak M, Donk WA (2006) Highly active xylose reductase from Neurospora crass. US Patent 0,035,353, 16 Feb 2006Google Scholar
  155. Zhao H, Woodyer R, Simurdiak M, Donk WA (2008) Highly active xylose reductase from Neurospora crass. US Patent 7,381,553, 3 Jun 2008Google Scholar
  156. Zheng Y, Yu X, Li T, Xiong X, Chen S (2014) Induction of D-xylose uptake and expression of NAD(P)H-linked xylose reductase and NADP -linked xylitol dehydrogenase in the oleaginous microalga Chlorella sorokiniana. Biotechnol Biofuels 7(1):1–8PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Enzyme Biotechnology Laboratory, Department of Biotechnology, Punjabi UniversityPatialaIndia

Personalised recommendations