Metallomics pp 245-270 | Cite as

New Frontiers of Metallomics: Elemental and Species-Specific Analysis and Imaging of Single Cells

  • Javier Jiménez-LamanaEmail author
  • Joanna Szpunar
  • Ryszard Łobinski
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1055)


Single cells represent the basic building units of life, and thus their study is one the most important areas of research. However, classical analysis of biological cells eludes the investigation of cell-to-cell differences to obtain information about the intracellular distribution since it only provides information by averaging over a huge number of cells. For this reason, chemical analysis of single cells is an expanding area of research nowadays. In this context, metallomics research is going down to the single-cell level, where high-resolution high-sensitive analytical techniques are required. In this chapter, we present the latest developments and applications in the fields of single-cell inductively coupled plasma mass spectrometry (SC-ICP-MS), mass cytometry, laser ablation (LA)-ICP-MS, nanoscale secondary ion mass spectrometry (nanoSIMS), and synchrotron X-ray fluorescence microscopy (SXRF) for single-cell analysis. Moreover, the capabilities and limitations of the current analytical techniques to unravel single-cell metabolomics as well as future perspectives in this field will be discussed.


Single-cell analysis ICP-MS Laser ablation NanoSIMS X-ray fluorescence Imaging Intracellular distribution Metal content 



Absolute limit of detection


Atmospheric pressure matrix-assisted laser desorption ionization


Capillary electrophoresis


Cryo nanoscale X-ray tomography


Cytometry by time-of-flight


Electrospray ionization mass spectrometry


Femtosecond laser ionization orthogonal time-of-flight mass spectrometry


High-efficiency cell introduction system


High performance concentric nebulizer


Inductively coupled plasma atomic emission spectrometry


Inductively coupled plasma mass spectrometry


Inductively coupled plasma sector field mass spectrometry


Inductively coupled plasma time-of-flight mass spectrometry


Liquid-assisted droplet ejection


Laser ablation inductively coupled plasma mass spectrometry


Large-bore high performance concentric nebulizer


Matrix-assisted laser desorption ionization


Micro-droplet generator


Micro-droplet injection system


Micro-flow Injection


Micro-X-ray fluorescence




Phosphate-buffered saline






Quantum dots


Ruthenium red


Single cell inductively coupled plasma mass spectrometry


Secondary ion mass spectrometry


Secondary neutral mass spectrometry


Superoxide dismutase


Single particle inductively coupled plasma mass spectrometry


Synchrotron radiation nano-X-ray fluorescence


Synchrotron X-ray fluorescence


Transmission electron microscopy


Time-of-flight secondary ion mass spectrometry


  1. Amable L, Stephan C, Smith S, Merrifield R (2017) An introduction to single cell ICP-MS analysis. Perkin Elmer, USA, pp 3–39Google Scholar
  2. Audinot JN, Georgantzopoulou A, Piret JP, Gutleb AC, Dowsett D, Migeon HN, Hoffmann L (2013) Identification and localization of nanoparticles in tissues by mass spectrometry. Surf Interface Anal 45:230–233CrossRefGoogle Scholar
  3. Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, Pavlov S, Vorobiev S, Dick JE, Tanner SD (2009) Mass cytometry: a novel technique for real-time single cell multi-target immunoassay based on inductively coupled plasma time of flight mass spectrometry. Anal Chem 81:6813–6822CrossRefPubMedGoogle Scholar
  4. Benninghoven A, Rudenauer FG, Werner HW (1987) Secondary ion mass spectrometry: basic concepts, instrumental aspects, applications and trends. Wiley-Interscience, New YorkGoogle Scholar
  5. Boxer SG, Kraft ML, Weber PK (2009) Advances in imaging secondary ion mass spectrometry for biological samples. Annu Rev Biophys 38:53–74CrossRefPubMedGoogle Scholar
  6. Büchner T, Drescher D, Traub H, Schrade P, Bachmann S, Jakubowski N, Kneipp J (2014) Relating surface-enhanced Raman scattering signals of cells to gold nanoparticle aggregation as determined by LA-ICP-MS micromapping. Anal Bioanal Chem 406:7003–7014CrossRefPubMedGoogle Scholar
  7. Ceko MJ, Hummitzsch K, Hatzirodos N, Bonner WM, Aitken JB, Russell DL, Lane M, Rodgers RJ, Harris HH (2015) X-Ray fluorescence imaging and other analyses identify selenium and GPX1 as important in female reproductive function. Metallomics 7:71–82CrossRefPubMedGoogle Scholar
  8. Comi TJ, Makurath MA, Philip MC, Rubakhin SS, Sweedler JV (2017) MALDI MS guided liquid microjunction extraction for capillary electrophoresis − electrospray ionization MS analysis of single pancreatic islet cells. Anal Chem 89:7765–7772CrossRefPubMedPubMedCentralGoogle Scholar
  9. Degueldre C, Favarger PY (2003) Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloids Surfaces A Physicochem Eng Asp 217:137–142CrossRefGoogle Scholar
  10. Dong Y, Li B, Aharoni A (2016) More than pictures: when MS imaging meets histology. Trends Plant Sci 21:686–698CrossRefPubMedGoogle Scholar
  11. Drescher D, Giesen C, Traub H, Panne U, Kneipp J, Jakubowski N (2012) Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS. Anal Chem 84:9684–9688CrossRefPubMedGoogle Scholar
  12. Drescher D, Zeise I, Traub H, Guttmann P, Seifert S, Büchner T, Jakubowski N, Schneider G, Kneipp J (2014) In situ characterization of SiO2 nanoparticle biointeractions using BrightSilica. Adv Funct Mater 24:3765–3775CrossRefGoogle Scholar
  13. Gao Y, Lin Y, Zhang B, Zou D, He M, Dong B, Hang W, Huang B (2013) Single-cell elemental analysis via high irradiance femtosecond laser ionization time-of-flight mass spectrometry. Anal Chem 85:4268–4272CrossRefPubMedGoogle Scholar
  14. Groombridge AS, Miyashita S, Fujii S, Nagasawa K, Okahashi T, Ohata M, Umemura T, Takatsu A, Inagaki K, Chiba K (2013) High sensitive elemental analysis of single yeast cells (Saccharomyces cerevisiae) by time-resolved inductively-coupled plasma mass spectrometry using a high efficiency cell introduction system. Anal Sci 29:597–603CrossRefPubMedGoogle Scholar
  15. Gundlach-Graham A, Günther D (2016) Toward faster and higher resolution LA-ICPMS imaging: on the co-evolution of la cell design and ICPMS instrumentation Young Investigators in Analytical and Bioanalytical Science. Anal Bioanal Chem 408:2687–2695CrossRefPubMedGoogle Scholar
  16. Guo Y, Baumgart S, Stärk H-J, Harms H, Müller S (2017) Mass cytometry for detection of silver at the bacterial single cell level. Front Microbiol 8:1–9Google Scholar
  17. Haase A, Arlinghaus HF, Tentschert J, Jungnickel H, Graf P, Mantion A, Draude F, Galla S, Plendl J, Goetz ME, Masic A, Meier W, Thünemann AF, Taubert A, Luch A (2011) Application of laser postionization secondary neutral mass spectrometry/time-of-flight secondary ion mass spectrometry in nanotoxicology: visualization of nanosilver in human macrophages and cellular responses. ACS Nano 5:3059–3068CrossRefPubMedGoogle Scholar
  18. Hagenhoff B, Breitenstein D, Tallarek E, Möllers R, Niehuis E, Sperber M, Goricnik B, Wegener J (2013) Detection of micro- and nano-particles in animal cells by ToF-SIMS 3D analysis. Surf Interface Anal 45:315–319CrossRefGoogle Scholar
  19. Haraguchi H (2004) Metallomics as integrated biometal science. J Anal At Spectrom 19:5–14CrossRefGoogle Scholar
  20. Haraguchi H (2017a) Metallomics: the history over the last decade and a future outlook. Metallomics 9:1001–1013CrossRefPubMedGoogle Scholar
  21. Haraguchi H (2017b) Metallomics: integrated biometal science. In: Ogra Y, Hirata T (eds) Metallomics: recent analytical techniques and applications. Springer, Berlin, pp 3–39CrossRefGoogle Scholar
  22. Haraguchi H, Ishii A, Hasegawa T, Matsuura H, Umemura T (2008) Metallomics study on all-elements analysis of salmon egg cells and fractionation analysis of metals in cell cytoplasm. Pure Appl Chem 80:2595–2608CrossRefGoogle Scholar
  23. Ho K-S, Chan W-T (2010) Time-resolved ICP-MS measurement for single-cell analysis and on-line cytometry. J Anal At Spectrom 25:1114–1122CrossRefGoogle Scholar
  24. Isaure M-P, Huguet S, Meyer C, Castillo-michel H, Testemale D, Vantelon D, Saumitou-laprade P, Verbruggen N, Sarret G (2015) Evidence of various mechanisms of Cd sequestration in the hyperaccumulator Arabidopsis halleri, the non-accumulator Arabidopsis lyrata , and their progenies by combined synchrotron-based techniques. J Exp Bot 66:3201–3214CrossRefPubMedGoogle Scholar
  25. Isaure M-P, Leyh B, Salomé M, Krauss G-J, Schaumlöffel D, Dobritzsch D (2017) The aquatic hyphomycete Heliscus lugdunensis protects its hyphae tip cells from cadmium: a micro X-ray fluorescence and X-ray absorption near edge structure spectroscopy study. Spectrochim Acta Part B At Spectrosc 137:85–92CrossRefGoogle Scholar
  26. Ishihara Y, Aida M, Nomura A, Miyahara H, Hokura A, Okino A (2015) Development of Desolvation system for single-cell analysis using droplet injection inductively coupled plasma atomic emission spectroscopy. Anal Sci 31:781–785CrossRefPubMedGoogle Scholar
  27. Laborda F, Bolea E, Jiménez-Lamana J (2014) Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal Chem 86:2270–2278CrossRefPubMedGoogle Scholar
  28. Leonardo T, Farhi E, Boisson A, Vial J, Cloetens P, Bohic S (2014) Determination of elemental distribution in green micro-algae using synchrotron radiation nano and quantitative imaging of silver and cobalt. Metallomics 6:316–329CrossRefPubMedGoogle Scholar
  29. Li F, Armstrong DW, Houk RS (2005) Behavior of bacteria in the inductively coupled plasma: atomization and production of atomic ions for mass spectrometry. Anal Chem 77:1407–1413CrossRefPubMedGoogle Scholar
  30. Malherbe J, Penen F, Isaure MP, Frank J, Hause G, Dobritzsch D, Gontier E, Horréard F, Hillion F, Schaumlöffel D (2016) A new radio frequency plasma oxygen primary ion source on Nano secondary ion mass spectrometry for improved lateral resolution and detection of electropositive elements at single cell level. Anal Chem 88:7130–7136CrossRefPubMedGoogle Scholar
  31. Managh AJ, Edwards SL, Bushell A, Wood KJ, Geissler EK, Hutchinson JA, Hutchinson RW, Reid HJ, Sharp BL (2013) Single cell tracking of gadolinium labeled CD4+ T cells by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 85:10627–10634CrossRefPubMedGoogle Scholar
  32. Maret W (2016) The metals in the biological periodic system of the elements: concepts and conjectures. Int J Mol Sci 17:1–8CrossRefGoogle Scholar
  33. Mathieu E, Lai B, Chain F, Langella P, Bachelet M, Masliah J, Seksik P, Policar C (2017) A cell-penetrant manganese superoxide dismutase (MnSOD) mimic is able to complement MnSOD and exerts an Antiinflammatory effect on cellular and animal models of inflammatory bowel diseases. Inorg Chem 56:2545–2555CrossRefPubMedGoogle Scholar
  34. McRae R, Lai B, Fahrni CJ (2013) Subcellular redistribution and mitotic inheritance of transition metals in proliferating mouse fibroblast cells. Metallomics 5:52–61CrossRefPubMedPubMedCentralGoogle Scholar
  35. Miyashita S, Groombridge AS, Fujii S, Takatsu A, Chiba K, Inagaki K (2014a) Time-resolved ICP-MS measurement: a new method for elemental and multiparametric analysis of single cells. Anal Sci 30:219–224CrossRefPubMedGoogle Scholar
  36. Miyashita S, Groombridge AS, Fujii S, Minoda A, Takatsu A, Hioki A, Chiba K, Inagaki K (2014b) Highly efficient single-cell analysis of microbial cells by time-resolved inductively coupled plasma mass spectrometry. J Anal At Spectrom 29:1598–1606CrossRefGoogle Scholar
  37. Miyashita S, Fujii S, Shigeta K, Inagaki K (2017) Single cell analysis by using ICP-MS. In: Ogra Y, Hirata T (eds) Metallomics: recent analytical techniques and applications. Springer, Berlin, pp 107–124CrossRefGoogle Scholar
  38. Mueller L, Traub H, Jakubowski N, Drescher D, Baranov VI, Kneipp J (2014) Trends in single-cell analysis by use of ICP-MS. Anal Bioanal Chem 406:6963–6977CrossRefPubMedGoogle Scholar
  39. Murray KK, Seneviratne CA, Ghorai S (2016) High resolution laser mass spectrometry bioimaging. Methods 104:118–126CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nomizu T, Nakashima H, Hotta Y, Tanaka T, Kawaguchi H (1992) Simultaneous measurement of the elemental content and size of airborne particles by inductively coupled plasma emission spectrometry combined with the light-scattering method. Anal Sci 8:527–531CrossRefGoogle Scholar
  41. Nomizu T, Kaneco S, Tanaka T, Yamamoto T, Kawaguchi H (1993) Determination of Femto-gram amounts of zinc and lead in individual airborne particles by inductively coupled plasma mass spectrometry with direct air-sample introduction. Anal Sci 9:843–846CrossRefGoogle Scholar
  42. Nomizu T, Kaneco S, Tanaka T, Ito D, Kawaguchi H, Vallee BT (1994) Determination of calcium content in individual biological cells by inductively coupled plasma atomic emission spectrometry. Anal Chem 66:3000–3004CrossRefGoogle Scholar
  43. Nuñez J, Renslow R, Cliff JB, Anderton CR (2018) NanoSIMS for biological applications: current practices and analyses. Biointerphases 13:03B301CrossRefGoogle Scholar
  44. Passarelli MK, Ewing AG (2013) Single-cell imaging mass spectrometry. Curr Opin Chem Biol 17:854–859CrossRefPubMedGoogle Scholar
  45. Penen F, Isaure MP, Dobritzsch D, Bertalan I, Castillo-Michel H, Proux O, Gontier E, Le Coustumer P, Schaumlöffel D (2017) Pools of cadmium in Chlamydomonas reinhardtii revealed by chemical imaging and XAS spectroscopy. Metallomics 9:910–923CrossRefPubMedGoogle Scholar
  46. Pett-Ridge J, Weber PK (2012) NanoSIP: NanoSIMS applications for microbial biology. In: Navid A (ed) Microbial systems biology. Springer, Berlin, pp 375–408CrossRefGoogle Scholar
  47. Qin Z, Caruso JA, Lai B, Matusch A, Becker JS (2011) Trace metal imaging with high spatial resolution: applications in biomedicine. Metallomics 3:28–37CrossRefPubMedGoogle Scholar
  48. Roschzttardtz H, Grillet L, Isaure M, Conéjéro G, Ortega R, Curie C, Mari S (2011) Plant cell nucleolus as a hot spot for iron. J Biol Chem 286:27863–27866CrossRefPubMedPubMedCentralGoogle Scholar
  49. Roudeau S, Carmona A, Perrin L, Ortega R (2014) Correlative organelle fluorescence microscopy and synchrotron X-ray chemical element imaging in single cells. Anal Bioanal Chem 406:6979–6991CrossRefPubMedGoogle Scholar
  50. Rubakhin SS, Romanova EV, Nemes P, Sweedler JV (2011) Profiling metabolites and peptides in single cells. Nat Methods 8:S20–S29CrossRefPubMedPubMedCentralGoogle Scholar
  51. Schaumlöffel D, Hutchinson R, Malherbe J, Le Coustumer P, Gontier E, Isaure M-P (2016) Novel methods for bioimaging including LA-ICPMS, NanoSIMS, TEM/X-EDS, SXRF. In: Michalke B (ed) Metallomics: analytical techniques and speciation methods. Wiley-VCH, Weinheim, pp 83–116CrossRefGoogle Scholar
  52. Schmid A, Kortmann H, Dittrich PS, Blank LM (2010) Chemical and biological single cell analysis. Curr Opin Biotechnol 21:12–20CrossRefPubMedGoogle Scholar
  53. Schober Y, Guenther S, Spengler B, Römpp A (2012) Single cell matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Chem 84:6293–6297CrossRefPubMedGoogle Scholar
  54. Shigeta K, Traub H, Panne U, Okino A, Rottmann L, Jakubowski N (2013a) Application of a micro-droplet generator for an ICP-sector field mass spectrometer – optimization and analytical characterization. J Anal At Spectrom 28:646–656CrossRefGoogle Scholar
  55. Shigeta K, Koellensperger G, Rampler E, Traub H, Rottmann L, Panne U, Okino A, Jakubowski N (2013b) Sample introduction of single selenized yeast cells (Saccharomyces cerevisiae) by micro droplet generation into an ICP-sector field mass spectrometer for label-free detection of trace elements. J Anal At Spectrom 28:637–645CrossRefGoogle Scholar
  56. Slaveykova VI, Guignard C, Eybe T, Migeon HN, Hoffmann L (2009) Dynamic NanoSIMS ion imaging of unicellular freshwater algae exposed to copper. Anal Bioanal Chem 393:583–589CrossRefPubMedGoogle Scholar
  57. Smart KE, Smith JAC, Kilburn MR, Martin BGH, Hawes C, Grovenor CRM (2010) High-resolution elemental localization in vacuolate plant cells by nanoscale secondary ion mass spectrometry. Plant J 63:870–879CrossRefPubMedGoogle Scholar
  58. Storms HA, Brown KF, Stein JD (1977) Evaluation of a cesium positive ion source for secondary ion mass spectrometry. Anal Chem 49:2023–2030CrossRefGoogle Scholar
  59. Szyrwiel L, Shimura M, Shirataki J, Matsuyama S, Matsunaga A, Setner B, Szewczuk Z, Yamauchi K, Chavatte L (2015) A novel branched TAT 47–57 peptide for selective Ni 2+ introduction into the human fibrosarcoma cell nucleus. Metallomics 7:1155–1162CrossRefPubMedGoogle Scholar
  60. Tanner SD, Bandura DR, Ornatsky O, Baranov VI, Nitz M, Winnik MA (2008) Flow cytometer with mass spectrometer detection for massively multiplexed single-cell biomarker assay. Pure Appl Chem 80:2627–2641CrossRefGoogle Scholar
  61. Tsang CN, Ho KS, Sun H, Chan WT (2011) Tracking bismuth antiulcer drug uptake in single helicobacter pylori cells. J Am Chem Soc 133:7355–7357CrossRefPubMedGoogle Scholar
  62. Týčová A, Ledvina V, Klepárník K (2017) Recent advances in CE-MS coupling: instrumentation, methodology, and applications. Electrophoresis 38:115–133CrossRefPubMedGoogle Scholar
  63. Umemura T, Matsui Y, Sinnosuke S, Fukai T, Fujimori E, Kumata H, Aoki M (2017) Comprehensive element analysis of prokaryotic and eukaryotic cells as well as organelles by ICP-MS. In: Ogra Y, Hirata T (eds) Metallomics: recent analytical techniques and applications. Springer, Berlin, pp 219–237CrossRefGoogle Scholar
  64. Van Malderen SJM, Vergucht E, De Rijcke M, Janssen C, Vincze L, Vanhaecke F (2016a) Quantitative determination and subcellular imaging of cu in single cells via laser ablation-ICP-mass spectrometry using high-density microarray gelatin standards. Anal Chem 88:5783–5789CrossRefPubMedGoogle Scholar
  65. Van Malderen SJM, Managh AJ, Sharp BL, Vanhaecke F (2016b) Recent developments in the design of rapid response cells for laser ablation-inductively coupled plasma-mass spectrometry and their impact on bioimaging applications. J Anal At Spectrom 31:423–439CrossRefGoogle Scholar
  66. Verboket PE, Borovinskaya O, Meyer N, Günther D, Dittrich PS (2014) A new microfluidics-based droplet dispenser for ICPMS. Anal Chem 86:6012–6018CrossRefPubMedPubMedCentralGoogle Scholar
  67. Vergucht E, Brans T, Beunis F, Garrevoet J, De Rijcke M, Bauters S, Deruytter D, Vandegehuchte M, Van Nieuwenhove I, Janssen C, Burghammer M, Vincze L (2015) In vivo X-ray elemental imaging of single cell model organisms manipulated by laser-based optical tweezers. Sci Rep 5:9049CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wang D, Bodovitz S (2010) Single cell analysis: the new frontier in “omics”. Trends Biotechnol 28:281–290CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wang HAO, Grolimund D, Giesen C, Borca CN, Shaw-Stewart JRH, Bodenmiller B, Günther D (2013) Fast chemical imaging at high spatial resolution by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 85:10107–10116CrossRefPubMedGoogle Scholar
  70. Wang H, Wang B, Wang M, Zheng L, Chen H, Chai Z, Zhao Y, Feng W (2015) Time-resolved ICP-MS analysis of mineral element contents and distribution patterns in single cells. Analyst 140:523–531CrossRefPubMedGoogle Scholar
  71. Wang H, He M, Chen B, Hu B (2017a) Advances in ICP-MS-based techniques for trace elements and their species analysis in cells. J Anal At Spectrom 32:1650–1659CrossRefGoogle Scholar
  72. Wang H, Chen B, He M, Hu B (2017b) A facile droplet-Chip-time-resolved inductively coupled plasma mass spectrometry online system for determination of zinc in single cell. Anal Chem 89:4931–4938CrossRefPubMedGoogle Scholar
  73. Wedlock LE, Kilburn MR, Cliff JB, Filgueira L, Saunders M, Berners-Price SJ (2011) Visualising gold inside tumour cells following treatment with an antitumour Au(I) complex. Metallomics 3:917–925CrossRefPubMedGoogle Scholar
  74. Wolfe-Simon F, Switzer Blum J, Kulp TR, Gordon GW, Hoeft SE, Pett-Ridge J, Stolz JF, Webb SM, Weber PK, Davies PCW, Anbar AD, Oremland RS, Hille R, Lane TW, Morel FM, Wolfe-Simon F, Davies PCW, Anbar AD, Rosen BP, Baer CD, Edwards JO, Rieger PH, Oremland RS, Stolz JF, Hollibaugh JT, Blum JS, Bindi AB, Buzzelli J, Stolz JF, Oremland RS, Takeuchi M, Makino W, Cotner J, Sterner R, Elser J, Mandelstam J, Smith PG, Pickering IJ, Holbrook S, Dickerson R, Kim SH, Oremland RS, Stolz JF, Quillaguaman J, Delgado O, Mattiasson B, Hatti-Kaul R (2011) A bacterium that can grow by using arsenic instead of phosphorus. Science 332:1163–1166CrossRefPubMedGoogle Scholar
  75. Zavalin A, Todd EM, Rawhouser PD, Yang J, Norris JL, Caprioli RM (2012) Direct imaging of single cells and tissue at sub-cellular spatial resolution using transmission geometry MALDI MS. J Mass Spectrom 47:1473–1481CrossRefPubMedGoogle Scholar
  76. Zhao F, Moore KL, Lombi E, Zhu Y (2014) Imaging element distribution and speciation in plant cells. Trends Plant Sci 19:183–192CrossRefPubMedGoogle Scholar
  77. Zheng L-N, Wang M, Wang B, Chen H-Q, Ouyang H, Zhao Y-L, Chai Z-F, Feng W-Y (2013) Determination of quantum dots in single cells by inductively coupled plasma mass spectrometry. Talanta 116:782–787CrossRefPubMedGoogle Scholar
  78. Zheng L-N, Wang M, Zhao L-C, Sun B-Y, Wang B, Chen H-Q, Zhao Y-L, Chai Z-F, Feng W-Y (2015) Quantitative analysis of Gd@C82(OH)22 and cisplatin uptake in single cells by inductively coupled plasma mass spectrometry. Anal Bioanal Chem 407:2383–2391CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Javier Jiménez-Lamana
    • 1
    Email author
  • Joanna Szpunar
    • 1
  • Ryszard Łobinski
    • 1
  1. 1.Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM)UMR 5254, CNRS-UPPAPauFrance

Personalised recommendations