Skip to main content

Metallomics: Integrated Biometal Science

  • Chapter
  • First Online:
Metallomics

Abstract

The historical aspects of metallomics, which were proposed as integrated biometal science in 2004 by the present author, are described. The significant development of analytical atomic spectrometry since the late 1960s allowed the all-element analyses of various biological samples as well as chemical speciation analysis of trace elements. Such a progress of trace metal analysis opened new era of trace metal science in various scientific fields to cooperate with omics sciences such as genomics, proteomics, and metabolomics. Under such situations in life science, it was desired to integrate biometal science as one of omics sciences for further development. So far, the international symposiums of metallomics were held five times around the world since 2007 in Nagoya, and the academic journal of metallomics has been published since 2009 from the Royal Society of Chemistry. Furthermore, essentiality and toxicity of trace metals, a simplified model of the biological system, the research fields in metallomics, and so forth are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haraguchi H (2004) Metallomics as integrated biometal science. J Anal At Spectrom 19(1):5–14

    Article  CAS  Google Scholar 

  2. Caruso JA, O’Connor N (2009) Metallomics: integrating research related to biometals – a journal for an emerging community. Metallomics 1(1):14–16

    Article  Google Scholar 

  3. Haraguchi H (2005) New development of chemical speciation analysis for metallomics research. Biomed Res Trace Elements (in Japanese) 16(3):217–232

    Google Scholar 

  4. Koppenaal DW, Hieftje GM (2007) Metallomics—the future of atomic spectroscopy? J Anal At Spectrom 22(2):111

    Article  CAS  Google Scholar 

  5. Koppenaal DW, Hieftje GM (2007) Metallomics – an interdisciplinary and evolving field. J Anal At Spectrom 22(8):855

    Article  CAS  Google Scholar 

  6. Mounicou S, Szpunar J, Lobinski R (2009) Metallomics: the concept and methodology. Chem Soc Rev 38(4):1119–1138

    Article  CAS  PubMed  Google Scholar 

  7. Lobinski R, Becker JS, Haraguchi H et al (2010) Metallomics: guidelines for terminology and critical evaluation of analytical chemistry approaches (IUPAC Technical Report). Pure Appl Chem 82(2):493–504

    Article  CAS  Google Scholar 

  8. The Editorial Board of Metallomics (RSC) (2016) The scope of Metallomics. Metallomics 8(1):8

    Article  Google Scholar 

  9. Haraguchi H (1999) Multielement profiling analyses of biological, geochemical, and environmental samples as studied by analytical atomic spectrometry. Bull Chem Soc Jpn 72(6):1163–1186

    Article  CAS  Google Scholar 

  10. Vandecasteele C, Block CB (1991) Modern methods for trace element determination. Wiley, Chichester

    Google Scholar 

  11. Montaser A (ed) (1998) Inductively coupled plasma mass spectrometry. Wiley, New York

    Google Scholar 

  12. Haraguchi H, Sawatari H (1990) The analytical methods for trace elements (In Japanese). Mod Med (Saishin Igaku) 45(4):816–821

    Google Scholar 

  13. Templeton DM, Ariese F, Cornelis R et al (2000) Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC Recommendations 2000). Pure Appl Chem 72(8):1453–1470

    Article  CAS  Google Scholar 

  14. Szpunar J (2000) Bio-inorganic speciation analysis by hyphenated techniques. Analyst 125(5):963–988

    Article  CAS  PubMed  Google Scholar 

  15. Szpunar J, Lobinski R, Prange A (2003) Hyphenated techniques for elemental speciation in biological systems. Appl Spectrosc 57(3):102A–111A

    Article  CAS  PubMed  Google Scholar 

  16. Szpunar J (2005) Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. Analyst 130(4):442–465

    Article  CAS  PubMed  Google Scholar 

  17. International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  Google Scholar 

  18. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291(5507):1304–1351

    Article  CAS  PubMed  Google Scholar 

  19. James P (1997) Protein identification in the post-genome era: the rapid rise of proteomics. Q Rev Biophys 30(4):279–331

    Article  CAS  PubMed  Google Scholar 

  20. Fiehn O, Kopka J, Dormam P et al (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18(11):1157–1161

    Article  CAS  PubMed  Google Scholar 

  21. Heumann KG, Gallus SM, Radlinger G et al (1998) Precision and accuracy in isotope ratio measurements by plasma source mass spectrometry. J Anal At Spectrom 13(9):1001–1008

    Article  CAS  Google Scholar 

  22. Rodriguez-Gonzalez P, Marchante-Gayon JM, Alonso JIG et al (2005) Isotope dilution analysis for elemental speciation: a tutorial review. Spectrochim Acta B Atom Spectrosc 60(2):151–207

    Article  Google Scholar 

  23. Hasegawa T (2006) Ph. D. thesis, Nagoya University, Unpublished data

    Google Scholar 

  24. Noddack I (1936) Concerning the ubiquitous nature of the chemical elements. Angew Chem 47:835

    Article  Google Scholar 

  25. Kuroda P (1982) The origin of the chemical elements and the Oklo phenomenon. Springer, Berlin

    Book  Google Scholar 

  26. Sakurai H, Tanaka H (eds) (1996) Bio-trace elements. Nankodo, Tokyo (in Japanese), pp 1–11

    Google Scholar 

  27. Bowen HJM (1973) Trace elements in biochemistry. Academic, New York

    Google Scholar 

  28. Calvin M (1969) Chemical evolution–molecular evolution towards the origin of living systems on the earth and elsewhere. Oxford University Press, Oxford

    Google Scholar 

  29. Inagaki K, Haraguchi H (2000) Determination of rare earth elements in human blood serum by inductively coupled plasma mass spectrometry after chelating resin preconcentration. Analyst 125(1):191–196

    Article  CAS  PubMed  Google Scholar 

  30. Katsuki F, Hokura A, Iwahata D et al (1998) Multielement determination of major-to-ultratrace elements in cherry samples by ICP-MS and ICP-AES after acid digestion. Bunseki Kagaku 47(11):835–844

    Article  CAS  Google Scholar 

  31. Haraguchi H, Ishii A, Hasegawa T et al (2008) Metallomics study on all-elements analysis of salmon egg cell and fractionation analysis of metals in cell cytoplasm. Pure Appl Chem 80(12):2595–2608

    CAS  Google Scholar 

  32. Haraguchi H (2010) Metallomics research related to arsenic. In: Hongzhe S (ed) Biological chemistry of arsenic, antimony and bismuth. Wiley, London, pp 83–112

    Chapter  Google Scholar 

  33. Williams RJP (2001) Chemical selection of elements by cells. Coord Chem Rev 216:583–595

    Article  Google Scholar 

  34. Mounicou S, Lobinski R (2008) Challenges to metallomics and analytical chemistry solutions. Pure Appl Chem 80(12):2565–2575

    Article  CAS  Google Scholar 

  35. Umemura T, Kitaguchi R, Haraguchi H (1998) Counterionic detection by ICP-AES for determination of inorganic anions in water elution ion chromatography using zwitterionic stationary phase. Anal Chem 70(5):936–942

    Google Scholar 

  36. Hasegawa T, Asano M, Takatani K et al (2005) Speciation of mercury in salmon egg cell cytoplasm in relation with metallomics research. Talanta 68(2):465–469

    Article  CAS  PubMed  Google Scholar 

  37. Inagaki K, Umemura T, Matsuura H et al (2000) Speciation of trace elements, binding and non-binding with proteins in human blood serum, by surfactant-mediated HPLC with element-selective detection by ICP-MS. Anal Sci 16(8):787–788

    Article  CAS  Google Scholar 

  38. Kanwal R, Hua N (2012) Arsenic metabolism and thioarsenicals. Metallomics 4(9):881–892

    Article  Google Scholar 

  39. Chen B, Liu Q, Popowich A et al (2015) Therapeutic and analytical applications of arsenic binding to proteins. Metallomics 7(1):39–55

    Article  CAS  PubMed  Google Scholar 

  40. Fergusonsmith AC, Ruddle FH (1988) The genomics of human homeobox-containing loci. Pathol Immunopathol Res 7(1–2):119–126

    Article  CAS  Google Scholar 

  41. Zamir D, Tanksley SD (1988) Tomato genome is comprised largely of fast-evolving, low copy-number sequences. Mol Gen Genet 213(2–3):254–261

    Article  CAS  Google Scholar 

  42. Gygi SP, Rist B, Gerber SA et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999

    Article  CAS  PubMed  Google Scholar 

  43. Nicholson JK, Lindon JC (2008) Systems biology: metabolomics. Nature 455(7216):1054–1056

    Article  CAS  PubMed  Google Scholar 

  44. Haraguchi H (2002) A challenge to pico-world and metallomics: a new frontier of trace element chemistry. The invited lecture in the Tokushima Seminar on Chemical Engineering (The English abstract cited was translated from the Japanese one)

    Google Scholar 

  45. Haraguchi H, Matsuura H (2003) Trace element speciation for metallomics. In: Enomoto S, Seko Y (eds) Proceedings of the international symposium on Bio-trace elements 2002 (BITREL 2002). The Institute of Physical and Chemical Research (RIKEN), Wako, pp 3–8

    Google Scholar 

  46. Jakubowski N, Lobinski R, Moens L (2004) Metallobiomolecules. The basis of life, the challenge of atomic spectroscopy. J Anal At Spectrom 18:1–4

    Article  Google Scholar 

  47. Szpunar J (2004) Metallomics: a new frontier in analytical chemistry. Anal Bioanal Chem 378(1):54–56

    Article  CAS  PubMed  Google Scholar 

  48. Haraguchi H (2008) Preface; international symposium on metallomics 2007 (ISM 2007). Pure Appl Chem 80(12):iv

    CAS  Google Scholar 

  49. Haraguchi H (ed) (2007) Proceedings of the international symposium on metallomics 2007 (ISM 2007). Pure Appl Chem 80(12):2565–2750

    Google Scholar 

  50. Caruso JA (2010) 2009 international symposium on metallomics. Metallomics 2(2):103

    Article  PubMed  Google Scholar 

  51. Sperling M (2011) The third international symposium on metallomics 2011. Metallomics 3(12):1263–1264

    Article  PubMed  Google Scholar 

  52. Montes-Bayon M, Bettmer J (2014) 4th international symposium on metallomics, 2013. Metallomics 6(2):187–188

    Article  PubMed  Google Scholar 

  53. Haraguchi H (2011) Metallomics in Japan. Metallomics 3(7):648–649

    Article  PubMed  Google Scholar 

  54. Ogra Y, Himeno S (2013) Metallomics in Japan. Metallomics 5(5):415–416

    Article  PubMed  Google Scholar 

  55. Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. TrAC Trends Anal Chem 24(4):285–294

    Article  CAS  Google Scholar 

  56. Williams RJP, Frausto da Silva JJR (1996) The natural selection of the chemical elements. Clarendon, Oxford

    Google Scholar 

  57. Levina A, Mitra A, Lay PA (2009) Recent developments in ruthenium anticancer drugs. Metallomics 1(6):458–470

    Article  CAS  PubMed  Google Scholar 

  58. Todd RC, Lippard SJ (2009) Inhibition of transcription by platinum antitumor compounds. Metallomics 1(4):280–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Arita A, Costa M (2009) Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics 1(3):222–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Colvin RA, Holmes WR, Fontaine CP et al (2010) Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics 2(5):306–317

    Article  CAS  PubMed  Google Scholar 

  61. Berners-Price SJ, Filipovska A (2011) Gold compounds as therapeutic agents for human diseases. Metallomics 3(9):863–873

    Article  CAS  PubMed  Google Scholar 

  62. Gautier A, Cisnetti F (2012) Advances in metal-carbene complexes as potent anticancer agents. Metallomics 4(1):23–32

    Article  CAS  PubMed  Google Scholar 

  63. Bonda DJ, Lee HG, Blair JA et al (2011) Role of metal dyshomeostasis in Alzheimer’s disease. Metallomics 3(3):267–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tougu V, Tiiman A, Palumaa P (2011) Interactions of Zn(II) and Cu(II) ions with Alzheimer’s amyloid-beta peptide. Metal ion binding, contribution to fibrillization and toxicity. Metallomics 3(3):250–261

    Article  CAS  PubMed  Google Scholar 

  65. Qin Z, Caruso JA, Lai B et al (2011) Trace metal imaging with high spatial resolution: applications in biomedicine. Metallomics 3(1):28–37

    Article  CAS  PubMed  Google Scholar 

  66. Fukada T, Kambe T (2011) Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics 3(7):662–674

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Haraguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Haraguchi, H. (2017). Metallomics: Integrated Biometal Science. In: Ogra, Y., Hirata, T. (eds) Metallomics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56463-8_1

Download citation

Publish with us

Policies and ethics