Skip to main content

Abstract

In the neurointensive care setting, specific considerations of sedation are required; sedation may act as a therapeutic agent itself, when causing a reduction in cerebral metabolic rate of oxygen, cerebral blood flow, and intracranial pressure and in the incidence of seizures. However, the physician must be aware of the effects of every sedative agent on cerebral physiology, in order to obtain beneficial effects and avoid side effects. In this chapter, the need of sedation and its assessment and the effects of sedative agents are described in order to provide knowledge for an adequate sedative strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crippen DW. The role of sedation in the ICU patient with pain and agitation. Crit Care Clin. 1990;6:369–92.

    CAS  PubMed  Google Scholar 

  2. Kong KL, Bion JF. Sedating patients undergoing mechanical ventilation in the intensive care unit--winds of change? Br J Anaesth. 2003;90:267–9.

    Article  PubMed  Google Scholar 

  3. Ghatge S, Lee J, Smith I. Sevoflurane: an ideal agent for adult day-case anesthesia? Acta Anaesthesiol Scand. 2003;47:917–31.

    Article  CAS  PubMed  Google Scholar 

  4. Jacobi J, Fraser GL, Coursin DB, Riker RR, Fontaine D, Wittbrodt ET, Chalfin DB, Masica MF, Bjerke HS, Coplin WM, Crippen DW, Fuchs BD, Kelleher RM, Marik PE, Nasraway SA Jr, Murray MJ, Peruzzi WT, Lumb PD; Task Force of the American College of Critical Care Medicine (ACCM) of the Society of Critical Care Medicine (SCCM), American Society of Health-System Pharmacists (ASHP), American College of Chest Physicians. Clinical practice guidelines for the sustained use of sedatives and analgesics in the critically ill adult. Crit Care Med. 2002; 30:119–41.

    Google Scholar 

  5. Smith HA, Fuchs DC, Pandharipande PP, Barr FE, Ely EW. Delirium: an emerging frontier in the management of critically ill children. Crit Care Clin. 2009;25:593–614.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bailey P, Thomsen GE, Spuhler VJ, et al. Early activity is feasible and safe in respiratory failure patients. Crit Care Med. 2007;35:139–45.

    Article  PubMed  Google Scholar 

  7. Stiller K. Safety issues that should be considered when mobilizing critically ill patients. Crit Care Clin. 2007;23:35–53.

    Article  PubMed  Google Scholar 

  8. Diringer MN, Videen TO, Yundt K, et al. Regional cerebrovascular and metabolic effects of hyperventilation after severe traumatic brain injury. J Neurosurg. 2002;96:103–8.

    Article  PubMed  Google Scholar 

  9. Imberti R, Bellinzona G, Langer M. Cerebral tissue PO2 and SjvO2 changes during moderate hyperventilation in patients with severe traumatic brain injury. J Neurosurg. 2002;96:97–102.

    Article  PubMed  Google Scholar 

  10. Bouma GJ, Muizelaar JP. Cerebral blood flow, cerebral blood volume, and cerebrovascular reactivity after severe head injury. J Neurotrauma. 1992;9(Suppl 1):S333–48.

    PubMed  Google Scholar 

  11. Fieschi C, Battistini N, Beduschi A, et al. Regional cerebral blood flow and intraventricular pressure in acute head injuries. J Neurol Neurosurg Psychiatry. 1974;37:1378–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bouma GJ, Muizelaar JP, Stringer WA, et al. Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J Neurosurg. 1992;77:360–8.

    Article  CAS  PubMed  Google Scholar 

  13. Bouma GJ, Muizelaar JP, Choi SC, et al. Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia. J Neurosurg. 1991;75:685–93.

    Article  CAS  PubMed  Google Scholar 

  14. Obrist WD, Langfitt TW, Jaggi JL, et al. Cerebral blood flow and metabolism in comatose patients with acute head injury. Relationship to intracranial hypertension. J Neurosurg. 1984;61:241–53.

    Article  CAS  PubMed  Google Scholar 

  15. Epstein HM, Linde HW, Crampton AR, Ciric IS, Eckenhoff JE. The vertebral venous plexus as a major cerebral venous outflow tract. Anesthesiology. 1970;32:332–8.

    Article  CAS  PubMed  Google Scholar 

  16. Eckenhoff JE. The physiologic significance of the vertebral venous plexus. Surg Gynecol Obstet. 1970;131:72–8.

    CAS  PubMed  Google Scholar 

  17. Heiss WD, Rosner G. Functional recovery of cortical neurons as related to degree and duration of ischemia. Ann Neurol. 1983;14:294–301.

    Article  CAS  PubMed  Google Scholar 

  18. Samaniego EA, Mlynash M, Caulfield AF, Eyngorn I, Wijman CA. Sedation confounds outcome prediction in cardiac arrest survivors treated with hypothermia. Neurocrit Care. 2011;15:113–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Riker RR, Fraser GL. Altering intensive care sedation paradigms to improve patient outcomes. Anesthesiol Clin. 2011;29:663–74.

    Article  PubMed  Google Scholar 

  20. Jacobi J, Fraser GL, Coursin DB, et al. Clinical practice guidelines for the sustained use of sedatives and analgesics in the critically ill adult. Crit Care Med. 2002;30:119–41.

    Article  PubMed  Google Scholar 

  21. Fraser GL, Riker RR, Prato BS, Wilkins ML. The frequency and cost of patient-initiated device removal in the ICU. Pharmacotherapy. 2001;21:1–6.

    Article  CAS  PubMed  Google Scholar 

  22. Skoglund K, Enblad P, Marklund N. Effects of the neurological wake-up test on intracranial pressure and cerebral perfusion pressure in brain-injured patients. Neurocrit Care. 2009;11:135–42.

    Article  PubMed  Google Scholar 

  23. Brain TF, American Association of Neurological S, Congress of Neurological S, et al. Guidelines for the management of severe traumatic brain injury. VI. Indications for intracranial pressure monitoring. J Neurotrauma. 2007;24(Suppl 1):S37–44.

    Google Scholar 

  24. Citerio G, Cormio M. Sedation in neurointensive care: advances in understanding and practice. Curr Opin Crit Care. 2003;9:120–6.

    Article  PubMed  Google Scholar 

  25. Brook AD, Ahrens TS, Schaiff R, et al. Effect of a nursingimplemented sedation protocol on the duration of mechanical ventilation. Crit Care Med. 1999;27:2609–15.

    Article  CAS  PubMed  Google Scholar 

  26. Kress JP, Pohlman AS, O’Connor MF, Hall JB. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med. 2000;342:1471–7.

    Article  CAS  PubMed  Google Scholar 

  27. Treggiari MM, Romand JA, Yanez ND, et al. Randomized trial of light versus deep sedation on mental health after critical illness. Crit Care Med. 2009;37:2527–34.

    Article  PubMed  Google Scholar 

  28. Mehta S, Burry L, Martinez-Motta JC, et al. A randomized trial of daily awakening in critically ill patients managed with a sedation protocol: a pilot trial. Crit Care Med. 2008;36:2092–9.

    Article  CAS  PubMed  Google Scholar 

  29. Jones C, Backman C, Capuzzo M, Flaatten H, Rylander C, Griffiths RD. Precipitants of post-traumatic stress disorder following intensive care: a hypothesis generating study of diversity in care. Intensive Care Med. 2007;33:978–85.

    Article  CAS  PubMed  Google Scholar 

  30. Hopkins RO, Jackson JC. Long-term neurocognitive function after critical illness. Chest. 2006;130:869–78.

    Article  PubMed  Google Scholar 

  31. Al MJ, Hakkaart L, Tan SS, Bakker J. Cost-consequence analysis of remifentanil-based analgo-sedation vs conventional analgesia and sedation for patients on mechanical ventilation in the Netherlands. Crit Care. 2010;14:R195.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Evidence-based guidelines for the management of large hemispheric infarction. A Statement for health care professionals from the Neurocritical Care Society and the German Society for Neuro-Intensive Care and Emergency Medicin. Neurocrit Care. 2015;22:146–64.

    Article  Google Scholar 

  33. Olson DWM, Thoyre SM. A randomized evaluation of bispectral index-augmented sedation assessment in neurological patients. Neurocrit Care. 2009;11:20–7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hogarth DK, Hall J. Management of sedation in mechanically ventilated patients. Curr Opin Crit Care. 2004;10(1):40–6.

    Article  PubMed  Google Scholar 

  35. DeJonge B, Cook D, Appere-De-Vecchi C, et al. Using and understanding sedation scoring systems: a systematic review. Intensive Care Med. 2000;26:275–85.

    Article  Google Scholar 

  36. Riess ML, Graefe UA, Goeters C, et al. Sedation assessment in critically ill patients with bispectral index. Eur J Anesthesiol. 2002;19:18–22.

    Article  CAS  Google Scholar 

  37. Klopman MA, Sebel PS. Cost-effectiveness of bispectral index monitoring. Curr Opin Anaesthesiol. 2011;24:177–81.

    Article  PubMed  Google Scholar 

  38. Teitelbaum JS, Ayoub O, Skrobik Y. A critical appraisal of sedation, analgesia and delirium in neurocritical care. Can J Neurol Sci. 2011;38:815–25.

    Article  PubMed  Google Scholar 

  39. Karabinis A, Mandragos K, Stergiopoulos S, et al. Safety and efficacy of analgesia-based sedation with remifentanil versus standard hypnotic-based regimens in intensive care unit patients with brain injuries: a randomised, controlled trial [ISRCTN50308308]. Crit Care. 2004;8:R268–80.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Riker RR, Picard JT, Fraser GL. Prospective evaluation of the Sedation-Agitation Scale for adult critically ill patients. Crit Care Med. 1999;27:1325–9.

    Article  CAS  PubMed  Google Scholar 

  41. Sessler CN, Gosnell MS, Grap MJ, et al. The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med. 2002;166:1338–44.

    Article  PubMed  Google Scholar 

  42. Deogaonkar A, Gupta R, DeGeorgia M, et al. Bispectral Index monitoring correlates with sedation scales in brain-injured patients. Crit Care Med. 2004;32:2403–6.

    Article  PubMed  Google Scholar 

  43. Bergeron N, Dubois MJ, Dumont M, Dial S, Skrobik Y. Intensive Care Delirium Screening Checklist: evaluation of a new screening tool. Intensive Care Med. 2001;27:859–64.

    Article  CAS  PubMed  Google Scholar 

  44. Van Rompaey B, Elseviers MM, Schuurmans MJ, ShortridgeBaggett LM, Truijen S, Bossaert L. Risk factors for delirium in intensive care patients: a prospective cohort study. Crit Care. 2009;13:R77.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Prisco L, Citerio G. To wake-up, or not to wake-up: that is the Hamletic neurocritical care question. Crit Care. 2012;16:190.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Skoglund K, Enblad P, Hillered L, Marklund N. The neurological wake-up test increases stress hormone levels in patients with severe traumatic brain injury. Crit Care Med. 2012;40:216–22.

    Article  CAS  PubMed  Google Scholar 

  47. Stover JF. Arousal from sedation in wake-up tests requires careful risk stratification. Crit Care Med. 2012;40:338–40.

    Article  PubMed  Google Scholar 

  48. Mehta S, Burry L, Cook D, Fergusson D, Steinberg M, Granton J, et al. Daily sedation interruption in mechanically ventilated critically ill patients cared for with a sedation protocol: a randomized controlled trial. JAMA. 2012;308(19):1985–92.

    Article  CAS  PubMed  Google Scholar 

  49. Helbok R, Kurtz P, Schmidt MJ, et al. Effects of the neurological wake-up test on clinical examination, intracranial pressure, brain metabolism and brain tissue oxygenation in severely brain-injured patients. Crit Care. 2012;16:R226.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Helbok R, Badjatia N. Is daily awakening always safe in severely brain injured patients? Neurocrit Care. 2009;11:133–4.

    Article  PubMed  Google Scholar 

  51. Helbok R, Ko SB, Schmidt JM, Kurtz P, Fernandez L, Choi HA, Connolly ES, Lee K, Badjatia N, Mayer SA, Claassen J. Global cerebral edema and brain metabolism after subarachnoid hemorrhage. Stroke. 2011;42:1534–9.

    Article  PubMed  Google Scholar 

  52. Helbok R, Kurtz P, Schmidt JM, Stuart RM, Fernandez L, Malhotra R, Presciutti M, Ostapkovich ND, Connolly ES, Lee K, Badjatia N, Mayer SA, Claassen J. Effect of mannitol on brain metabolism and tissue oxygenation in severe haemorrhagic stroke. J Neurol Neurosurg Psychiatry. 2011;82:378–83.

    Article  PubMed  Google Scholar 

  53. Hillered L, Vespa PM, Hovda DA. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma. 2005;22:3–41.

    Article  PubMed  Google Scholar 

  54. Vespa PM, Miller C, McArthur D, Eliseo M, Etchepare M, Hirt D, Glenn TC, Martin N, Hovda D. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;35:2830–6.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Vespa PM. Metabolic penumbra in intracerebral hemorrhage. Stroke. 2009;40:1547–8.

    Article  PubMed  Google Scholar 

  56. Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, Glenn TC, McArthur DL, Hovda DA. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25:763–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Oddo M, Frangos S, Maloney-Wilensky E, Andrew Kofke W, Le Roux PD, Levine JM. Effect of shivering on brain tissue oxygenation during induced normothermia in patients with severe brain injury. Neurocrit Care. 2010;12:10–6.

    Article  CAS  PubMed  Google Scholar 

  58. Skoglund K, Enblad P, Marklund N. Effects of the neurological wake-up test on intracranial pressure and cerebral perfusion pressure in brain-injured patients. Neurocrit Care. 2009;11:135–42.

    Google Scholar 

  59. Karin Skoglund, Lars Hillered, Karlis Purins, et al. The neurological wake-up test does not alter cerebral energy metabolism and oxygenation in patients with severe traumatic brain injury. Neurocrit Care. doi:10.1007/s12028-013-9876-4.

  60. Gehlbach BK, Kress JP. Sedation in the intensive care unit. Curr Opin Crit Care. 2002;8:290–8.

    Article  PubMed  Google Scholar 

  61. Kress JP, Pohlman AS, Hall JB. Sedation and analgesia in the intensive care unit. Am J Respir Crit Care Med. 2002;166:1024–8.

    Article  PubMed  Google Scholar 

  62. Ostermann ME, Keenan SP, Seiferling RA, et al. Sedation in the intensive care unit: a systematic review. JAMA. 2000;283:1451–9.

    Article  CAS  PubMed  Google Scholar 

  63. Mirski MA, Muffelman B, Ulatowski JA, et al. Sedation for the critically ill neurologic patient. Crit Care Med. 1995;23:2038–53.

    Article  CAS  PubMed  Google Scholar 

  64. Prielipp RC, Coursin DB. Sedative and neuromuscular blocking drug use in critically ill patients with head injuries. New Horiz. 1995;3:458–68.

    Google Scholar 

  65. Kraus JJ, Metzler MD, Coplin WM. Critical care issues in stroke and subarachnoid hemorrhage. Neurol Res. 2002;24(suppl 1):S47–57.

    Article  PubMed  Google Scholar 

  66. Oertel M, Kelly DF, Lee JH, et al. Metabolic suppressive therapy as a treatment for intracranial hypertension—why it works and when it fails. Acta Neurochir Suppl. 2002;81:69–70.

    CAS  PubMed  Google Scholar 

  67. Robertson CS, Cormio M. Cerebral metabolic management. New Horiz. 1995;3:410–22.

    CAS  PubMed  Google Scholar 

  68. Clausen T, Bullock R. Medical treatment and neuroprotection in traumatic brain injury. Curr Pharm Des. 2001;7:1517–32.

    Article  CAS  PubMed  Google Scholar 

  69. Grasshoff C, Gillessen T. The effect of propofol on increased superoxide concentration in cultured rat cerebrocortical neurons after stimulation of N-methyl-d-aspartate receptors. Anesth Analg. 2002;95:920–2.

    CAS  PubMed  Google Scholar 

  70. Starbuck VN, Kay GG, Platenberg RC, et al. Functional magnetic resonance imaging refl ects changes in brain functioning with sedation. Hum Psychopharmacol. 2000;15:613–8.

    Article  PubMed  Google Scholar 

  71. Bladin CF, Alexandrov AV, Bellavance A, et al. Seizure after stroke: a prospective multicenter study. Arch Neurol. 2000;57:1617–22.

    Article  CAS  PubMed  Google Scholar 

  72. Reith J, Jorgensen HS, Raaschou HO, et al. Seizure in acute stroke: predictors and prognostic signifi cance. Copenhagen Stroke Study Stroke. 1997;28:1585–9.

    Article  CAS  PubMed  Google Scholar 

  73. Vespa PM, Nuwer MR, Nenov V, et al. Increased incidence and impact of nonconvulsive and convulsive seizures after traumatic brain injury as detected by continuous electroencephalographic monitoring. J Neurosurg. 1999;91:750–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Barr J, Egan TD, Sandoval NF, Zomorodi K, Cohane C, Gambus PL, Shafer SL. Propofol dosing regimens for ICU sedation based upon an integrated pharmacokinetic–pharmacodynamic model. Anesthesiology. 2001;95:324–33.

    Article  CAS  PubMed  Google Scholar 

  75. Oshima T, Karasawa F, Satoh T. Effects of propofol on cerebral blood fl ow and the metabolic rate of oxygen in humans. Acta Anaesthesiol Scand. 2002;46(7):831–5.

    Article  CAS  PubMed  Google Scholar 

  76. Engelhard K, Werner C. Inhalational or intravenous anesthetics for craniotomies? Pro inhalational. Curr Opin Anaesthesiol. 2006;19:504–8.

    Article  PubMed  Google Scholar 

  77. Trescot AM, Datta S, Lee M, et al. Opioid pharmacology. Pain Physician. 2008;11(2 Suppl):S133–53.

    PubMed  Google Scholar 

  78. Magarey JM. Propofol or midazolam – which is best for the sedation of adult ventilated patients in intensive care units? A systematic review. Aust Crit Care. 2001;14:147–54.

    Article  CAS  PubMed  Google Scholar 

  79. Weinbroum AA, Halpern P, Rudick V, et al. Midazolam versus propofol for long-term sedation in the ICU: a randomized prospective comparison. Intensive Care Med. 1997;23:1258–63.

    Article  CAS  PubMed  Google Scholar 

  80. Power KN, Flaatten H, Gilhus NE, Engelsen BA. Propofol treatment in adult refractory status epilepticus. Mortality risk and outcome. Epilepsy Res. 2011;94(1–2):53–60.

    Article  CAS  PubMed  Google Scholar 

  81. Meierkord H, Boon P, Engelsen B, Göcke K, Shorvon S, Tinuper P, Holtkamp M. European Federation of Neurological Societies. EFNS guideline on the management of status epilepticus in adults. Eur J Neurol. 2010;17(3):348–55.

    Article  CAS  PubMed  Google Scholar 

  82. Marik PE, Varon J. The management of status epilepticus. Chest. 2004;126(2):582–91.

    Article  PubMed  Google Scholar 

  83. Rosow C. Remifentanil: a unique opioid analgesic. Anesthesiology. 1993;79:875–6.

    CAS  PubMed  Google Scholar 

  84. Pitsiu M, Wilmer A, Bodenham A, et al. Pharmacokinetics of remifentanil and its major metabolite, remifentanil acid, in ICU patients with renal impairment. Br J Anaesth. 2004;92:493–503.

    Article  CAS  PubMed  Google Scholar 

  85. Dumont L, Picard V, Marti RA, et al. Use of remifentanil in a patient with chronic hepatic failure. Br J Anaesth. 1998;81:265–7.

    Article  CAS  PubMed  Google Scholar 

  86. Morgan Jones G, Doepker BA, et al. Predictors of severe hypotension in neurocritical care patients sedated with propofol. Neurocrit Care. 2014;20:270–6.

    Article  PubMed  CAS  Google Scholar 

  87. Ebert TJ, Muzi M, Berens R, Goff D, Kampine JP. Sympathetic responses to induction of anesthesia in humans with propofol or etomidate. Anesthesiology. 1992;76:725–33.

    Article  CAS  PubMed  Google Scholar 

  88. Gonzalez-Correa JA, Cruz-Andreotti E, et al. Effects of propofol on the leukocyte nitric oxide pathway: in vitro and ex vivo studies in surgical patients. Naunyn Schmiedeberg's Arch Pharmacol. 2008;376:331–9.

    Article  CAS  Google Scholar 

  89. Doursout MF, Joseph PM, Liang YY, Hartley CJ, Chelly JE. Role of propofol and its solvent, intralipid, in nitric oxide-induced peripheral vasodilatation in dogs. Br J Anaesth. 2002;89:492–8.

    Article  CAS  PubMed  Google Scholar 

  90. Samain E, Bouillier H, Marty J, Safar M, Dagher G. The effect of propofol on angiotensin II-induced Ca(2+) mobilization in aortic smooth muscle cells from normotensive and hypertensive rats. Anesth Analg. 2000;90:546–52.

    Article  CAS  PubMed  Google Scholar 

  91. Roberts DJ, Hall RI, Kramer AH, et al. Sedation for critically ill adults with severe traumatic brain injury: a systematic review of randomized controlled trials. Crit Care Med. 2011;39(12):2743–51.

    Article  CAS  PubMed  Google Scholar 

  92. Albanese J, Viviand X, Potie F, et al. Sufentanil and alfafentanil in head trauma patients: a study on cerebral hemodynamics. Crit Care Med. 1999;27(2):407–11.

    Article  CAS  PubMed  Google Scholar 

  93. Peeters MY, Bras LJ, DeJongh J, et al. Disease severity is a major determinant for the pharmacodynamics of propofol in critically ill patients. Clin Pharmacol Ther. 2008;83(3):443–51.

    Article  CAS  PubMed  Google Scholar 

  94. Engelhard K, Reeker W, Kochs E, et al. Effect of remifentanil on intracranial pres- sure and cerebral blood fl ow velocity in patients with head trauma. Acta Anaesthesiol Scand. 2004;48:396–9.

    Article  CAS  PubMed  Google Scholar 

  95. Hanley DF, Pozo M. Treatment of status epilepticus with midazolam in the critical care setting. Int J Clin Pract. 2000;54:30–5.

    CAS  PubMed  Google Scholar 

  96. Walder B, Tramer MR, Seeck M. Seizure-like phenomena and propofol: a systematic review. Neurology. 2002;58:1327–32.

    Article  PubMed  Google Scholar 

  97. Iyer VN, Hoel R, Rabinstein AA. Propofol infusion syndrome in patients with refractory status epilepticus: an 11-year clinical experience. Crit Care Med. 2009;37:3024–30.

    Article  CAS  PubMed  Google Scholar 

  98. Jakob SM, Ruokonen E, Grounds RM, et al. Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. JAMA. 2012;307:1151–60.

    Article  CAS  PubMed  Google Scholar 

  99. Yahwak JA, Riker RR, Fraser GL, Subak-Sharpe S. Determination of a lorazepam dose threshold for using the osmol gap to monitor for propylene glycol toxicity. Pharmacotherapy. 2008;28:984–91.

    Article  CAS  PubMed  Google Scholar 

  100. Horinek EL, Kiser TH, Fish DN, MacLaren R. Propylene glycol accumulation in critically ill patients receiving continuous intravenous lorazepam infusions. Ann Pharmacother. 2009;43:1964–71.

    Article  CAS  PubMed  Google Scholar 

  101. Grof TM, Bledsoe KA. Evaluating the use of dexmedetomidine in neurocritical care patients. Neurocrit Care. 2010;12:356–61.

    Article  CAS  PubMed  Google Scholar 

  102. Chen HI, Malhotra NR, Oddo M, Heuer GG, Levine JM, LeRoux PD. Barbiturate infusion for intractable intracranial hypertension and its effect on brain oxygenation. Neurosurgery. 2008;63:880–6.

    Article  PubMed  Google Scholar 

  103. Marshall GT, James RF, Landman MP, et al. Pentobarbital coma for refractory intra-cranial hypertension after severe traumatic brain injury: mortality predictions and one-year outcomes in 55 patients. J Trauma. 2010;69:275–83.

    Article  PubMed  Google Scholar 

  104. Bekker A, Sturaitis MK. Dexmedetomidine for neurological surgery. Neurosurgery. 2005;57:1–10.

    PubMed  Google Scholar 

  105. Hall JE, Uhrich TD, Barney JA, Arain SR, Ebert TJ. Sedative, amnestic, and analgesic properties of small-dose dexmedetomidine infusions. Anesth Analg. 2000;90:699–705.

    Article  CAS  PubMed  Google Scholar 

  106. Arain SR, Ruehlow RM, Uhrich TD, Ebert TJ. The efficacy of dexmedetomidine versus morphine for postoperative analgesia after major inpatient surgery. Anesth Analg. 2004;98:153–8.

    Article  CAS  PubMed  Google Scholar 

  107. Venn RM, Bradshaw CJ, Spencer R, et al. Preliminary UK experience of dexmedetomidine, a novel agent for postoperative sedation in the intensive care unit. Anaesthesia. 1999;54:1136–42.

    Article  CAS  PubMed  Google Scholar 

  108. Prielipp RC, Wall MH, Tobin JR, et al. Dexmedetomidineinduced sedation in volunteers decreases regional and global cerebral blood flow. Anesth Analg. 2002;95:1052–9.

    CAS  PubMed  Google Scholar 

  109. Riker RR, Shehabi Y, Bokesch PM, et al. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009;301:489–99.

    Article  CAS  PubMed  Google Scholar 

  110. Pandharipande PP, Pun BT, Herr DL, et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. JAMA. 2007;298:2644–53.

    Article  CAS  PubMed  Google Scholar 

  111. Venn RM, Bryant A, Hall GM, Grounds RM. Effects of dexmedetomidine on adrenocortical function, and the cardiovascular, endocrine and inflammatory responses in post-operative patients needing sedation in the intensive care unit. Br J Anaesth. 2001;86:650–6.

    Article  CAS  PubMed  Google Scholar 

  112. Aho M, Lehtinen AM, Erkola O, Kallio A, Korttila K. The effect of intravenously administered dexmedetomidine on perioperative hemodynamics and isoflurane requirements in patients undergoing abdominal hysterectomy. Anesthesiology. 1991;74:997–1002.

    Article  CAS  PubMed  Google Scholar 

  113. Kamibayashi T, Maze M. Clinical uses of alpha2-adrenergic agonists. Anesthesiology. 2000;93:1345–9.

    Article  CAS  PubMed  Google Scholar 

  114. Herr DL, Sum-Ping ST, England M. ICU sedation after coronary artery bypass graft surgery: dexmedetomidine-based versus propofol-based sedation regimens. J Cardiothorac Vasc Anesth. 2003;17:576–84.

    Article  PubMed  Google Scholar 

  115. Riker RR, Shehabi Y, Bokesch PM, Ceraso D, Wisemandle W, Koura F, Whitten P, Margolis BD, Byrne DW, Ely EW, Rocha MG. SEDCOM (Safety and Effi cacy of Dexmedetomidine Compared With Midazolam) Study Group: Dexmedetomidine vs. midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009;301:11.

    Google Scholar 

  116. Jakob SM, Ruokonen E, Grounds RM, Sarapohja T, Garratt C, Pocock SJ, Bratty JR, Takala J. Dexmedetomidine for Long-Term Sedation Investigators: Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. JAMA. 2012;307:10.

    Article  Google Scholar 

  117. Ledingham IMA, Watt I. Infl uence of sedation on mortality in critically ill multiple trauma patients. Lancet. 1983;1:1270.

    Article  CAS  PubMed  Google Scholar 

  118. Albert SG, Ariyan S, Rather A. The eff ect of etomidate on adrenal function in critical illness: a systematic review. Intensive Care Med. 2011;37:901–10.

    Article  CAS  PubMed  Google Scholar 

  119. Martin J, Heymann A, Basell K, et al. Evidence and consensus-based German guidelines for the management of analgesia, sedation and delirium in intensive care–short version. Ger Med Sci. 2010;8:Doc02.

    Google Scholar 

  120. Millane TA, Bennet ED, Grounds RM. Isoflurane and propofol for long-term sedation in the intensive care unit a crossover study. Anaesthesia. 1992;47:768–74.

    Article  CAS  PubMed  Google Scholar 

  121. Spencer EM, Willatts SM. Isoflurane for prolonged sedation in the intensive care unit; efficacy and safety. Intensive Care Med. 1992;18:415–21.

    Article  CAS  PubMed  Google Scholar 

  122. Meiser A, Sirtl C, Bellgardt M, Lohmann S, Garthoff A, Kaiser J, Hügler P, Laubenthal HJ. Desflurane compared with propofol for postoperative sedation in the intensive care unit. Br J Anaesth. 2003;90:273–80.

    Article  CAS  PubMed  Google Scholar 

  123. Halpenny D. Sevoflurane sedation. Can J Anaesth. 2000;47:193–4.

    Article  CAS  PubMed  Google Scholar 

  124. Ibrahim AE, Ghoneim MM, Kharasch ED, et al. Sevoflurane sedation Study Group. Speed of recovery and side-effect profile of sevoflurane sedation compared with midazolam. Anesthesiology. 2001;94:87–94.

    Article  CAS  PubMed  Google Scholar 

  125. Kong KL, Willatts SM, Prys-Roberts C. Isoflurane compared with midazolam for sedation in the intensive care unit. BMJ. 1989;298:1277–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Johnston RG, Noseworthy TW, Friesen EG, Yule HA, Shustack A. Isoflurane therapy for status asthmaticus in children and adults. Chest. 1990;97:698–701.

    Article  CAS  PubMed  Google Scholar 

  127. Kong KL. Inhalational anesthetics in the intensive care unit. Crit Care Clin. 1995; 11:887–902 97.

    Google Scholar 

  128. Bedi A, Murray JM, Dingley J, et al. Use of xenon as a sedative for patients receiving critical care. Crit Care Med. 2003;31:2470–7.

    Article  CAS  PubMed  Google Scholar 

  129. Meiser ALH. Inhalational anaesthetics in the ICU: theory and practice of inhalational sedation in the ICU, economics, risk-benefit. Best Pract Res Clin Anaesthesiol. 2005;19:523–38.

    Article  CAS  PubMed  Google Scholar 

  130. Sackey PVMC, Granath F, Radell PJ. Prolonged isoflurane sedation of intensive care unit patients with the Anesthetic Conserving Device. Crit Care Med. 2004;32:2241–6.

    Article  CAS  PubMed  Google Scholar 

  131. Hanafy M. Clinical evaluation of inhalational sedation following coronary artery bypass grafting. Egypt J Anaesth. 2005;21:237–2.

    Google Scholar 

  132. Bundgaard H, von Oettingen G, Larsen KM, Landsfeldt U, Jensen KA, Nielsen E, Cold GE. Effects of sevoflurane on intracranial pressure, cerebral blood flow and cerebral metabolism. A dose-response study in patients subjected to craniotomy for cerebral tumours. Acta Anaesthesiol Scand. 1998;42:621–7.

    Article  CAS  PubMed  Google Scholar 

  133. Kalenka A, Gross B, Isoflurane MH. Anesthesia Elicits Protein Pattern Changes in Rat Hippocampus. J Neurosurg Anesthesiol. 2010;22:144–54.

    Article  PubMed  Google Scholar 

  134. Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell. 2005;120:545–55.

    Google Scholar 

  135. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81:741–66.

    Google Scholar 

  136. Eckenhoff RG, Johansson JS, Wei H, Carnini A, Kang B, Wei W. Inhaled anesthetic enhancement of amyloid-beta oligomerization and cytotoxicity. Anesthesiology. 2004;101:703–9.

    Google Scholar 

  137. Pidikiti R, Keller JM, Eckenhoff MF. Anesthesiology. 2004;101:703–9.

    Article  PubMed  Google Scholar 

  138. Xie Z, Dong Y, Maeda U, Alfille P, Culley DJ, Crosby G, Tanzi RE. Anesthesiology. 2006;104:988–94.

    Article  CAS  PubMed  Google Scholar 

  139. Xie Z, Dong Y, Maeda U, Moir R, Inouye SK, Culley DJ, Crosby G, Tanzi RE. Isoflurane-induced apoptosis: a potential pathogenic link between delirium and dementia. J Gerontol A Biol Sci Med Sci. 2006;61:1300–6.

    Google Scholar 

  140. McAuliffe JJ, Joseph B, Vorhees CV. Isoflurane-delayed preconditioning reduces immediate mortality and improves striatal function in adult mice after neonatal hypoxia-ischemia. Anesth Analg. 2007;104:1066–77.

    Article  CAS  PubMed  Google Scholar 

  141. Clarkson AN. Anesthetic-mediated protection/preconditioning during cerebral ischemia. Life Sci. 2007;80:1157–75.

    Article  CAS  PubMed  Google Scholar 

  142. Kitano H, Kirsch JR, Hurn PD, et al. Inhalational anesthetics as neuroprotectants or chemical preconditioning agents in ischemic brain. J Cereb Blood Flow Metab. 2007;27:1108–28.

    Article  CAS  PubMed  Google Scholar 

  143. Wang L, Traystman RJ, Murphy SJ. Inhalational anesthetics as preconditioning agents in ischemic brain. Curr Opin Pharmacol. 2008;8:104–10.

    Article  CAS  PubMed  Google Scholar 

  144. Zhang HP, Yuan LB, Zhao RN, et al. Isoflurane preconditioning induces neuroprotection by attenuating ubiquitin-conjugated protein aggregation in a mouse model of transient global cerebral ischemia. Anesth Analg. 2010;111:506–14.

    Article  CAS  PubMed  Google Scholar 

  145. Zhu W, Wang L, Zhang L, et al. Isoflurane preconditioning neuroprotection in experimental focal stroke is androgen-dependent in male mice. Neuroscience. 2010;169:758–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kitano H, Young JM, Cheng J, et al. Genderspecific response to isoflurane preconditioning in focal cerebral ischemia. J Cereb Blood Flow Metab. 2007;27:1377–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhao H. Ischemic postconditioning as a novel avenue to protect against brain injury after stroke. J Cereb Blood Flow Metab. 2009;29:873–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lee JJ, Li L, Jung HH, Zuo Z. Postconditioning with isoflurane reduced ischemia-induced brain injury in rats. Anesthesiology. 2008;108:1055–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang JK, Yu LN, Zhang FJ, Yang MJ, Yu J, Yan M, Chen G. Postconditioning with sevofluorane protects against focal cerebral ischemia and reperfusion injury via PI3K/Akt pathway. Brain Res. 2010;1357:142–51.

    Article  CAS  PubMed  Google Scholar 

  150. Xie Z, Dong Y, Maeda U, Moir RD, Xia RE. The inhalation anesthetic isoflurane induces a vicious cycle of apoptosis and amyloid beta-protein accumulation. J Neurosci. 2007;27:1247–54.

    Google Scholar 

  151. Xing B, Chen H, Zhang M, Zhao D, Jiang R, Liu X, Zhang S. Ischemic postconditioning inhibits apoptosis after focal cerebral ischemia/reperfusion injury in the rat. Stroke. 2008;39:2362–9.

    Article  CAS  PubMed  Google Scholar 

  152. Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, Olney JW, Wozniak DF. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23:876–82.

    CAS  PubMed  Google Scholar 

  153. Bin Zhang, Yuanlin Dong. The inhalation anesthetic desflurane induces caspase activation and increases amyloid β-protein levels under hypoxic conditions. J Biol Chem. 283(18):11866–75.

    Google Scholar 

  154. Canas P, Velly L, Labrande C, Guillet B, Sautou-Miranda V, Masmejean F, Nieoullon A, Gouin F, Bruder N, Pisano P. Sevoflurane protects rat mixed cerebrocortical neuronal glial cell cultures against transient oxygen-glucose deprivation:Involvement of glutamate uptake and reactive oxygen species. Anesthesiology. 2006;105:990–8.

    Article  CAS  PubMed  Google Scholar 

  155. Purrucker JC, Renzland J, Uhlmann L. Volatile sedation with sevoflurane in intensive care patients with acute stroke or subarachnoid haemorrhage using AnaConDa®: an observational study. Br J Anaesth. 2015;114(6):934–43.

    Google Scholar 

  156. Gray JJ, Bickler PE, Fahlman CS, Zhan X, Schuyler JA. Isoflurane neuroprotection in hypoxic hippocampal slice cultures involves increases in intracellular Ca2? and mitogen-activated protein kinases. Anesthesiology. 2005;102:606–15.

    Article  CAS  PubMed  Google Scholar 

  157. Kapinya KJ, Prass K, Dirnagl U. Isoflurane induced prolonged protection against cerebral ischemia in mice: a redox sensitive mechanism? Neuroreport. 2002;13:1431–5.

    Article  CAS  PubMed  Google Scholar 

  158. Engelhard K, Werner C, Reeker W, Lu H, Mollenberg O, Mielke L, Kochs E. Desflurane and isoflurane improve neurological outcome after incomplete cerebral ischaemia in rats. Br J Anaesth. 1999;83:415–21.

    Article  CAS  PubMed  Google Scholar 

  159. Sakai H, Sheng H, Yates RB, Ishida K, Pearlstein RD, Warner DS. Isoflurane provides long-term protection against focal cerebral ischemia in the rat. Anesthesiology. 2007;106:92–9. (discussion 98–10)

    Article  CAS  PubMed  Google Scholar 

  160. Kitano H, Kirsch JR, Hurn PD, Murphy SJ. Inhalational anesthetics as neuroprotectants or chemical preconditioning agents in ischemic brain. J Cereb Blood Flow Metab. 2007;27:1108–28.

    Article  CAS  PubMed  Google Scholar 

  161. Fugate JE, Burns JD, Wijdicks EF, Warner DO, Jankowski CJ, Rabinstein AA. Prolonged high-dose isoflurane for refractory status epilepticus: is it safe? Anesth Analg. 2010;111:1520–4.

    Article  CAS  PubMed  Google Scholar 

  162. Kellow NH, Scott AD, White SA, Feneck RO. Comparison of the effects of propofol and isoflurane anaesthesia on right ventricular function and shunt fraction during thoracic surgery. Br J Anaesth. 1995;75:578–82.

    Article  CAS  PubMed  Google Scholar 

  163. Tayefeh F, Larson MD, Sessler DI, Eger 2nd EI, Bowland T. Timedependent changes in heart rate and pupil size during desflurane or sevoflurane anesthesia. Anesth Analg. 1997;85:1362–6.

    Article  CAS  PubMed  Google Scholar 

  164. Bösel J, Purrucker JC, Nowak F, Renzland J, Schiller P, Pérez EB, Poli S, Brunn B, Hacke W, Steiner T. Volatile isoflurane sedation in cerebrovascular intensive care patients using AnaConDa(®): effects on cerebral oxygenation, circulation, and pressure. Intensive Care Med. 2012;38:1955–64.

    Article  PubMed  CAS  Google Scholar 

  165. Villa F, Iacca C, Molinari AF, Giussani C, Aletti G, Pesenti A, Citerio G. Inhalation versus endovenous sedation in subarachnoid hemorrhage patients: effects on regional cerebral blood flow. Crit Care Med. 2012;40(10):2797–804.

    Article  PubMed  Google Scholar 

  166. Faraci FM, Heistad DD. Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res. 1990;66:8–17.

    Article  CAS  PubMed  Google Scholar 

  167. Nishimura N, Schaffer CB, Friedman B, et al. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proc Natl Acad Sci U S A. 2007;104:365–70.

    Article  CAS  PubMed  Google Scholar 

  168. Nystoriak MA, O’Connor KP, Sonkusare SK, et al. Fundamental increase in pressuredependent constriction of brain parenchymal arterioles from subarachnoid hemorrhage model rats due to membrane depolarization. Am J Physiol Heart Circ Physiol. 2011;300:H803–12.

    Article  CAS  PubMed  Google Scholar 

  169. Park IS, Meno JR, Witt CE, et al. Impairment of intracerebral arteriole dilation responses after subarachnoid hemorrhage. Laboratory investigation. J Neurosurg. 2009;111:1008–13.

    Article  PubMed  Google Scholar 

  170. Ohkuma H, Manabe H, Tanaka M, et al. Impact of cerebral microcirculatory changes on cerebral blood flow during cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke. 2000;31:1621–7.

    Article  CAS  PubMed  Google Scholar 

  171. Park KW, Metais C, Dai HB, et al. Microvascular endothelial dysfunction and its mechanism in a rat model of subarachnoid hemorrhage. Anesth Analg. 2001;92:990–6.

    Article  CAS  PubMed  Google Scholar 

  172. Federico Villa MD. Cosimo Iacca. inhalation versus endovenous sedation in subarachnoid hemorrhage patients: effects on regional cerebral blood flow. Crit Care Med. 2012;40:2797–804.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Badenes MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Badenes, R., De Fez, M. (2017). Sedation in Neurocritical Units. In: Khan, Z. (eds) Challenging Topics in Neuroanesthesia and Neurocritical Care. Springer, Cham. https://doi.org/10.1007/978-3-319-41445-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41445-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41443-0

  • Online ISBN: 978-3-319-41445-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics