Skip to main content

Intercropping: A Substitute but Identical of Biofertilizers

  • Chapter
  • First Online:
Microbiota and Biofertilizers, Vol 2

Abstract

The traditional way of monocropping and current strategies of use of inorganic chemical-based pesticides and fertilizers are the main barriers in development of sustainable agriculture. Similarly, sickness is a growing issue because of degradation of agricultural land due to continuous sole cropping. On the other hand, intercropping is an old but efficient and eco-friendly way to get rid of soil sickness and to improve crop production. During intercropping, two or more crops either work symbiotically to facilitate each other or compete on available resources for their survival. These both ways can be utilized for the purpose of reclaiming degraded agricultural soils, utilization of resources, management of disease and pests, and eventually increase in crop production. This chapter explains the mechanisms underlying intercropping facilitating plant acquisition of nitrogen and phosphorus and suppressing insect pest and disease incidence with examples of some effective intercropping systems. Moreover, the phenomenon of soil sickness has been described to understand how intercropping can be manipulated to reclaim agricultural land.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addo-Quaye AA, Darkwa AA, Ocloo GK (2011) Yield and productivity of component crops in a maize-soybean intercropping system as affected by time of planting and spatial arrangement. ARPN J Agric Biol Sci 6(9):50–57

    Google Scholar 

  • Amossé C, Jeuffroy MH, Celette F, David C (2013) Relay-intercropped forage legumes help to control weeds in organic grain production. Eur J Agron 49:158–167

    Article  Google Scholar 

  • Arif M, Cheema ZA, Khaliq A, Hassan A (2015) Organic weed management in wheat through allelopathy. Int J Agric Biol 17(1):127–134

    Google Scholar 

  • Bedoussac L, Journet EP, Hauggaard-Nielsen H, Naudin C, Corre-Hellou G, Jensen ES, Prieur L, Justes E (2015) Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron Sustain Dev 35(3):911–935

    Article  Google Scholar 

  • Bezuidenhout SR, Reinhardt CF, Whitwell MI (2012) Cover crops of oats, stooling rye and three annual ryegrass cultivars influence maize and Cyperus esculentus growth. Weed Res 52(2):153–160

    Article  CAS  Google Scholar 

  • Bhadoria PBS (2011) Allelopathy: a natural way towards weed management. J Exp Agric Int 1:7–20

    Google Scholar 

  • Bhat RA, Dervash MA, Mehmood MA, Bhat MS, Rashid A, Bhat JIA, Singh DV, Lone R (2017a) Mycorrhizae: a sustainable industry for plant and soil environment. In: Varma A et al (eds) Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer International Publishing, Cham, pp 473–502

    Chapter  Google Scholar 

  • Bhat RA, Shafiq-ur-Rehman, Mehmood MA, Dervash MA, Mushtaq N, Bhat JIA, Dar GH (2017b) Current status of nutrient load in Dal Lake of Kashmir Himalaya. J Pharmacog Phytochem 6(6):165–169

    CAS  Google Scholar 

  • Bhat RA, Beigh BA, Mir SA, Dar SA, Dervash MA, Rashid A, Lone R (2018a) Biopesticide techniques to remediate pesticides in polluted ecosystems. In: Wani KA, Mamta (eds) Handbook of research on the adverse effects of pesticide pollution in aquatic ecosystems. IGI Global, Hershey, pp 387–407

    Google Scholar 

  • Bhat RA, Dervash MA, Qadri H, Mushtaq N, Dar GH (2018b) Macrophytes, the natural cleaners of Toxic Heavy Metal (THM) pollution from aquatic ecosystems. In: Environmental contamination and remediation. Cambridge Scholars Publishing, Cambridge, UK, pp 189–209

    Google Scholar 

  • Bhatti AA, Haq S, Bhat RA (2017) Actinomycetes benefaction role in soil and plant health. Microb Pathog 111:458–467

    Article  CAS  PubMed  Google Scholar 

  • Boudreau MA (2013) Diseases in intercropping systems. Annu Rev Phytopathol 51:499–519

    Article  CAS  PubMed  Google Scholar 

  • Bouws H, Finckh MR (2008) Effects of strip intercropping of potatoes with non-hosts on late blight severity and tuber yield in organic production. Plant Pathol 57(5):916–927

    Article  Google Scholar 

  • Castro V, Rivera C, Isard SA, Gámez R, Fletcher J, Irwin ME (1992) The influence of weather and microclimate on Dalbulus maidis (Homoptera: Cicadellidae) flight activity and the incidence of diseases within maize and bean monocultures and bicultures in tropical America. Ann Appl Biol 121(3):469–482

    Article  Google Scholar 

  • Chen Y, Zhang F, Tang L, Zheng Y, Li Y, Christie P, Li L (2007) Wheat powdery mildew and foliar N concentrations as influenced by N fertilization and belowground interactions with intercropped faba bean. Plant Soil 291(1–2):1–13

    Article  CAS  Google Scholar 

  • Cohen MF, Yamasaki H, Mazzola M (2005) Brassica napus seed meal soil amendment modifies microbial community structure, nitric oxide production and incidence of Rhizoctonia root rot. Soil Biol Biochem 37(7):1215–1227

    Article  CAS  Google Scholar 

  • Curatti L, Ludden PW, Rubio LM (2006) NifB-dependent in vitro synthesis of the iron–molybdenum cofactor of nitrogenase. Proc Natl Acad Sci 103(14):5297–5301.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dar S, Bhat RA (2020) Aquatic pollution stress and role of biofilms as environment cleanup technology. In: Qadri H, Bhat RA, Dar GH, Mehmood MA (eds) Freshwater pollution dynamics and remediation. Springer Nature, Singapore, pp 293–318

    Chapter  Google Scholar 

  • Dar GH, Bandh SA, Kamili AN, Nazir R, Bhat RA (2013) Comparative analysis of different types of bacterial colonies from the soils of Yusmarg Forest, Kashmir valley India. Ecologia Balkanica 5(1):31–35

    Google Scholar 

  • Dar GH, Kamili AN, Chishti MZ, Dar SA, Tantry TA, Ahmad F (2016) Characterization of Aeromonas sobria isolated from fish Rohu (Labeo rohita) collected from polluted pond. J Bacteriol Parasitol 7(3):1–5. https://doi.org/10.4172/2155-9597.1000273

    Article  CAS  Google Scholar 

  • Debra KR, Misheck D (2014) Onion (Allium cepa) and garlic (Allium sativum) as pest control intercrops in cabbage based intercrop systems in Zimbabwe. IOSR J Agric Veterin Sci 7(2):13–17

    Article  Google Scholar 

  • Dervash MA, Bhat RA, Shafiq S, Singh DV, Mushtaq N (2020) Biotechnological intervention as an aquatic clean up tool. In: Qadri H, Bhat RA, Mehmood MA, Dar GH (eds) Freshwater pollution dynamics and remediation. Springer Nature, Singapore, pp 183–196

    Chapter  Google Scholar 

  • Dong L, Huang C, Huang L, Li X, Zuo Y (2012) Screening plants resistant against Meloidogyne incognita and integrated management of plant resources for nematode control. Crop Prot 33:34–39

    Article  Google Scholar 

  • Dong L, Li X, Huang L, Gao Y, Zhong L, Zheng Y, Zuo Y (2014) Lauric acid in crown daisy root exudate potently regulates root-knot nematode chemotaxis and disrupts Mi-flp-18 expression to block infection. J Exp Bot 65(1):131–141

    Article  CAS  PubMed  Google Scholar 

  • Duchene O, Vian JF, Celette F (2017) Intercropping with legume for agroecological cropping systems: complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric Ecosyst Environ 240:148–161

    Article  Google Scholar 

  • Emebiri LC, Obiefuna JC (1992) Effects of leaf removal and intercropping on the incidence and severity of black Sigatoka disease at the establishment phase of plantains (Musa spp. AAB). Agric Ecosyst Environ 39(3–4):213–219

    Article  Google Scholar 

  • Enikuomehin OA, Jimoh M, Olowe VIO, Ayo-John EI, Akintokun PO (2011) Effect of sesame (Sesamum indicum L.) population density in a sesame/maize (Zea mays L.) intercrop on the incidence and severity of foliar diseases of sesame. Arch Phytopathol Plant Protect 44(2):168–178

    Article  Google Scholar 

  • Fajinmi AA, Odebode CA (2010) Evaluation of maize/pepper intercropping model in the management of pepper veinal mottle virus, genus potyvirus, family potyviridae on cultivated pepper (Capsicum annuum L.) in Nigeria. Arch Phytopathol Plant Protect 43(15):1524–1533

    Article  Google Scholar 

  • Fernández-Aparicio M, Amri M, Kharrat M, Rubiales D (2010) Intercropping reduces Mycosphaerella pinodes severity and delays upward progress on the pea plant. Crop Prot 29(7):744–750

    Article  Google Scholar 

  • Gao X, Wu M, Xu R, Wang X, Pan R, Kim HJ, Liao H (2014) Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot. PLoS One 9:e95031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garg N (2009) Symbiotic nitrogen fixation in legume nodules: process and signaling: a review. In: Sustainable Agriculture. Springer, Dordrecht, pp 519–531

    Chapter  Google Scholar 

  • Gerland P, Raftery AE, Ševčíková H, Li N, Gu D, Spoorenberg T, Alkema L, Fosdick BK, Chunn J, Lalic N, Bay G (2014) World population stabilization unlikely this century. Science 346(6206):234–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  PubMed  Google Scholar 

  • Hauggaard-Nielsen H, Jørnsgaard B, Kinane J, Jensen ES (2008) Grain legume–cereal intercropping: the practical application of diversity, competition and facilitation in arable and organic cropping systems. Renew Agric Food Syst 23(1):3–12

    Article  Google Scholar 

  • Huang LF, Song LX, Xia XJ, Mao WH, Shi K, Zhou YH, Yu JQ (2013) Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. J Chem Ecol 39(2):232–242

    Article  CAS  PubMed  Google Scholar 

  • Isaac ME, Hinsinger P, Harmand JM (2012) Nitrogen and phosphorus economy of a legume tree-cereal intercropping system under controlled conditions. Sci Total Environ 434:71–78

    Article  CAS  PubMed  Google Scholar 

  • Jabran K (2017) Maize allelopathy for weed control. In: Manipulation of allelopathic crops for weed control. Springer, Cham, pp 29–34

    Chapter  Google Scholar 

  • Jabran K, Cheema ZA, Farooq M, Hussain M (2010) Lower doses of pendimethalin mixed with allelopathic crop water extracts for weed management in canola (Brassica napus). Int J Agric Biol 12(3):335–340

    CAS  Google Scholar 

  • Jensen ES, Carlsson G, Hauggaard-Nielsen H (2020) Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: a global-scale analysis. Agron Sustain Dev 40(1):5

    Article  Google Scholar 

  • Ji H, Chen Y, Qin Y, Pan P, Ma Y (2011) The control effect of the main grape diseases by intercropping forage grass in organic viticulture in Ili Valley of Xinjiang Uyghur Autonomous Region. Xinjiang Agric Sci 48(6):1089–1097

    Google Scholar 

  • Jin X, Shi Y, Wu F, Pan K, Zhou X (2020) Intercropping of wheat changed cucumber rhizosphere bacterial community composition and inhibited cucumber Fusarium wilt disease. Sci Agric 77(5):e20190005

    Google Scholar 

  • Joyful RT, Pieterse PJ (2019) Biochemical and morphological roles of allelopathic crops in integrated weed management: a review. Afr J Rural Dev 3(3):869–882

    Google Scholar 

  • Kapri A, Tewari L (2010) Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Braz J Microbiol 41(3):787–795

    Article  CAS  Google Scholar 

  • Khan ZR, Chiliswa P, Ampong-Nyarko K, Smart LE, Polaszek A, Wandera J, Mulaa MA (1997) Utilisation of wild gramineous plants for management of cereal stemborers in Africa. Int J Tropic Insect Sci 17(1):143–150

    Article  Google Scholar 

  • Khanday M, Bhat RA, Haq S, Dervash MA, Bhatti AA, Nissa M, Mir MR (2016) Arbuscular mycorrhizal fungi boon for plant nutrition and soil health. In: Hakeem KR, Akhtar J, Sabir M (eds) Soil science: agricultural and environmental prospectives. Springer International Publishing, Cham, pp 317–332

    Chapter  Google Scholar 

  • Khare E, Arora NK (2010) Effect of indole-3-acetic acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea. Curr Microbiol 61(1):64–68

    Article  CAS  PubMed  Google Scholar 

  • Khashi u Rahman M, Zhou X, Wu F (2019) The role of root exudates, CMNs, and VOCs in plant–plant interaction. J Plant Interact 14(1):630–636

    Article  CAS  Google Scholar 

  • Kour P, Kumar A, Sharma BC, Kour R, Sharma N (2014) Nutrient uptake as influenced by weed management in winter maize+ potato intercropping system. Indian J Weed Sci 46(4):336–341

    Google Scholar 

  • Landolt PJ, Hofstetter RW, Biddick LL (1999) Plant essential oils as arrestants and repellents for neonate larvae of the codling moth (Lepidoptera: Tortricidae). Environ Entomol 28(6):954–960

    Article  CAS  Google Scholar 

  • Larkin RP (2003) Characterization of soil microbial communities under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles. Soil Biol Biochem 35(11):1451–1466

    Article  CAS  Google Scholar 

  • Legg JP, Fauquet CM (2004) Cassava mosaic geminiviruses in Africa. Plant Mol Biol 56(4):585–599

    Article  CAS  PubMed  Google Scholar 

  • Li C, Tian Q, Khashi u Rahman M, Wu S (2020a) Effect of anti-fungal compound phytosphingosine in wheat root exudates on the rhizosphere soil microbial community of watermelon. Plant Soil 456:(1-2):223–240

    Google Scholar 

  • Li PY, Rahman M, Zhou XG, Wu FZ, Sun LD, Guo PX, Dong H, Liu SW (2020b) Effects of wheat intercropping on the senescence of cucumber leaves. Allelopathy J 50(1):49–62

    Google Scholar 

  • Li L, Zhang F, Li X, Christie P, Sun J, Yang S, Tang C (2003) Interspecific facilitation of nutrient uptake by intercropped maize and faba bean. Nutr Cycl Agroecosyst 65(1):61–71

    Article  CAS  Google Scholar 

  • Li HY, Zhou XG, Wu FZ (2018) Effects of root exudates from potato onion on Verticillium dahliae. Allelopath J 43(2):217–222

    Article  Google Scholar 

  • Lithourgidis AS, Dordas CA, Damalas CA, Vlachostergios D (2011) Annual intercrops: an alternative pathway for sustainable agriculture. Aust J Crop Sci 5(4):396

    Google Scholar 

  • Liu J, Li X, Jia Z, Zhang T, Wang X (2017) Effect of benzoic acid on soil microbial communities associated with soilborne peanut diseases. Appl Soil Ecol 110:34–42

    Article  Google Scholar 

  • Lv J, Dong Y, Dong K, Zhao Q, Yang Z, Chen L (2020) Intercropping with wheat suppressed Fusarium wilt in faba bean and modulated the composition of root exudates. Plant Soil 448:153–164

    Google Scholar 

  • Mabvakure B, Martin DP, Kraberger S, Cloete L, van Brunschot S, Geering AD, Thomas JE, Bananej K, Lett JM, Lefeuvre P, Varsani A (2016) Ongoing geographical spread of Tomato yellow leaf curl virus. Virology 498:257–264

    Article  CAS  PubMed  Google Scholar 

  • Maitra S, Shankar T, Banerjee P (2020) Potential and advantages of maize-legume intercropping system. In: Maize-production and use. IntechOpen, London, pp 103–114

    Google Scholar 

  • Manasa P, Maitra S, Reddy MD (2018) Effect of summer maize-legume intercropping system on growth, productivity and competitive ability of crops. Int J Manag Technol Eng 8(12):2871–2875

    Google Scholar 

  • Mann RS, Rouseff RL, Smoot JM, Castle WS, Stelinski LL (2011) Sulfur volatiles from Allium spp. affect Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), response to citrus volatiles. Bull Entomol Res 101(1):89–97

    Article  CAS  PubMed  Google Scholar 

  • Massalha H, Korenblum E, Tholl D, Aharoni A (2017) Small molecules below-ground: the role of specialized metabolites in the rhizosphere. Plant J 90(4):788–807

    Article  CAS  PubMed  Google Scholar 

  • McIntyre B, Gold C, Kashaija I, Ssali H, Night G, Bwamiki D (2001) Effects of legume intercrops on soil-borne pests, biomass, nutrients and soil water in banana. Biol Fertil Soils 34(5):342–348

    Article  CAS  Google Scholar 

  • Mehmood MA, Qadri H, Bhat RA, Rashid A, Ganie SA, Dar GH, Shafiq-ur-Rehman (2019) Heavy metal contamination in two commercial fish species of a trans-Himalayan freshwater ecosystem. Environ Monit Assess Environ 191:104. https://doi.org/10.1007/s10661-019-7245-2

    Article  CAS  Google Scholar 

  • Messaoudi H, Gérard F, Dokukin P, Djamai H, Rebouh NY, Latati M (2020) Effects of intercropping on field-scale phosphorus acquisition processes in a calcareous soil. Plant Soil 449:331–341

    Google Scholar 

  • Mushtaq N, Bhat RA, Dervash MA, Qadri H, Dar GH (2018) Biopesticides: the key component to remediate pesticide contamination in an ecosystem. In: Environmental contamination and remediation. Cambridge Scholars Publishing, Cambridge, UK, pp 152–178

    Google Scholar 

  • Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One 7:e35498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Night G, Asiimwe P, Gashaka G, Nkezabahizi D, Legg JP, Okao-Okuja G, Obonyo R, Nyirahorana C, Mukakanyana C, Mukase F, Munyabarenzi I (2011) Occurrence and distribution of cassava pests and diseases in Rwanda. Agriculture, Ecosystems &Environment 140(3–4):492–497

    Article  Google Scholar 

  • Ogweno J, Yu J (2006) Autotoxic potential in soil sickness: a re-examination. Allelopath J 18(1):93

    Google Scholar 

  • Pannacci E, Lattanzi B, Tei F (2017) Non-chemical weed management strategies in minor crops: a review. Crop Prot 96:44–58

    Article  Google Scholar 

  • Peng H, Liu B, Luo L, Xi Y (2006) The studies on control crop diseases by using intercrop and mixture of variety in the fields. Southwest China J Agric Sci 19(6):1058–1062

    Google Scholar 

  • Petersen J, Belz R, Walker F, Hurle K (2001) Weed suppression by release of isothiocyanates from turnip-rape mulch. Agron J 93(1):37–43

    Article  CAS  Google Scholar 

  • Pingali PL (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci 109(31):12302–12308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C et al (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339

    Article  CAS  Google Scholar 

  • Rueda-Ayala V, Jaeck O, Gerhards R (2015) Investigation of biochemical and competitive effects of cover crops on crops and weeds. Crop Prot 71:79–87

    Article  CAS  Google Scholar 

  • Schreiner O, Reed HS (1907) The production of deleterious excretions by roots. Bull Torrey Bot Club 34(6):279–303

    Article  Google Scholar 

  • Schulz M, Marocco A, Tabaglio V, Macias FA, Molinillo JM (2013) Benzoxazinoids in rye allelopathy-from discovery to application in sustainable weed control and organic farming. J Chem Ecol 39(2):154–174

    Article  CAS  PubMed  Google Scholar 

  • Shafi S, Bhat RA, Bandh SA, Shameem N, Nisa H (2018) Microbes: key agents in the sustainable environment and cycling of nutrients. In: Environmental contamination and remediation. Cambridge Scholars Publishing, Cambridge, U.K, p 152-179-188

    Google Scholar 

  • Shiu T, Wu C (2010) Beneficial intercropping in the organic production of green onions (Allium fistulosum L.). J Taiwan Soc Hortic Sci 56(2):105–112

    Google Scholar 

  • Silva V, Silveira L, Santos A, Santos A, Tomazella VB (2016) Companion plants associated with kale increase the abundance and species richness of the natural-enemies of Lipaphis erysimi (Kaltenbach) (Hemiptera: Aphididae). Afr J Agric Res 11(29):2630–2639

    Article  Google Scholar 

  • Singh DV, Bhat RA, Dervash MA, Qadri H, Mehmood MA, Dar GH, Hameed M, Rashid N (2020) Wonders of nanotechnology for remediation of polluted aquatic environs. In: Qadri H, Bhat RA, Dar GH, Mehmood MA (eds) Freshwater pollution dynamics and remediation. Springer Nature, Singapore, pp 319–339

    Chapter  Google Scholar 

  • Sofi NA, Bhat RA, Rashid A, Mir NA, Mir SA, Lone R (2017) Rhizosphere mycorrhizae communities an input for organic agriculture. In: Varma A et al (eds) Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer International Publishing, Cham, pp 387–413

    Chapter  Google Scholar 

  • Song B, Tang G, Sang X, Zhang J, Yao Y, Wiggins N (2013) Intercropping with aromatic plants hindered the occurrence of Aphis citricola in an apple orchard system by shifting predator–prey abundances. Biocontrol Sci Tech 23(4):381–395

    Article  Google Scholar 

  • Su SM, Ren LX, Huo ZH, Yang XM, Huang QW, Xu YC, Zhou J, Shen QR (2008) Effects of intercropping watermelon with rain fed rice on Fusarium wilt and the microflora in the rhizosphere soil [J]. Sci Agric Sin 41:704–712

    CAS  Google Scholar 

  • Syers JK, Johnston AA, Curtin D (2008) Efficiency of soil and fertilizer phosphorous use. Reconciling changing concepts of soil phosphorous behaviour with agronomic information. Food and Agriculture Organization of the United Nations, Rome, p 110

    Google Scholar 

  • Tan SC, Liu JY, Rahman M, Ma CL, Wu FZ, Zhou XG (2020) Effects of selected root exudates components on soil Pseudomonas spp. community structures and abundances. Allelopathy J 50(1):85–93

    Google Scholar 

  • Tang C, Barton L, McLay CDA (1997) A comparison of proton excretion of twelve pasture legumes grown in nutrient solution. Aust J Exp Agric 37(5):563–570

    Article  Google Scholar 

  • Teasdale JR, Brandsaeter LO, Calegari A, Neto FS, Upadhyaya MK, Blackshaw RE (2007) Cover crops and weed management. Non chemical weed management principles. Concepts and technology. CABI, Wallingford, pp 49–64

    Google Scholar 

  • Tibugari H, Mombeshora D, Mandumbu R, Karavina C, Parwada C (2012) A comparison of the effectiveness of the aqueous extracts of garlic, castor beans and marigold in the biocontrol of root-knot nematode in tomato. J Agric Technol 8(2):479–492

    Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108(50):20260–20264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsay TT, Wu ST, Lin YY (2004) Evaluation of Asteraceae plants for control of Meloidogyne incognita. J Nematol 36(1):36

    CAS  PubMed  PubMed Central  Google Scholar 

  • U Rahman MK, Tan S, Ma C, Wu F, Zhou X (2020) Exogenously applied ferulic acid and p-coumaric acid differentially affect cucumber rhizosphere Trichoderma spp. community structure and abundance. Plant Soil Environ 66(9):461–467

    Google Scholar 

  • Vaccari DA (2009) Phosphorus: a looming crisis. Sci Am 300(6):54–59

    Article  CAS  PubMed  Google Scholar 

  • Vandermeer JH (1992) The ecology of intercropping. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Walton NJ, Isaacs R (2011) Survival of three commercially available natural enemies exposed to Michigan wildflowers. Environ Entomol 40(5):1177–1182

    Article  PubMed  Google Scholar 

  • Wang DW, Marschner P, Solaiman Z, Rengel Z et al (2007) Belowground interactions between intercropped wheat and Brassicas in acidic and alkaline soils. Soil Biol Biochem 39:961e971

    Article  Google Scholar 

  • Wang Z, Zhang J, Wu F, Zhou X (2018) Changes in rhizosphere microbial communities in potted cucumber seedlings treated with syringic acid. PLoS One 13:e0200007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weston LA, Alsaadawi IS, Baerson SR (2013) Sorghum allelopathy—from ecosystem to molecule. J Chem Ecol 39(2):142–153

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Wang Z, Wu F (2015) Companion cropping with wheat increases resistance to Fusarium wilt in watermelon and the roles of root exudates in watermelon root growth. Physiol Mol Plant Pathol 90:12–20

    Article  Google Scholar 

  • Xu Q, Hatt S, Han Z, Francis F, Chen J (2018) Combining E-β-farnesene and methyl salicylate release with wheat-pea intercropping enhances biological control of aphids in North China. Biocontrol Sci Tech 28(9):883–894

    Article  Google Scholar 

  • Xue Y, Xia H, Christie P, Zhang Z, Li L, Tang C (2016) Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review. Ann Bot 117(3):363–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Zhang Y, Qi L, Mei X, Liao J, Ding X, Deng W, Fan L, He X, Vivanco JM, Li C (2014) Plant-plant-microbe mechanisms involved in soil-borne disease suppression on a maize and pepper intercropping system. PLoS One 9(12):e115052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang D, Zhang C, Tang X, Li H, Zhang F, Rengel Z, Whalley WR, Davies WJ, Shen J (2016) Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize. New Phytol 209(2):823–831

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Yu G, Wu F (2011) Effects of intercropping cucumber with onion or garlic on soil enzyme activities, microbial communities and cucumber yield. Eur J Soil Biol 47(5):279–287

    Article  CAS  Google Scholar 

  • Zhou X, Zhang J, Pan D, Ge X, Jin X, Chen S, Wu F (2018) p-Coumaric can alter the composition of cucumber rhizosphere microbial communities and induce negative plant-microbial interactions. Biol Fertil Soils 54(3):363–372

    Article  CAS  Google Scholar 

  • Zhu S, Morel JB (2019) Molecular mechanisms underlying microbial disease control in intercropping. Mol Plant-Microbe Interact 32(1):20–24

    Article  CAS  PubMed  Google Scholar 

  • Zou X, Liu Z, Niu S, Yang N, Feng L (2018) Interspecific root interactions enhance biomass and nutrient acquisition of millet (Setaria italica) and mungbean (Vigna radiata) in intercropping system. Int J Agric Biol 20(5):1181–1187

    CAS  Google Scholar 

  • Zu YQ, Hu WY, Wu BZ, Zhan FD, Li Y (2008) Effect of chilli pepper intercropping system on nutrient utilization, main diseases and pests and yield of chilli pepper. J Wuhan Bot Res 26:412–416

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khashi u Rahman, M., Hussain, Z., Zhou, X., Ali, I., Wu, F. (2021). Intercropping: A Substitute but Identical of Biofertilizers. In: Dar, G.H., Bhat, R.A., Mehmood, M.A., Hakeem, K.R. (eds) Microbiota and Biofertilizers, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-61010-4_14

Download citation

Publish with us

Policies and ethics