Skip to main content
Log in

Benzoxazinoids in Rye Allelopathy - From Discovery to Application in Sustainable Weed Control and Organic Farming

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The allelopathic potency of rye (Secale cereale L.) is due mainly to the presence of phytotoxic benzoxazinones—compounds whose biosynthesis is developmentally regulated, with the highest accumulation in young tissue and a dependency on cultivar and environmental influences. Benzoxazinones can be released from residues of greenhouse-grown rye at levels between 12 and 20 kg/ha, with lower amounts exuded by living plants. In soil, benzoxazinones are subject to a cascade of transformation reactions, and levels in the range 0.5–5 kg/ha have been reported. Starting with the accumulation of less toxic benzoxazolinones, the transformation reactions in soil primarily lead to the production of phenoxazinones, acetamides, and malonamic acids. These reactions are associated with microbial activity in the soil. In addition to benzoxazinones, benzoxazolin-2(3H)-one (BOA) has been investigated for phytotoxic effects in weeds and crops. Exposure to BOA affects transcriptome, proteome, and metabolome patterns of the seedlings, inhibits germination and growth, and can induce death of sensitive species. Differences in the sensitivity of cultivars and ecotypes are due to different species-dependent strategies that have evolved to cope with BOA. These strategies include the rapid activation of detoxification reactions and extrusion of detoxified compounds. In contrast to sensitive ecotypes, tolerant ecotypes are less affected by exposure to BOA. Like the original compounds BOA and MBOA, all exuded detoxification products are converted to phenoxazinones, which can be degraded by several specialized fungi via the Fenton reaction. Because of their selectivity, specific activity, and presumably limited persistence in the soil, benzoxazinoids or rye residues are suitable means for weed control. In fact, rye is one of the best cool season cover crops and widely used because of its excellent weed suppressive potential. Breeding of benzoxazinoid resistant crops and of rye with high benzoxazinoid contents, as well as a better understanding of the soil persistence of phenoxazinones, of the weed resistance against benzoxazinoids, and of how allelopathic interactions are influenced by cultural practices, would provide the means to include allelopathic rye varieties in organic cropping systems for weed control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad, S., Veyrat, N., Gordon-Weeks, R., Zhang, Y., Martin, J., Smart, L., Glauser, G., Erb, M., Flors, V., Frey, M., and Ton, J. 2011. Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiol. 157:317–327.

    PubMed  CAS  Google Scholar 

  • Altieri, M. A. 1987. Cover cropping and mulching, pp. 219–232, in M. A. Altieri (ed.), Agroecology: The Science of Sustainable Agriculture, 2nd ed. Westview Press, Boulder, CO, USA.

    Google Scholar 

  • Altieri, M. A., Lana, M. A., Bittencourt, H. V., Kieling, A. S., Comin, J. J., and Lovato, P. E. 2011. Enhancing crop productivity via weed suppression in organic no-till cropping systems in Santa Catarina, Brazil. J. Sustain. Agric. 35:855–869.

    Google Scholar 

  • Anai, T., Aizawa, H., Ohtake, N., Kosemura, S., Yamamura, S., and Hasegawa, K. 1996. A new auxin inhibiting substance, 4-Cl-6,7-dimethoxy-2-benzoxazolinone, from light-grown maize shoots. Phytochemistry 42:273–275.

    CAS  Google Scholar 

  • Andreasen, M. F., Christensen, L. P., Meyer, A. S., and Hansen, A. 2000. Content of phenolic acids and ferulic acid dehydrodimers in 17 rye (Secale cereale L.) varieties. J. Agric. Food Chem. 48:2837–2842.

    PubMed  CAS  Google Scholar 

  • Angers, D. A. and Recous, S. 1997. Decomposition of wheat straw and rye residues as affected by particle size. Plant Soil 189:197–203.

    CAS  Google Scholar 

  • Argandoña, V. H., Luza, J. G., Niemeyer, H. M., and Corcuera, L. J. 1980. Role of hydroxamic acids in the resistance of cereals to aphid. Phytochemistry 19(1665):1668.

    Google Scholar 

  • Bacon, C. W., Hinton, D. M., Glenn, A. E., Macías, F. A., and Marin, D. 2007. Interactions of Bacillus mojavensis and Fusarium verticillioides with a benzoxazolinone (BOA) and its transformation product, APO. J. Chem. Ecol. 33:1885–1897.

    PubMed  CAS  Google Scholar 

  • Baerson, S. R., Sanchez-Moreiras, A. M., Pedrol-Bonjoch, N., Schulz, M., Kagan, I. A., Agarwal, A. K., Reigosa, M. J., and Duke, S. O. 2005. Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolin-2(3H)-one. J. Biol. Chem. 280:21867–21881.

    PubMed  CAS  Google Scholar 

  • Bàrberi, P. 2002. Weed management in organic agriculture: are we addressing the right issues? Weed Res. 42:177–193.

    Google Scholar 

  • Barnes, J. P. and Putman, A. R. 1983. Rye residues contribute weed suppression in no-tillage cropping systems. J. Chem. Ecol. 9:1045–1057.

    Google Scholar 

  • Barnes, J. P. and Putnam, A. R. 1986. Evidence for allelopathy by residues and aqueous extracts of rye (Secale cereale L.). Weed Sci 34:384–390.

    Google Scholar 

  • Barnes, J. P. and Putnam, A. R. 1987. Role of benzoxazinones in allelopathy by rye (Secale cereale L.). J. Chem. Ecol. 56:1788–1800.

    Google Scholar 

  • Barnes, J. P., Putnam, A. R., Burke, B. A., and Aasen, A. J. 1987. Isolation and characterization of allelochemicals in rye herbage. Phytochemistry 26:1385–1390.

    CAS  Google Scholar 

  • Batish, D. R., Singh, H. P., Kohli, R. K., and Kaur, S. 2001. Crop allelopathy and its role in ecological agriculture. J. Crop. Prod. 4:121–162.

    CAS  Google Scholar 

  • Batish, D. R., Singh, H. P., Setia, N., Kaur, S., and Kohli, R. K. 2006. 2-Benzoxazolinone (BOA) induced oxidative stress, lipid peroxidation and changes in some antioxidant enzyme activities in mung bean (Phaseolus aureus). Plant Physiol. Biochem. 44:819–827.

    PubMed  CAS  Google Scholar 

  • Belz, R. G. 2007. Allelopathy in crop/weed interactions—an update. Pest Manag. Sci. 63:308–326.

    PubMed  CAS  Google Scholar 

  • Beninger, C. W. and Hall, J. C. 2005. Allelopathic activity of luteolin 7-O-β-glucuronide from Chrysanthemum morifolium L. Biochem. Syst. Ecol. 33:103–111.

    CAS  Google Scholar 

  • Bertholdsson, N. 2010. Breeding spring wheat for improved allelopathic potential. Weed Res. 50:49–57.

    Google Scholar 

  • Bertholdsson, N.-O., Andersson, S. C., and Merker A. 2012. Allelopathic potential of Triticum spp., Secale spp. and Triticosecale spp. and use of chromosome substitutions and translocations to improve weed suppression ability in winter wheat. Plant Breeding 131:75–80.

    Google Scholar 

  • Booker, F. L., Blum, U., and Fiscua, E. L. 1992. Short-term effects of ferulic acid on uptake and water relations in cucumber seedlings. J. Exp. Bot. 43:649–655.

    CAS  Google Scholar 

  • Bravo, H. R. and Niemeyer, H. M. 1985. Decomposition in aprotic solvents of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one, a hydroxamic acid from cereals. Tetrahedron 41:4983–4986.

    CAS  Google Scholar 

  • Bredenberg, J. B., Honkanen, E., and Virtanen, A. I. 1962. The kinetics and mechanism of the decomposition of 2,4-dihydroxy-1,4-benzoxazin-3-one. Acta Chem. Scand. 16:135–141.

    Google Scholar 

  • Breen, J. and Ogasawara, M. 2011. A vision for weed science in the twenty-first century. Weed Biol. Manag. 11:113–117.

    Google Scholar 

  • Brooks, A. M., Danehower, D. A., Murphy, J. P., Reberg-Horton, S. C., and Burton, J. D. 2012. Estimation of heritability of benzoxazinoid production in rye (Secale cereale) using gas chromatographic analysis. Plant Breeding 131:104–109.

    CAS  Google Scholar 

  • Brown, N. A., Antoniw, J., and Hammond-Kosack, K. E. 2012. The predicted secretome of the plant pathogenic fungus Fusarium graminearum: a refined comparative analysis. PLoS One 7(4):e33731. doi:10.1371/journal.pone.0033731.

    PubMed  CAS  Google Scholar 

  • Burgos, N. R. and Talbert, R. E. 2000. Differential activity of allelochemicals from Secale cereale in seedling bioassays. Weed Sci. 48:302–310.

    CAS  Google Scholar 

  • Burgos, N. R., Talbert, R. E., and Mattice, J. D. 1999. Cultivar and age differences in the production of allelochemicals by Secale cereale. Weed Sci. 47:481–485.

    CAS  Google Scholar 

  • Burgos, N. R., Talbert, R. E., Kim, K. S., and Kuk, Y. I. 2004. Growth inhibition and root ultrastructure of cucumber seedlings exposed to allelochemicals from rye (Secale cereale). J. Chem. Ecol. 30:671–689.

    PubMed  CAS  Google Scholar 

  • Cessna, S. G., Sears, V. E., Dickman, M. B., and Low, P. B. 2000. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12:2191–2199.

    PubMed  CAS  Google Scholar 

  • Chase, W. R., Nair, M. G., and Putnam, A. R. 1991. 2,2’-oxo-1, 1’-azobenzene: selective toxicity of rye (Secale cereale L.) allelochemicals to weed and crop species: II. J. Chem. Ecol. 17:9–19.

    CAS  Google Scholar 

  • Chen, K.-J., Zheng, Y.-Q., Kong, C.-H., Zhang, S.-Z., Li, J., and Liu, X.-G. 2010. 2,4-Dihydrox-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and 6-methoxy-benzoxazolin-2-one (MBOA) levels in the wheat rhizosphere and their effect on the soil microbial community structure. J. Agric. Food Chem. 58:12710–12716.

    PubMed  CAS  Google Scholar 

  • Chen, L., Yang, X., Raza, W., Li, J., Liu, Y., Qiu, M., Zhang, F., and Shen, Q. 2011. Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Appl. Microbiol. Biotechnol. 89:1653–1663.

    PubMed  CAS  Google Scholar 

  • Chiapusio, G., Sánchez, A. M., Reigosa, M. J., González, L., and Pellissier, F. 1997. Do germination indices adequately reflect allelochemical effects on the germination process? J. Chem. Ecol. 23:2445–2453.

    CAS  Google Scholar 

  • Chiapusio, G., Pellissier, F., and Gallet, C. 2004. Uptake and translocation of phytochemical 2-benzoxazolinone (BOA) in radish seeds and seedlings. J. Exp. Bot. 55:1587–1592.

    PubMed  CAS  Google Scholar 

  • Chikmawati, T., Skovmand, B., and Gustafson, J. P. 2005. Phylogenetic relationships among Secale species revealed by amplified fragment length polymorphisms. Genome 48:792–801.

    PubMed  CAS  Google Scholar 

  • Cicek, M., Blanchard, D., Bevan, D. R., and Esen, A. 2000. The aglycone specificity-determining sites are different in 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA)-glucosidase (maize beta-glucosidase) and dhurrinase (sorghum beta-glucosidase). J. Biol. Chem. 275:20002–20011.

    PubMed  CAS  Google Scholar 

  • Cipollini, D., Rigsby, C. M., and Barto, E. K. 2012. Microbes as targets and mediators of allelopathy in plants. J. Chem. Ecol. 38:714–727.

    PubMed  CAS  Google Scholar 

  • Clark, A. 2007 (ed.). Managing Cover Crops Profitably, p. 244. Sustainable Agriculture Network, Handbook Series Book 9, 3rd ed., Beltsville, MD, USA.

  • Coja, T., Idinger, J., and Bluemel, S. 2006. Effects of the benzoxazolinone BOA, selected degradation products and structure related pesticides on soil organisms. Ecotoxicology 15:61–72.

    PubMed  CAS  Google Scholar 

  • Collantes, H. G., Gianoli, E., and Niemeyer, H. M. 1999. Defoliation affects chemical defenses in all plant parts of rye seedlings. J. Chem. Ecol. 25:491–499.

    CAS  Google Scholar 

  • Conklin, A. E., Erich, M. S., Liebman, M., Lambert, D., Gallandt, E. R., and Halteman, W. A. 2002. Effects of red clover (Trifolium pratense) green manure and compost soil amendments on wild mustard (Brassica kaber) growth and incidence of disease. Plant Soil 238:245–256.

    CAS  Google Scholar 

  • Conte, S. S. and Lloyed, A. M. 2011. Exploring multiple drug and herbicide resistance in plants-spotlight on transporter proteins. Plant Sci. 180:196–203.

    PubMed  CAS  Google Scholar 

  • Copaja, S. V., Villarroel, E., Bravo, H. R., Pizarro, L., and Argandoña, V. H. 2006. Hydroxamic acids in Secale cereale L. and the relationship with their antifeedant and allelopathic properties. Z. Naturforsch. C 61:670–676.

    PubMed  CAS  Google Scholar 

  • Dabney, S. M., Schreiber, J. D., Rothrock, C. S., and Johnson, J. R. 1996. Cover crops affect sorghum seedling growth. Agron. J. 88:961–970.

    Google Scholar 

  • de Bruin, J. L., Porter, P. M., and Jordan, N. R. 2005. Use of a rye cover crop following corn in rotation with soybean in the upper midwest. Agron. J. 97:587–598.

    Google Scholar 

  • Degenhardt, J., Hiltpold, I., Köllner, T. G., Frey, M., Gierl, A., Gershenzon, J., Hibbard, B. E., Ellersieck, M. R., and Turlings, T. C. J. 2009. Restoring a maize root signal that attracts insect-killing nematodes. Proc. Natl. Acad. Sci. U. S. A. 106:13213–13218.

    PubMed  CAS  Google Scholar 

  • Dellamonica, G., Meurer, B., Strack, D., Weissenböck, G., and Chopin, J. 1983. Two isovitexin 2″-O-glycosides from primary leaves of Secale cereale. Phytochemistry 22:2627–2628.

    CAS  Google Scholar 

  • Dick, R., Rattei, T., Haslbeck, M., Schwab, W., Gierl, A., and Frey, M. 2012. Comparative analysis of benzoxazinoid biosynthesis in monocots and dicots: independent recruitment of stabilization and activation functions. Plant Cell 24:915–928.

    PubMed  CAS  Google Scholar 

  • Dufall, L. A. and Solomon, P. S. 2011. Role of cereal secondary metabolites involved in mediating the outcome of plant-pathogen-interaction. Metabolites 1:64–78.

    CAS  Google Scholar 

  • Dutartre, L., Hiliou, F., and Feyereisen, R. 2012. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: gene duplications and origin of the BX cluster. BMC Evol. Biol. 12:64–83.

    PubMed  CAS  Google Scholar 

  • Dutton, M. V. and Evan, C. S. 1996. Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can. J. Microbiol. 42:881–895.

    CAS  Google Scholar 

  • Ebisui, K., Ishihara, A., and Iwamura, H. 2001. Purification and characterization of UDP-glucose: cyclic hydroxamic acid-glucosyltransferases from maize seedlings. Plant Physiol. Biochem. 39:27–35.

    CAS  Google Scholar 

  • Ehlers, B. K. 2011. Soil microorganisms alleviate the allelochemical effects of a thyme monoterpene on the performance of an associated grass species. PLoS One 6:e26321.

    PubMed  CAS  Google Scholar 

  • Ercoli, L., Masoni, A., and Pampana, S. 2005. Weed suppression by winter cover crops. Allelopathy J. 16:273–278.

    Google Scholar 

  • Ercoli, L., Masoni, A., Pampana, S., and Arduini, I. 2007. Allelopathic effects of rye, brown mustard and hairy vetch on redroot pigwee, common lambsquarter and knotweed. Allelopathy J. 19:249–256.

    Google Scholar 

  • Finney, M. M., Danehower, D. A., and Burton, J. D. 2005. Gas chromatographic method for the analysis of allelopathic natural products in rye (Secale cereale L.). J. Chromatogr. 1066:249–253.

    CAS  Google Scholar 

  • Flamini, G. 2012. Natural herbicides as a safer and more environmentally friendly approach to weed control: a review of the literature since 2000. Stud. Nat. Prod. Chem. 38:353–396.

    Google Scholar 

  • Frey, M., Chomet, P., Glawischnig, E., Stettner, C., Grün, S., Winklmair, A., Eisenreich, W., Bacher, A., Meerley, R. B., Briggs, S. P., Simcox, K., and Gierl, A. 1997. Analysis of a chemical plant defense mechanism in grasses. Science 277:696–699.

    PubMed  CAS  Google Scholar 

  • Frey, M., Stettner, C., Pare, P. W., Schmelz, E. A., Tumlinson, J. H., and Gierl, A. 2000. An herbivore elicitor activates the gene for indole emission in maize. Proc. Natl. Acad. Sci. U. S. A. 97:14801–14806.

    PubMed  CAS  Google Scholar 

  • Frey, M., Huber, K., Park, W. J., Sicker, D., Lindberg, P., Meeley, R. B., Simmons, C. R., Yalpani, N., and Gierl, A. 2003. A 2-oxoglutarate-dependent dioxygenase is integrated in DIMBOA biosynthesis. Phytochemistry 62:371–376.

    PubMed  CAS  Google Scholar 

  • Frey, M., Spiteller, D., Boland, W., and Gierl, A. 2004. Transcriptional activation of Igl, the gene for indole formation in Zea mays: a structure-activity study with elicitor-active N-acyl glutamines from insects. Phytochemistry 65:1047–1055.

    PubMed  CAS  Google Scholar 

  • Frey, M., Schullehner, K., Dick, R., Fiesselmann, A., and Gierl, A. 2009. Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants. Phytochemistry 70:1645–1651.

    PubMed  CAS  Google Scholar 

  • Friebe, A., Wieland, I., and Schulz, M. 1996. Tolerance of Avena sativa to the allelochemical benzoxazolinone. Degradation of BOA by root-colonizing bacteria. J. Appl. Bot.-Angew. Bot. 70:150–154.

    CAS  Google Scholar 

  • Friebe, A., Roth, U., Kück, P., Schnabl, H., and Schulz, M. 1997. Effects of 2,4-dihydroxy-1,4-benzoxazin-3-ones on the activity of plasma membrane H+-ATPase. Phytochemistry 44:979–983.

    CAS  Google Scholar 

  • Friebe, A., Vilich, V., Hennig, L., Kluge, M., and Sicker, D. 1998. Detoxification of benzoxazolinone allelochemicals from wheat by Gaeumannomyces graminis var. tritici, G. graminis var. graminis, G. graminis var. avenae, and Fusarium culmorum. Appl. Environ. Microb. 64:2386–2391.

    CAS  Google Scholar 

  • Fritz, J. I. and Braun, R. 2006. Ecotoxicological effects of benzoxazinone allelochemicals and their metabolites on aquatic nontarget organisms. J. Agric. Food Chem. 54:1105–1110.

    PubMed  CAS  Google Scholar 

  • Gagliardo, R. W. and Chilton, W. S. 1992. Soil transformation of 2(3H)-benzoxazolinone of rye into phytotoxic 2-amino-3H-phenoxazin- 3-one. J. Chem. Ecol. 18:1683–1691.

    CAS  Google Scholar 

  • Gavazzi, C., Schulz, M., Marocco, A., and Tabaglio, V. 2010. Sustainable weed control by allelochemicals from rye cover crops: from the greenhouse to field evidence. Allelopathy J. 25:259–273.

    Google Scholar 

  • Gealy, D. R., Gurusiddaiah, S., and Ogg Jr., A. G. 1996. Isolation and characterization of metabolites from Pseudomonas syringae-strain 3366 and their phytotoxicity against certain weed and crop species. Weed Sci. 44:383–392.

    CAS  Google Scholar 

  • Gents, M. B., Nielsen, S. T., Mortensen, A. G., Christophersen, C., and Fomsgaard, I. S. 2005. Transformation products of 2-benzoxazolinone (BOA) in soil. Chemosphere 61:74–84.

    PubMed  CAS  Google Scholar 

  • Gianoli, E., Rios, J. M., and Niemeyer, H. M. 1999. Factors governing within-plant allocation of a chemical defence in Secale cereale. Which is the appropriate currency of allocation? Chemoecology 9:113–117.

    CAS  Google Scholar 

  • Glauser, G., Marti, G., Villard, N., Doyen, G. A., Wolfender, J. L., Turlings, T. C. J., and Erb, M. 2011. Induction and detoxification of maize 1,4-benzoxazin-3-ones by insect herbivores. Plant J. 68:901–911.

    PubMed  CAS  Google Scholar 

  • Glawischnig, E., Grün, S., Frey, M., and Gierl, A. 1999. Cytochrome P450 monooxygenase of DIBOA biosynthesis: specificity and conservation among grasses. Phytochemistry 50:925–930.

    PubMed  CAS  Google Scholar 

  • Glenn, A. E., Hinton, D. M., Yates, I. E., and Bacon, C. W. 2001. Detoxification of corn antimicrobial compounds as the basis for isolations Fusarium verticillioides and some other Fusarium species from Corn. Appl. Environ. Microbiol. 67:2973–2981.

    PubMed  CAS  Google Scholar 

  • González, L. F. and Rojas, M. C. 1999. Role of wall peroxidases in oat growth inhibition by DIMBOA. Phytochemistry 50:931–937.

    Google Scholar 

  • Grayston, S. J., Wang, S. A., Campbell, C. D., and Adwards, A. C. 1998. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem. 30:369–378.

    CAS  Google Scholar 

  • Hartenstein, H. and Sicker, D. 1994. (2R)-2-β-D-glucopyranosyloxy-4-hydroxy-2H-1,4-benzoxazin-3(4H)-one from Secale cereale. Phytochemistry 35(827):828.

    Google Scholar 

  • Hashimoto, Y. and Shudo, K. 1996. Chemistry of biologically active benzoxazinoids. Phytochemistry 43:551–559.

    PubMed  CAS  Google Scholar 

  • Hietala, P. K. and Virtanen, A. I. 1960. Precursors of benzoxazolinone in rye plants. II. Precursor I, the glucoside. Acta Chem. Scand. A 14:502–504.

    Google Scholar 

  • Hoffman, M. L., Weston, L. A., Snyder, J. C., and Regnier, E. R. 1996. Separating the effects of sorghum (Sorghum bicolor) and rye (Secale cereale) root and shoot residues on weed development. Weed Sci. 44:402–407.

    CAS  Google Scholar 

  • Hofman, J. and Hofmanova, O. 1969. 1,4-Benzoxazinone derivatives in plants. Eur. J. Biochem. 8:109–112.

    PubMed  CAS  Google Scholar 

  • Hofmann, D., Knop, M., Hao, H., Hennig, L., Sicker, D., and Schulz, M. 2006. Glucosides from MBOA and BOA detoxification by Zea mays and Portulaca oleracea. J. Nat. Prod. 69:34–37.

    PubMed  CAS  Google Scholar 

  • Hoshi-Sakoda, M., Usu, K., Ishizuka, K., Kosemura, S., Yamamura, S., and Hasegawa, K. 1994. Structure-activity relationships of benzoxazolinones with respect to auxin-induced growth and auxin-binding protein. Phytochemistry 37:297–300.

    Google Scholar 

  • Hussain, M. I. and Reigosa, M. J. 2011. Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, non-photochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species. J. Exp. Bot. 62:4533–4545.

    PubMed  CAS  Google Scholar 

  • Hussain, M. I., Gonzalez, L., and Reigosa, M. J. 2008. Germination and growth response of four plant species towards different allelochemicals and herbicides. Allelopathy J. 22:101–110.

    Google Scholar 

  • Idinger, J., Coja, T., and Blümel, S. 2006. Effects of the benzoxazoid DIMBOA, selected degradation products, and structure-related pesticides on soil organisms. Ecotoxicol. Environ. Saf. 65:1–13.

    PubMed  CAS  Google Scholar 

  • Jilani, G., Mahmood, S., Chaudhry, A. N., Hassan, I., and Akram, M. 2008. Allelochemicals: sources, toxicity and microbial transformation in soil—a review. Ann. Microbiol. 58:351–357.

    CAS  Google Scholar 

  • Jonczyk, R., Schmidt, H., Osterrieder, A., Fisselmann, A., Schullehner, K., Haslbeck, M., Sicker, D., Hofmann, D., Yalpani, N., and Simmons, C. 2008. Elucidation of the final reactions of DIMBOA-glucoside biosynthesis in maize: characterization of Bx6 and Bx7. Plant Physiol. 146:1053–1063.

    PubMed  CAS  Google Scholar 

  • Kalinova, J. 2010. Allelopathy and organic farming, pp 379–418, in E. Lichtfouse (ed.), Sociology, Organic Farming, Climate. Change and Soil Science. Sustainable Agriculture Reviews 3, Springer Science + Business Media B.V.

  • Kato-Noguchi, H., and Peters, R.J. 2013. The role of momilactones in rice allelopathy. J. Chem. Ecol. 39:175–185.

    Google Scholar 

  • Kato-Noguchi, H., Macias, F. A., and Molinillo, J. M. G. 2010. Structure-activity relationship of benzoxazinones and related compounds with respect to the growth inhibition and α-amylase activity in cress seedlings. J. Plant Physiol. 167:1221–1225.

    PubMed  CAS  Google Scholar 

  • Khanh, T. D., Chung, M. I., Xuan, T. D., and Tawata, S. 2005. The exploitation of crop allelopathy in sustainable agricultural production. J. Agron. Crop. Sci. 191:172–184.

    Google Scholar 

  • Kimura, M., Takahahi-Ando, N., Nishiuchi, T., Ohsato, S., Tokai, T., Ochiai, N., Fujimura, M., Kudo, T., Hamamoto, H., and Yamaguchi, I. 2006. Molecular biology and biotechnology for reduction of Fusarium mycotoxin contamination. Pestic. Biochem. Physiol. 86:117–123.

    CAS  Google Scholar 

  • Knop, M., Pacyna, S., Voloshchuk, N., Kant, S., Müllenborn, C., Steiner, U., Kirchmair, M., Scherer, W., and Schulz, M. 2007. Zea mays: benzoxazolinone detoxification under sulfur deficiency conditions - a complex allelopathic alliance including endophytic Fusarium verticillioides. J. Chem. Ecol. 33:225–237.

    PubMed  CAS  Google Scholar 

  • Kobayashi, M., Shinohara, M., Sakoh, C., Kataoka, M., and Shimizu, S. 1998. Lactone-ring-cleaving enzyme: Genetic analysis, novel RNA editing, and evolutionary implications. Proc. Natl. Acad. Sci. U. S. A. 95:12787–12792.

    PubMed  CAS  Google Scholar 

  • Kong, C. H., Wang, P., Gu, Y., Xu, X. H., and Wang, M. L. 2008. Fate and impact on microorganisms of rice allelochemicals in paddy soil. J. Agric. Food Chem. 56:5043–5049.

    PubMed  CAS  Google Scholar 

  • Krogh, S. S., Mensz, S. J. M., Nielsen, S. T., Mortensen, A. G., Christophersen, C., and Fomsgaard, I. S. 2006. Fate of benzoxazinone allelochemicals in soil after incorporation of wheat and rye sprouts. J. Agric. Food Chem. 54:1064–1074.

    PubMed  CAS  Google Scholar 

  • Kruidhof, H. M., Bastiaans, L., and Kropff, M. J. 2008. Ecological weed management by cover cropping: Effects on weed growth in autumn and weed establishment in spring. Weed Res. 48:492–502.

    Google Scholar 

  • Kruidhof, H. M., Bastiaans, L., and Kropff, M. J. 2009. Cover crop residue management for optimizing weed control. Plant Soil 318:169–184.

    CAS  Google Scholar 

  • Kruidhof, M., Gallandt, E. R., Haramoto, E. R., and Bastiaans, L. 2010. Selective weed suppression by cover crop residues: effects of seed mass and timing of species’ sensitivity. Weed Res. 51:177–186.

    Google Scholar 

  • La Hovary, C. 2011. Allelochemicals in Secale cereale. Biosynthesis and molecular biology of benzoxazinones. Ph.D. dissertation. North Carolina State University.

  • Liebman, M. and Davis, A. S. 2000. Integration of soil, crop and weed management in low-external-input farming systems. Weed Res. 40:27–47.

    Google Scholar 

  • Liebman, M. and Davis, A. S. 2009. Managing weeds in organic farming systems: an ecological approach, pp. 173–196, in C. A. Francis (ed.), Organic Farming: The Ecological System. Agronomy Monograph 54. American Society of Agronomy, Madison, WI, USA.

    Google Scholar 

  • Liebman, M. and Gallandt, E. R. 1997. Many little hammers: Ecological approaches for management of crop-weed interactions, pp. 291–343, in L. E. Jackson (ed.), Ecology in Agriculture. Academic, San Diego, CA, USA.

    Google Scholar 

  • Liebman, M. and Mohler, C. L. 2001. Weeds and the soil environment, pp. 210–268, in M. Liebman, C. L. Mohler, and C. P. Staver (eds.), Ecological Management of Agricultural Weeds. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Lundkvist, A., Salomonsson, L., Karlsson, L., and Gustavsson, A.-M. D. 2008. Effects of organic farming on weed flora composition in a long term perspective. Eur. J. Agron. 28:570–578.

    Google Scholar 

  • Macías, F. A., Oliveros-Bastidas, A., Marín, D., Castellano, D., Simonet, A. M., and Molinillo, J. M. G. 2004. Degradation studies on benzoxazinoids. Soil degradation dynamics of 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA) and its degradation products, phytotoxic allelochemicals from Gramineae. J. Agric. Food Chem. 52:6402–6413.

    PubMed  Google Scholar 

  • Macías, F. A., Marín, D., Chinchilla, N., Varela, R. M., Oliveros-Bastidas, A., Marín, D., and Molinillo, J. M. G. 2005a. Structure-activity relationship studies of benzoxazinones, and related compounds. Phytotoxicity on Echinochloa crus-galli (L.) P. Beauv. J. Agric. Food Chem. 53:4373–4380.

    PubMed  Google Scholar 

  • Macías, F. A., Marín, D., Oliveros-Bastidas, A., Castellano, D., Simonet, A. M., and Molinillo, J. M. G. 2005b. Structure-activity relationships (SAR) studies of benzoxazinones, their degradation products and analogues. Phytotoxicity on standard target species (STS). J. Agric. Food Chem. 53:538–548.

    PubMed  Google Scholar 

  • Macías, F. A., Oliveros-Bastidas, A., Marín, D., Castellano, D., Simonet, A. M., and Molinillo, J. M. G. 2005c. Degradation studies on benzoxazinoids. Soil degradation dynamics of (2R)-2-O-β-d-glucopyranosyl-4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA-Glc) and its degradation products, phytotoxic allelochemicals from Gramineae. J. Agric. Food Chem. 53:554–561.

    PubMed  Google Scholar 

  • Macías, F. A., Marín, D., Oliveros-Bastidas, A., Castellano, D., Simonet, A. M., and Molinillo, J. M. G. 2006a. Structure-activity relationships (SAR) studies of benzoxazinones, their degradation products and analogues. Phytotoxicity on problematic weeds Avena fatua L. and Lolium rigidum Gaud. J. Agric. Food Chem. 54:1040–1048.

    PubMed  Google Scholar 

  • Macías, F. A., Marín, D., Oliveros-Bastidas, A., Chinchilla, D., Simonet, A. M., and Molinillo, J. M. G. 2006b. Isolation and synthesis of allelochemicals from Gramineae: benzoxazinones and related compounds. J. Agric. Food Chem. 54:991–1000.

    PubMed  Google Scholar 

  • Macías, F.A., Marín, D., Oliveros-Bastidas, A., Simonet A.M., and Molinillo, J.M.G. 2006a. Ecological relevance of the degradation processes of allelochemicals, pp. 91–107, in Y. Fujii (ed.), New Concepts and Methodology in Allelopathy. Science Publishers Inc.

  • Macías, F. A., Molinillo, J. M., Varela, R. M., and Galindo, J. C. 2007. Allelopathy—a natural alternative for weed control. Pest Manag. Sci. 63:327–348.

    PubMed  Google Scholar 

  • Macías, F. A., Marín, D., Oliveros-Bastidas, A., and Molinillo, J. M. G. 2009. Rediscovering the bioactivity and ecological role of 1,4-benzoxazinones. Nat. Prod. Rep. 26:478–489.

    PubMed  Google Scholar 

  • Manici, L. M., Caputo, F., and Babini, V. 2004. Effect of green manure on Pythium spp. population and microbial communities in intensive cropping systems. Plant Soil 263:133–142.

    CAS  Google Scholar 

  • Masiunas, J. B., Weston, L. A., and Weller, S. C. 1995. The impact of rye cover crops on weed populations in a tomato cropping system. Weed Sci. 43:318–323.

    CAS  Google Scholar 

  • Matthiessen, J. N. and Kirkegaard, J. A. 2006. Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Crit. Rev. Plant Sci. 25:235–265.

    CAS  Google Scholar 

  • Mohler, C. L. 1996. Ecological bases for the cultural control of weeds. J. Prod. Agric. 9:468–474.

    Google Scholar 

  • Mwaja, V. N., Masiunas, J. B., and Weston, L. A. 1995. Effects of fertility on biomass, phytotoxicity, and allelochemical content of cereal rye. J. Chem. Ecol. 21:81–96.

    CAS  Google Scholar 

  • Nagabhushana, G. G., Worsham, A. D., and Yenish, J. P. 2001. Allelopathic cover crops to reduce herbicide use in sustainable agricultural systems. Allelopathy J. 8:133–146.

    Google Scholar 

  • Nair, M., Whitenack, C. J., and Putnam, A. R. 1990. 2,2′-Oxo-1,1′-azonezene: a microbially transformed allelochemical from 2,3 benzoxazolinone. J. Chem. Ecol. 16:353–364.

    CAS  Google Scholar 

  • Narwal, S. S. 1994. pp. 288, Allelopathy in Crop Production. Scientific Publishers, Jodhpur, India.

    Google Scholar 

  • Narwal, S. S. 2010. Allelopathy in ecological sustainable organic agriculture. Allelopathy J. 25:51–72.

    Google Scholar 

  • Neal, A. L., Ahmad, S., Gordon-Weeks, R., and Ton, J. 2012. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One 7(4):e35498. doi:10.1371/journal.pone.0035498.

    PubMed  CAS  Google Scholar 

  • Niemeyer, H. M. 1988. Hydroxamic Acids (4-Hydroxy-l.4-benzoxazin-3-ones), defense chemicals in the Gramineae. Phytochemistry 27:3349–3358.

    CAS  Google Scholar 

  • Niemeyer, H. M. 2009. Hydroxamic acids derived from 2-hydroxy-2h-1,4-benzoxazin-3(4h) one: key defense chemicals of cereals. J. Agric. Food Chem. 57:1677–1696.

    PubMed  CAS  Google Scholar 

  • Niemeyer, H. M. and Jerez, J. M. 1997. Chromosomal location of genes for hydroxamic acid accumulation in Triticum aestivum L. (wheat) using wheat aneuploids and wheat substitution lines. Heredity 79:10–14.

    CAS  Google Scholar 

  • Niemeyer, H. M., Bravo, H. R., Peña, G. F., and Corcuera, L. J. 1982. Decomposition of 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one, a hydroxamic acid from Gramineae, pp. 22–28, in H. Kehl (ed.), Chemistry and Biology of Hydroxamic Acids. Karger, A.G. Basel, Switzerland.

    Google Scholar 

  • Nomura, T., Ishihara, A., Imaishi, H., Ohkawa, H., Endo, T. R., and Iwamura, H. 2003. Rearrangement of the genes for the biosynthesis benzoxazinones in the evolution of Triticeae species. Planta 217:776–782.

    PubMed  CAS  Google Scholar 

  • Nomura, T., Ishihara, A., Yanagita, R. C., Endo, T. R., and Iwamura, H. 2005. Three genomes differentially contribute to the biosynthesis of benzoxazinones in hexaploid wheat. Proc. Natl. Acad. Sci. U. S. A. 102:16490–16495.

    PubMed  CAS  Google Scholar 

  • Osvald, H. 1953. On antagonism between plants. Proc. 7th Int. Congr. Bot., Stockholm. 167–170.

  • Perez, F. J. 1990. Allelopathic effect of hydroxamic acids from cereals on A. sativa and A. fatua. Phytochemistry 29:773–776.

    CAS  Google Scholar 

  • Peréz, F. J. and Ormeño-Nuñez, J. 1991. Differences in hydroxamic acid content in root exudates of wheat (Triticum aestivum L.) and rye (Secale cereale L.). Possible role in allelopathy. J. Chem. Ecol. 17:1037–1043.

    Google Scholar 

  • Phillips S. H. and Young Jr., H. M. 1973. No-tillage farming. Reiman Association, Milwaukee WI, 224.

  • Putnam, A. R. and Defrank, J. 1983. Use of phytotoxic plant residues for selective weed control. Crop. Prot. 2:173–181.

    Google Scholar 

  • Queirolo, C. B., Andreo, C. S., Vallejos, R. H., Niemeyer, H. M., and Corcuera, L. J. 1981. Effects of hydroxamic acids isolated from graminae on adenosine 5″-triphosphate synthesis in chloroplasts. Plant Physiol. 68:941–943.

    PubMed  CAS  Google Scholar 

  • Reberg-Horton, S. C., Burton, J. D., Danehower, D. A., Guoying, M., Monks, D. W., Murphy, J. P., Ranells, N. N., Williamson, J. D., and Creamer, N. G. 2005. Changes over time in the allelochemical content of ten cultivars of rye (Secale cereale). J. Chem. Ecol. 31:179–192.

    PubMed  CAS  Google Scholar 

  • Rice, C. P., Park, Y. B., Adam, F., Abdul-Baki, A. A., and Teasdale, J. R. 2005. Hydroxamic acid content and toxicity of rye at selected growth stages. J. Chem. Ecol. 31:1887–1905.

    PubMed  CAS  Google Scholar 

  • Rice, C. P., Cai, G., and Teasdale, J. R. 2012. Concentrations and allelopathic effects of benzoxazinoid compounds in soil treated with rye (Secale cereale) cover crop. J. Agric. Food Chem. 60:4471–4479.

    PubMed  CAS  Google Scholar 

  • Sanchez-Moreiras, A. M. and Reigosa, M. J. 2005. Whole plant response of lettuce after root exposure to BOA (2(3H)-benzoxazoninone). J. Chem. Ecol. 31:2689–2703.

    PubMed  CAS  Google Scholar 

  • Sanchez-Moreiras, A. M., Weiss, O. A., and Reigosa-Roger, M. J. 2003. Allelopathic evidence in the Poaceae. Bot. Rev. 69:300–319.

    Google Scholar 

  • Sanchez-Moreiras, A. M., Oliveros-Bastidas, A., and Reigosa, M. J. 2010. Reduced photosynthetic activity is directly correlated with 2-(3H)-benzoxazolinone accumulation in lettuce leaves. J. Chem. Ecol. 36:205–209.

    PubMed  CAS  Google Scholar 

  • Sanchez-Moreiras, A. M., Martinez-Peñalver, A., and Reigosa, M. J. 2011. Early senescence induced by 2-3H-benzoxazolinone (BOA) in Arabidopsis thaliana. J. Plant Physiol. 168:863–870.

    PubMed  CAS  Google Scholar 

  • Sarrantonio, M. and Gallandt, E. 2003. The role of cover crops in North American cropping systems. J. Crop. Prod. 8:53–74.

    Google Scholar 

  • Saunders, M. and Kohn, L. M. 2008. Host-synthesized secondary compounds influence the in Vitro interactions between fungal endophytes of maize. Appl. Environ. Microbiol. 74:136–142.

    PubMed  CAS  Google Scholar 

  • Schullehner, K., Dick, R., Vitzthum, F., Schwab, W., Brandt, W., Frey, F., and Gierl, A. 2008. Benzoxazinoid biosynthesis in dicot plants. Phytochemistry 69:2668–2677.

    PubMed  CAS  Google Scholar 

  • Schulz, M. and Weissenböck, G. 1987. Partial purification and characterization of a luteolin-triglucuronide-specific ß-glucuronidase from rye primary leaves (Secale cereale). Phytochemistry 26:933–937.

    CAS  Google Scholar 

  • Schulz, M. and Weissenböck, G. 1988. Three specific UDP-glucuronate: flavone-glucuronosyl-transferases from primary leaves of Secale cereale. Phytochemistry 27:1261–1267.

    CAS  Google Scholar 

  • Schulz, M. and Wieland, I. 1999. Variations in metabolism of BOA among species in various field communities - biochemical evidence for co-evolutionary processes in plant communities? Chemoecology 9:133–141.

    CAS  Google Scholar 

  • Schulz, M., Strack, D., Weissenböck, G., Markham, K. R. G., Dellamonica, G., and Chopin, J. 1985. Two luteolin 0-glucuronides from primary leaves of Secale cereale. Phytochemistry 24:343–345.

    CAS  Google Scholar 

  • Schulz, M., Kant, S., Knop, M., Sicker, D., Colby, T., Harzen, A., and Schmidt, J. 2008. The allelochemical benzoxazolinone—molecular backgrounds of its detoxification and degradation. 5th World Congress on Allelopathy, p. 63, Saratoga Springs, NY, USA, 21–25. September 2008.

  • Schulz, M., Pourmoyyed, P., Wagner, S., Frey, M., Gierl, A., Dresen-Scholz, B. 2011. Benzoxazinone detoxification in transgenic Arabidopsis thaliana. 6th World Congress on Allelopathy, p. 22, Guanghzou, China. 15–19 December 2011.

  • Schulz, M., Sicker, D., Baluška, F., Sablofski, T., Scherer, H. W., and Ritter, F. M. 2012a. Benzoxazolinone detoxification and degradation—A molecule ́s journey, pp. 17–42, in M. N. Abd El-Ghany Hasaneen (ed.), Herbicides—Properties, Synthesis and Control of Weeds. InTech, Rijeka, Croatia.

    Google Scholar 

  • Schulz, M., Marocco, A., and Tabaglio, V. 2012b. BOA detoxification of four summer weeds during germination and seedling growth. J. Chem. Ecol. 38:933–946.

    PubMed  CAS  Google Scholar 

  • Shilling, D. G., Liebl, R. A., and Worsham, A. D. 1985. Rye (Secale cereale L.) and wheat (Triticum aestivum L.) mulch: The suppression of certain broad-leaved weeds and the isolation and identification of phytotoxins, pp. 243–271, in A. C. Thompson (ed.), The Chemistry of Allelopathy: Biochemical Interactions Among Plants. American Chemical Society, Washington, DC, USA.

    Google Scholar 

  • Sicker, D. and Schulz, M. 2002. Benzoxazinones in plants: Occurrence, synthetic access, and biological activity. Stud. Nat. Prod. Chem. 27:185–232.

    CAS  Google Scholar 

  • Sicker, D., Frey, M., Schulz, M., and Gierl, A. 2000. Role of natural benzoxazinones in the survival strategies of plants, pp. 319–346, in K. W. Jeong (ed.), International Review of Cytology—A Survey of Cell Biology Vol. 198. Academic, San Diego, California.

    Google Scholar 

  • Sicker, D., Schneider, B., Hennig, L., Knop, M., and Schulz, M. 2001. Glucoside carbamate from benzoxazolin-2(3H)-one detoxification in extracts and exudates of corn roots. Phytochemistry 58:819–825.

    PubMed  CAS  Google Scholar 

  • Sicker, D., Hao, H., and Schulz, M. 2003. Benzoxazolin-2-(3H)-ones. Generation, effects and detoxification in the competition among plants, pp. 77–102, in F. A. Macias, J. C. G. Galindo, J. M. G. Molinillo, and H. G. Cutler (eds.), Recent Advances on Allelopathy Vol. II. CRC Press, Boca Raton (FL).

    Google Scholar 

  • Singh, H. P., Batish, D. R., Kaur, S., Setia, N., and Kohli, R. K. 2005. Effects of 2-benzoxazolinone on the germination, early growth and morphogenetic response of mung bean (Phaseolus aureus). Ann. Appl. Biol. 147:267–274.

    CAS  Google Scholar 

  • Smeda, R. J. and Weller, S. C. 1996. Potential of rye (Secale cereale) for weed management in transplant tomatoes (Lycopersicon esculentum). Weed Sci. 44:596–602.

    CAS  Google Scholar 

  • Strack, D., Meurer, B., and Weissenböck, G. 1982. Tissue-specific kinetics of flavonoid accumulation in primary leaves of rye (Secale cereale L.). Z. Pflanzenphysiol. 108:131–141.

    CAS  Google Scholar 

  • Strack, D., Engel, U., Weissenböck, G., Grotjahn, L., and Wray, V. 1986. Ferulic acid esters of sugar carboxylic acids from primary leaves of rye (Secale cereale). Phytochemistry 25:260–2608.

    Google Scholar 

  • Sue, M., Nakamura, C., and Nomura, T. 2011. Dispersed benzoxazinone gene cluster: molecular characterization and chromosomal localization of glucosyltransferase and glucosidase genes in wheat and rye. Plant Physiol. 157:985–997.

    PubMed  CAS  Google Scholar 

  • Tabaglio, V., Gavazzi, C., Schulz, M., and Marocco, A. 2008. Alternative weed control using the allelopathic effect of natural benzoxazinoids from rye mulch. Agron. Sustain. Dev. 28:397–401.

    CAS  Google Scholar 

  • Teasdale, J. R. and Mohler, C. L. 1993. Light transmittance, soil temperature, and soil moisture under residue of hairy vetch and rye. Agron. J. 85:673–680.

    Google Scholar 

  • Teasdale, J. R. and Mohler, C. L. 2000. The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci. 48:385–392.

    CAS  Google Scholar 

  • Teasdale, J. R., Mangum, R. W., Radhakrishnan, J., and Cavigelli, M. A. 2004. Weed seedbank dynamics in three organic farming crop rotations. Agron. J. 96:1429–1435.

    Google Scholar 

  • Teasdale, J. R., Rice, C. P., Cai, G. C., and Mangum, R. W. 2012. Expression of allelopathy in the soil environment: soil concentration and activity of benzoxazinoid compounds released by rye cover crop residue. Plant Ecol.. doi:10.1007/s11258-012-0057-x.

  • Tet-Vun, C. and Ismail, B. S. 2006. Field evidence of the allelopathic properties of Dicranopteris linearis. Weed Biol. Manag. 6:59–67.

    Google Scholar 

  • Tharayil, N. 2009. To survive or to slay: resource-foraging role of metabolites implicated in allelopathy. Plant Signal. Behav. 4:580–583.

    PubMed  CAS  Google Scholar 

  • Understrup, A. G., Ravnskov, S., Hansen, H. C. B., and Fomsgaard, I. S. 2005. Biotransformation of 2-Benzoxazolinone intro 2-amino-(3H)-phenoxazin-3-one and 2-acetylamino-(3H)-Phenoxazin-3-one in soil. J. Chem. Ecol. 31:1205–1222.

    PubMed  CAS  Google Scholar 

  • Varela, E. and Tien, M. 2003. Effect of pH and oxalate on hydroquinone-derived hydroxyl radical formation during brown rot wood degradation. Appl. Environ. Microbiol. 69:6025–6031.

    PubMed  CAS  Google Scholar 

  • Virtanen, A. I. and Hietala, P. K. 1960. Precursors of benzoxazolinone in rye plants. I. Precursor II, the aglucone. Acta Chem. Scand. 14:499–502.

    Google Scholar 

  • Vlyssides, A., Barampouti, E. M., Mai, S., Sotiria, M., and Eleni, N. 2011. Degradation and mineralization of gallic acid using Fenton’s Reagents. Environ. Eng. Sci. 28:515–520.

    CAS  Google Scholar 

  • von Rad, U., Hüttl, R., Lottspeich, F., Gierl, A., and Frey, M. 2001. Two glucosyltransferases involved in detoxification of benzoxazinoids in maize. Plant J. 28:633–642.

    Google Scholar 

  • Wallace, J. 2001 (ed.). Organic Field Crop Handbook, p. 292. Canadian Organic Growers, 2nd ed., Ottawa, Ontario, Canada.

  • Walters, S. A. and Young, B. G. 2008. Utility of winter rye living mulch for weed management in zucchini squash production. Weed Technol. 22:724–728.

    CAS  Google Scholar 

  • Weidenhamer, J. D., Morton, T. C., and Romeo, J. T. 1987. Solution volume and seed number: Often overlooked factors in allelopathic bioassays. J. Chem. Ecol. 13:1481–1491.

    CAS  Google Scholar 

  • Weih, M., Didon, U. M. E., Rönnberg-Wästljung, A.-C., and Björkman, C. 2008. Integrated agricultural research and crop breeding: Allelopathic weed control in cereals and long-term productivity in perennial biomass crops. Agric. Syst. 97:99–107.

    Google Scholar 

  • Weston, L. A. 1996. Utilization of allelopathy for weed management in agroecosystems. Agron. J. 88:860–866.

    Google Scholar 

  • Weston, L. A. and Duke, S. O. 2003. Weed and Crop Allelopathy. Crit. Rev. Plant Sci. 22:367–389.

    CAS  Google Scholar 

  • Weston, L., Alsaadaw, I., and Baerson, S. 2013. Sorghum allelopathy – From ecosystem to molecule. J. Chem. Ecol, 39:142–153.

    Google Scholar 

  • Wieland, I., Kluge, M., Schneider, B., Schmidt, J., Sicker, D., and Schulz, M. 1998. 3-ß-D-Glucopyranosyl-benzoxazolin-2(3H)-one - a detoxification product of benzoxazolinone in oat roots. Phytochemistry 49:719–722.

    CAS  Google Scholar 

  • Wieland, I., Friebe, A., Kluge, M., Sicker, D., and Schulz, M. 1999. Detoxification of 2-(3H)-benzoxazolinone in higher plants, pp. 47–56, in F.A. Macias, J.C.G. Galindo, J.M.G. Molinillo and H.G. Cutler (eds.), Recent Advances in Allelopathy. A Science for the Future. Universidad Cadiz (E).

  • Wojcik-Wojtkowiak, D., Politycka, B., Schneider, I. M., and Perkowski, J. 1990. Phenolic substances as allelopathic agents arising during the degradation of rye (Secale cereale) tissues. Plant Soil 124:143–147.

    CAS  Google Scholar 

  • Woodward, M. D., Corcuera, L. J., Helgeson, J. P., and Upper, C. D. 1978. Decomposition of 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one in aqueous solution. Plant Physiol. 61:796–802.

    PubMed  CAS  Google Scholar 

  • Worsham, A. D. 1991. Allelopathic cover crops to reduce herbicide inputs. Proc. South. Weed Sci. Soc. 44:58–69.

    Google Scholar 

  • Worthington, M., and Reberg-Horton, C. 2013. Breeding cereal crops for enhanced weed suppression: Optimizing allelopathy and competitive ability. J. Chem. Ecol., 39:213–231.

    Google Scholar 

  • Wu, H., Pratley, J., Ma, W., and Haig, T. 2003. Quantitative trait loci and molecular markers associated with wheat allelopathy. Theor. Appl. Genet. 107:1477–1481.

    PubMed  CAS  Google Scholar 

  • Yue, Q., Bacon, C., and Richardson, M. 1998. Biotransformation of 2-benzoxazolinone and 6-methoxybenzoxazolinone by Fusarium moniliforme. Phytochemistry 48:451–454.

    CAS  Google Scholar 

  • Zhang, Z.-Y., Pan, L.-P., and Li, H.-H. 2010. Isolation, identification and characterization of soil microbes which degrade phenolic allelochemicals. J. Appl. Microbiol. 108:1839–1849.

    PubMed  CAS  Google Scholar 

  • Zikmundova, M., Drandarov, K., Bigler, L., Hesse, M., and Werner, C. 2002a. Biotransformation of 2-benzoxazolinone and 2-hydroxy-1,4-benzoxazin-3-one by endophytic fungi isolated from Aphelandra tetragona. Appl. Environ. Microb. 68:4863–4870.

    CAS  Google Scholar 

  • Zikmundova, M., Drandarov, K., Hesse, M., and Werner, C. 2002b. Hydroxylated 2-amino-3H-phenoxazin-3-one derivatives as products of 2-hydroxy-1,4-benzoxazin-3-one (HBOA) biotransformation by Chaetosphaeria sp., an endophytic fungus from Aphelandra tetragona. Z. Naturforsch. C 57C. doi:660.

Download references

Acknowledgments

F. Macias and J. M. G. Molinillo acknowledge financial support from the Ministerio de Ciencia e Innovación (MICINN) (Project AGL2009-08864/AGR) and Consejería de Economía Innovación y Ciencia, Junta de Andalucía (Project P07-FQM-03031). The authors thank J.D. Burton (Department of Horticultural Science, NC State University, USA), M. Frey (TU München, Lehrstuhl für Genetik, Germany) for critical reading of the manuscript, and P. Dörmann (IMBIO Molecular Physiology and Biotechnology of Plants, University of Bonn, Germany) and T. Colby (Max Planck Institute for Plant Breeding Research, Cologne, Germany) for help with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margot Schulz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, M., Marocco, A., Tabaglio, V. et al. Benzoxazinoids in Rye Allelopathy - From Discovery to Application in Sustainable Weed Control and Organic Farming. J Chem Ecol 39, 154–174 (2013). https://doi.org/10.1007/s10886-013-0235-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0235-x

Keywords

Navigation