Skip to main content

Follicular and Mantle Cell Lymphomas: Technical and Interpretive Considerations; Karyotyping, FISH, Chromosomal Microarray, Sequencing, B Cell Clonality, Minimal Residual Disease

  • Chapter
  • First Online:
Follicular Lymphoma and Mantle Cell Lymphoma

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 465 Accesses

Abstract

A tremendous amount of work has gone into clarifying the genetic determinants of follicular lymphoma (FL) and mantle cell lymphomas (MCL), and a large body of knowledge has been accumulated. Because these diagnoses can usually be rendered based on morphologic and phenotypic characterization, genetic studies are generally assigned secondary importance in present clinical workups. That being said, the relatively recent proliferation of new testing modalities has revitalized general interest in the genetic interrogation of lymphomas. Here we will discuss some technical and interpretive considerations as related to the clinical genetic testing of follicular and mantle cell lymphomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J. WHO classification of tumours of haematopoietic and lymphoid tissues, Revised 4th ed. Lyon: International Agency for Research on Cancer; 2017.

    Google Scholar 

  2. Cooley LD, Lebo M, Li MM, Slovak ML, Wolf DJ. Working Group of the American College of Medical Genetics and Genomics (ACMG) Laboratory Quality Assurance Committee. Genet Med. 2013;15(6):484–94.

    CAS  PubMed  Google Scholar 

  3. Smits AJ, Kummer JA, de Bruin PC, Bol M, van den Tweel JG, Seldenrijk KA, et al. The estimation of tumor cell percentage for molecular testing by pathologists is not accurate. Mod Pathol. 2014;27(2):168–74.

    PubMed  Google Scholar 

  4. O’Keefe C, McDevitt MA, Maciejewski P. Copy neutral loss of heterozygosity: a novel chromosomal lesion in myeloid malignancies. Blood. 2010;115(14):2731–9.

    PubMed  PubMed Central  Google Scholar 

  5. Simons A, Sikkema-Raddatz B, de Leeuw N, Konrad NC, Hastings RJ, Schoumans J. Genome-wide arrays in routine diagnostic of hematological malignancies. Hum Mutat. 2012;33(6):941–8.

    CAS  PubMed  Google Scholar 

  6. Etebari M, Navari M, Piccaluga PP. SNPs array karyotyping in non-Hodgkin lymphoma. Microarrays (Basel). 2015;4(4):551–69.

    CAS  Google Scholar 

  7. Caspersson T, Farber S, Foley GE, Kudynowski J, Modest EJ, Simonsson E, et al. Chemical differentiation along metaphase chromosomes. Exp Cell Res. 1968;49(1):219–22.

    CAS  PubMed  Google Scholar 

  8. Fukuhara S, Rowley JD, Variakojis D, Golomb HM. Chromosome abnormalities in poorly differentiated lymphocytic lymphoma. Cancer Res. 1979;39(8):3119–28.

    CAS  PubMed  Google Scholar 

  9. Yunis JJ, Oken MM, Kaplan ME, Ensrud KM, Howe RR, Theologides A. Distinctive chromosomal abnormalities in histologic subtypes of non-Hodgkin’s lymphoma. N Engl J Med. 1982;307(20):1231–6.

    CAS  PubMed  Google Scholar 

  10. Tilly H, Rossi A, Stamatoullas A, Lenormand B, Bigorgne C, Kunlin A, et al. Prognostic value of chromosomal abnormalities in follicular lymphoma. Blood. 1994;84(4):1043–9.

    CAS  PubMed  Google Scholar 

  11. Ladetto M, Drandi D, Compagno M, Astolfi M, Volpato F, Voena C, et al. PCR-detectable nonneoplastic Bcl-2/IgH rearrangements are common in normal subjects and cancer patients at diagnosis but rare in subjects treated with chemotherapy. J Clin Oncol. 2003;21(7):1398–403.

    CAS  PubMed  Google Scholar 

  12. Dyer MJ, Zani VJ, Lu WZ, O’Byrne A, Mould S, Chapman R, et al. BCL2 translocations in leukemias of mature B cells. Blood. 1994;83(12):3682–8.

    CAS  PubMed  Google Scholar 

  13. Ott G, Katzenberger T, Lohr A, Kindelberger S, Rüdiger T, Wilhelm M, et al. Cytomorphologic, immunohistochemical, and cytogenetic profiles of follicular lymphoma: 2 types of follicular lymphoma grade 3. Blood. 2002;99(10):3806–12.

    CAS  PubMed  Google Scholar 

  14. Damaj G, Verkarre V, Delmer A, Solal-Celigny P, Yakoub-Agha I, Cellier C, et al. Primary follicular lymphoma of the gastrointestinal tract: a study of 25 cases and a literature review. Ann Oncol. 2003;14(4):623–9.

    CAS  PubMed  Google Scholar 

  15. Oschlies I, Salaverria I, Mahn F, Meinhardt A, Zimmermann M, Woessmann W, et al. Pediatric follicular lymphoma – a clinico-pathological study of a population-based series of patients treated within the No-Hodgkin’s Lymphoma--Berlin-Frankfurt-Munster (NHL-BFM) multicenter trials. Haematologica. 2010;95(2):253–9.

    PubMed  Google Scholar 

  16. Goodlad JR, MacPherson S, Jackson R, Batstone P, White J, Scotland and Newcastle Lymphoma Group. Extranodal follicular lymphoma: a clinicopathological and genetic analysis of 15 cases arising at non-cutaneous extranodal sites. Histopathology. 2004;44(3):268–76.

    CAS  PubMed  Google Scholar 

  17. Horsman DE, Gascoyne RD, Coupland RW, Coldman AJ, Adomat SA. Comparison of cytogenetic analysis, southern analysis, and polymerase chain reaction for the detection of t(14;18) in follicular lymphoma. Am J Clin Pathol. 1995;103(4):472–8.

    CAS  PubMed  Google Scholar 

  18. Baró C, Espinet B, Salido M, García M, Sánchez B, Florensa L, et al. Cryptic IGH/BCL2 rearrangements with variant FISH patterns in follicular lymphoma. Leuk Res. 2011;35(2):256–9.

    PubMed  Google Scholar 

  19. Adachi M, Cossman J, Longo D, Croce CM, Tsujimoto Y. Variant translocation of the bcl-2 gene to immunoglobulin lambda light chain gene in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 1989;86(8):2771–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yonetani N, Ueda C, Akasaka T, Nishikori M, Uchiyama T, Ohno H. Heterogeneous breakpoints on the immunoglobulin genes are involved in fusion with the 5′ region of BCL2 in B-cell tumors. Jpn J Cancer Res. 2001;92(9):933–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Katzenberger T, Ott G, Klein T, Kalla J, Müller-Hermelink HK, Ott MM. Cytogenetic alterations affecting BCL6 are predominantly found in follicular lymphomas grade 3B with a diffuse large B-cell component. Am J Pathol. 2004;165(2):481–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Salaverria I, Siebert R. Follicular lymphoma grade 3B. Best Pract Res Clin Haematol. 2011;24(2):111–9.

    CAS  PubMed  Google Scholar 

  23. Díaz-Alderete A, Doval A, Camacho F, Verde L, Sabin P, Arranz-Sáez R, et al. Frequency of BCL2 and BCL6 translocations in follicular lymphoma: relation with histological and clinical features. Leuk Lymphoma. 2008;49(1):95–101.

    PubMed  Google Scholar 

  24. Au WY, Horsman DE, Gascoyne RD, Viswanatha DS, Klasa RJ, Connors JM. The spectrum of lymphoma with 8q24 aberrations: a clinical, pathological and cytogenetic study of 87 consecutive cases. Leuk Lymphoma. 2004;45(3):519–28.

    CAS  PubMed  Google Scholar 

  25. Pasqualucci L, Khiabanian H, Fangazio M, Vasishtha M, Messina M, Holmes AB, et al. Genetics of follicular lymphoma transformation. Cell Rep. 2014;6(1):130–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Callanan MB, Le Baccon P, Mossuz P, Duley S, Bastard C, Hamoudi R, et al. The IgG Fc receptor, FcgammaRIIB, is a target for deregulation by chromosomal translocation in malignant lymphoma. Proc Natl Acad Sci U S A. 2000;97(1):309–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmidt J, Salaverria I, Haake A, Bonzheim I, Adam P, Montes-Moreno S, et al. Increasing genomic and epigenomic complexity in the clonal evolution from in situ to manifest t(14;18)-positive follicular lymphoma. Leukemia. 2014;28(5):1103–12.

    CAS  PubMed  Google Scholar 

  28. Johnson NA, Al-Tourah A, Brown CJ, Connors JM, Gascoyne RD, Horsman DE. Prognostic significance of secondary cytogenetic alterations in follicular lymphomas. Genes Chromosomes Cancer. 2008;47(12):1038–48.

    CAS  PubMed  Google Scholar 

  29. d’Amore F, Chan E, Iqbal J, Geng H, Young K, Xiao L, et al. Clonal evolution in t(14;18)-positive follicular lymphoma, evidence for multiple common pathways, and frequent parallel clonal evolution. Clin Cancer Res. 2008;14(22):7180–7.

    PubMed  Google Scholar 

  30. Offit K, Parsa NZ, Gaidano G, Filippa DA, Louie D, Pan D, et al. 6q deletions define distinct clinico-pathologic subsets of non-Hodgkin’s lymphoma. Blood. 1993;82(7):2157–62.

    CAS  PubMed  Google Scholar 

  31. Höglund M, Sehn L, Connors JM, Gascoyne RD, Siebert R, Säll T, Mitelman F, et al. Identification of cytogenetic subgroups and karyotypic pathways of clonal evolution in follicular lymphomas. Genes Chromosomes Cancer. 2004;39(3):195–204.

    PubMed  Google Scholar 

  32. Lestou VS, Gascoyne RD, Sehn L, Ludkovski O, Chhanabhai M, Klasa RJ, et al. Multicolour fluorescence in situ hybridization analysis of t(14;18)-positive follicular lymphoma and correlation with gene expression data and clinical outcome. Br J Haematol. 2003;122(5):745–59.

    CAS  PubMed  Google Scholar 

  33. Cheung KJ, Shah SP, Steidl C, Johnson N, Relander T, Telenius A, et al. Genome-wide profiling of follicular lymphoma by array comparative genomic hybridization reveals prognostically significant DNA copy number imbalances. Blood. 2009;113(1):137–48.

    CAS  PubMed  Google Scholar 

  34. Kridel R, Sehn LH, Gascoyne RD. Can histologic transformation of follicular lymphoma be predicted and prevented? Blood. 2017;130(3):258–66.

    CAS  PubMed  Google Scholar 

  35. Ross CW, Ouillette PD, Saddler CM, Shedden KA, Malek SN. Comprehensive analysis of copy number and allele status identifies multiple chromosome defects underlying follicular lymphoma pathogenesis. Clin Cancer Res. 2007;13(16):4777–85.

    CAS  PubMed  Google Scholar 

  36. Cheung KJ, Telenius A, Lai B, Johnson N, Relander T, Steidl C, et al. High frequency of 1p36.32 deletion or loss of heterozygosity in follicular lymphoma (FL). Blood. 2007;110:183.

    Google Scholar 

  37. Davies AJ, Rosenwald A, Wright G, Lee A, Last KW, Weisenburger DD, et al. Transformation of follicular lymphoma to diffuse large B-cell lymphoma proceeds by distinct oncogenic mechanisms. Br J Haematol. 2007;136(2):286–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lossos IS, Alizadeh AA, Diehn M, Warnke R, Thorstenson Y, Oefner PJ, et al. Transformation of follicular lymphoma to diffuse large-cell lymphoma: alternative patterns with increased or decreased expression of c-myc and its regulated genes. Proc Natl Acad Sci U S A. 2002;99(13):8886–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Green MR, Gentles AJ, Nair RV, Irish JM, Kihira S, Liu CL, et al. Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma. Blood. 2013;121(9):1604–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Katzenberger T, Kalla J, Leich E, Stöcklein H, Hartmann E, Barnickel S, et al. A distinctive subtype of t(14;18)-negative nodal follicular non-Hodgkin lymphoma characterized by a predominantly diffuse growth pattern and deletions in the chromosomal region 1p36. Blood. 2009;113(5):1053–61.

    CAS  PubMed  Google Scholar 

  41. Siddiqi IN, Friedman J, Barry-Holson KQ, Ma C, Thodima V, Kang I, et al. Characterization of a variant of t(14;18) negative nodal diffuse follicular lymphoma with CD23 expression, 1p36/TNFRSF14 abnormalities, and STAT6 mutations. Mod Pathol. 2016;29(6):570–81.

    CAS  PubMed  Google Scholar 

  42. Gángó A, Bátai B, Varga M, Kapczár D, Papp G, Marschalkó M, et al. Concomitant 1p36 deletion and TNFRSF14 mutations in primary cutaneous follicle center lymphoma frequently expressing high levels of EZH2 protein. Virchows Arch. 2018;473(4):453–62.

    PubMed  Google Scholar 

  43. Henderson LJ, Okamoto I, Lestou VS, Ludkovski O, Robichaud M, Chhanabhai M, et al. Delineation of a minimal region of deletion at 6q16.3 in follicular lymphoma and construction of a bacterial artificial chromosome contig spanning a 6-megabase region of 6q16-q21. Genes Chromosomes Cancer. 2004;40(1):60–5.

    CAS  PubMed  Google Scholar 

  44. Van Den Berghe H, Parloir C, David G, Michaux JL, Sokal G. A new characteristic karyotypic anomaly in lymphoproliferative disorders. Cancer. 1979;44(1):188–95.

    Google Scholar 

  45. Raynaud SD, Bekri S, Leroux D, Grosgeorge J, Klein B, Bastard C, et al. Expanded range of 11q13 breakpoints with differing patterns of cyclin D1 expression in B-cell malignancies. Genes Chromosomes Cancer. 1993;8(2):80–7.

    CAS  PubMed  Google Scholar 

  46. Gladden AB, Woolery R, Aggarwal P, Wasik MA, Diehl JA. Expression of constitutively nuclear cyclin D1 in murine lymphocytes induces B-cell lymphoma. Oncogene. 2006;25(7):998–1007.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lovec H, Grzeschiczek A, Kowalski MB, Möröy T. Cyclin D1/bcl-1 cooperates with myc genes in the generation of B-cell lymphoma in transgenic mice. EMBO J. 1994;13(15):3487–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hirt C, Schüler F, Dölken L, Schmidt CA, Dölken G. Low prevalence of circulating t(11;14)(q13;q32)-positive cells in the peripheral blood of healthy individuals as detected by real-time quantitative PCR. Blood. 2004;104(3):904–5.

    CAS  PubMed  Google Scholar 

  49. Rosenwald A, Wright G, Wiestner A, Chan WC, Connors JM, Campo E, et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell. 2003;3(2):185–97.

    CAS  PubMed  Google Scholar 

  50. Fu K, Weisenburger DD, Greiner TC, Dave S, Wright G, Rosenwald A, et al. Cyclin D1-negative mantle cell lymphoma: a clinicopathologic study based on gene expression profiling. Blood. 2005;106(13):4315–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Salaverria I, Zettl A, Beà S, Moreno V, Valls J, Hartmann E, et al. Specific secondary genetic alterations in mantle cell lymphoma provide prognostic information independent of the gene expression-based proliferation signature. J Clin Oncol. 2007;25(10):1216–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gesk S, Klapper W, Martín-Subero JI, Nagel I, Harder L, Fu K, et al. A chromosomal translocation in cyclin D1-negative/cyclin D2-positive mantle cell lymphoma fuses the CCND2 gene to the IGK locus. Blood. 2006;108(3):1109–10.

    CAS  PubMed  Google Scholar 

  53. Espinet B, Salaverria I, Beà S, Ruiz-Xivillé N, Balagué O, Salido M, et al. Incidence and prognostic impact of secondary cytogenetic aberrations in a series of 145 patients with mantle cell lymphoma. Genes Chromosomes Cancer. 2010;49(5):439–51.

    CAS  PubMed  Google Scholar 

  54. Beà S, Ribas M, Hernández JM, Bosch F, Pinyol M, Hernández L, et al. Increased number of chromosomal imbalances and high-level DNA amplifications in mantle cell lymphoma are associated with blastoid variants. Blood. 1999;93(12):4365–74.

    PubMed  Google Scholar 

  55. Rubio-Moscardo F, Climent J, Siebert R, Piris MA, Martín-Subero JI, Nieländer I, et al. Mantle-cell lymphoma genotypes identified with CGH to BAC microarrays define a leukemic subgroup of disease and predict patient outcome. Blood. 2005;105(11):4445–54.

    CAS  PubMed  Google Scholar 

  56. Beà S, Salaverria I, Armengol L, Pinyol M, Fernández V, Hartmann EM, et al. Uniparental disomies, homozygous deletions, amplifications, and target genes in mantle cell lymphoma revealed by integrative high-resolution whole-genome profiling. Blood. 2009;113(13):3059–69.

    PubMed  PubMed Central  Google Scholar 

  57. Kohlhammer H, Schwaenen C, Wessendorf S, Holzmann K, Kestler HA, Kienle D, et al. Genomic DNA-chip hybridization in t(11;14)-positive mantle cell lymphomas shows a high frequency of aberrations and allows a refined characterization of consensus regions. Blood. 2004;104(3):795–801.

    CAS  PubMed  Google Scholar 

  58. Royo C, Salaverria I, Hartmann EM, Rosenwald A, Campo E, Beà S. The complex landscape of genetic alterations in mantle cell lymphoma. Semin Cancer Biol. 2011;21(5):322–34.

    CAS  PubMed  Google Scholar 

  59. Camacho FI, García JF, Cigudosa JC, Mollejo M, Algara P, Ruíz-Ballesteros E, et al. Aberrant Bcl6 protein expression in mantle cell lymphoma. Am J Surg Pathol. 2004;28(8):1051–6.

    PubMed  Google Scholar 

  60. Vaishampayan UN, Mohamed AN, Dugan MC, Bloom RE, Palutke M. Blastic mantle cell lymphoma associated with Burkitt-type translocation and hypodiploidy. Br J Haematol. 2001;115(1):66–8.

    CAS  PubMed  Google Scholar 

  61. Ott G, Kalla J, Ott MM, Schryen B, Katzenberger T, Müller JG, et al. Blastoid variants of mantle cell lymphoma: frequent bcl-1 rearrangements at the major translocation cluster region and tetraploid chromosome clones. Blood. 1997;89(4):1421–9.

    CAS  PubMed  Google Scholar 

  62. Parry-Jones N, Matutes E, Morilla R, Brito-Babapulle V, Wotherspoon A, Swansbury GJ, et al. Cytogenetic abnormalities additional to t(11;14) correlate with clinical features in leukaemic presentation of mantle cell lymphoma, and may influence prognosis: a study of 60 cases by FISH. Br J Haematol. 2007;137(2):117–24.

    CAS  PubMed  Google Scholar 

  63. Ferrer A, Salaverria I, Bosch F, Villamor N, Rozman M, Beà S, et al. Leukemic involvement is a common feature in mantle cell lymphoma. Cancer. 2007;109(12):2473–80.

    CAS  PubMed  Google Scholar 

  64. Heyer EE, Deveson IW, Wooi D, Selinger CI, Lyons RJ, Hayes VM, et al. Diagnosis of fusion genes using targeted RNA sequencing. Nat Commun. 2019;10(1):1388.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Srinivasan M, Sedmak D, Jewell S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol. 2002;161(6):1961–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wickham CL, Sarsfield P, Joyner MV, Jones DB, Ellard S, Wilkins B. Formic acid decalcification of bone marrow trephines degrades DNA: alternative use of EDTA allows the amplification and sequencing of relatively long PCR products. Mol Pathol. 2000;53(6):336.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Reineke T, Jenni B, Abdou MT, Frigerio S, Zubler P, Moch H, et al. Ultrasonic decalcification offers new perspectives for rapid FISH, DNA, and RT-PCR analysis in bone marrow trephines. Am J Surg Pathol. 2006;30(7):892–6.

    PubMed  Google Scholar 

  68. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Nyrén P. Enzymatic method for continuous monitoring of DNA polymerase activity. Anal Biochem. 1987;167(2):235–8.

    PubMed  Google Scholar 

  70. Ronaghi M, Karamohamed S, Pettersson B, Uhlén M, Nyrén P. Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem. 1996;242(1):84–9.

    CAS  PubMed  Google Scholar 

  71. Kluk MJ, Lindsley RC, Aster JC, Lindeman NI, Szeto D, Hall D, et al. Validation and implementation of a custom next-generation sequencing clinical assay for hematologic malignancies. J Mol Diagn. 2016;18(4):507–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Duncavage EJ, Abel HJ, Szankasi P, Kelley TW, Pfeifer JD. Targeted next generation sequencing of clinically significant gene mutations and translocations in leukemia. Mod Pathol. 2012;25(6):795–804.

    CAS  PubMed  Google Scholar 

  73. Langerak AW, Groenen PJ, Brüggemann M, Beldjord K, Bellan C, Bonello L, et al. EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia. 2012;26(10):2159–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Diss TC, Pan L. Polymerase chain reaction in the assessment of lymphomas. Cancer Surv. 1997;30:21–44.

    CAS  PubMed  Google Scholar 

  75. Wan JH, Trainor KJ, Brisco MJ, Morley AA. Monoclonality in B cell lymphoma detected in paraffin wax embedded sections using the polymerase chain reaction. J Clin Pathol. 1990;43(11):888–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Evans PA, Pott C, Groenen PJ, Salles G, Davi F, Berger F, et al. Significantly improved PCR-based clonality testing in B-cell malignancies by use of multiple immunoglobulin gene targets. Report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia. 2007;21(2):207–14.

    CAS  PubMed  Google Scholar 

  77. Scheijen B, Meijers RWJ, Rijntjes J, van der Klift MY, Möbs M, Steinhilber J, et al. Next-generation sequencing of immunoglobulin gene rearrangements for clonality assessment: a technical feasibility study by EuroClonality-NGS. Leukemia. 2019;33(9):2227–40.

    PubMed  PubMed Central  Google Scholar 

  78. Arcila ME, Yu W, Syed M, Kim H, Maciag L, Yao J, et al. Establishment of immunoglobulin heavy (IGH) chain clonality testing by next-generation sequencing for routine characterization of B-cell and plasma cell neoplasms. J Mol Diagn. 2019;21(2):330–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Monter A, Nomdedéu JF. ClonoSEQ assay for the detection of lymphoid malignancies. Expert Rev Mol Diagn. 2019;19(7):571–8.

    CAS  PubMed  Google Scholar 

  80. Kneba M, Eick S, Herbst H, Willigeroth S, Pott C, Bolz I, et al. Frequency and structure of t(14;18) major breakpoint regions in non-Hodgkin’s lymphomas typed according to the Kiel classification: analysis by direct DNA sequencing. Cancer Res. 1991;51:3243–50.

    CAS  PubMed  Google Scholar 

  81. Ngan BY, Nourse J, Cleary ML. Detection of chromosomal translocation t(14;18) within the minor cluster region of bcl-2 by polymerase chain reaction and direct genomic sequencing of the enzymatically amplified DNA in follicular lymphomas. Blood. 1989;73:1759–62.

    CAS  PubMed  Google Scholar 

  82. Pott C, Tiemann M, Linke B, Ott MM, von Hofen M, Bolz I, et al. Structure of Bcl-1 and IgH-CDR3 rearrangements as clonal markers in mantle cell lymphomas. Leukemia. 1998;12:1630–7.

    CAS  PubMed  Google Scholar 

  83. Williams ME, Swerdlow SH, Meeker TC. Chromosome t(11;14)(q13;q32) breakpoints in centrocytic lymphoma are highly localized at the bcl-1 major translocation cluster. Leukemia. 1993;7:1437–40.

    CAS  PubMed  Google Scholar 

  84. Willis TG, Dyer MJS. The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood. 2000;96:808–22.

    CAS  PubMed  Google Scholar 

  85. Lieber MR. Mechanisms of human lymphoid chromosomal translocations. Nat Rev Cancer. 2016;16:387–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Weinberg OK, Ai WZ, Mariappan MR, Shum C, Levy R, Arber DA. “Minor” BCL2 breakpoints in follicular lymphoma: frequency and correlation with grade and disease presentation in 236 cases. J Mol Diagn. 2007;9(4):530–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Greisman HA, Lu Z, Tsai AG, Greiner TC, Yi HS, Lieber MR. IgH partner breakpoint sequences provide evidence that AID initiates t(11;14) and t(8;14) chromosomal breaks in mantle cell and Burkitt lymphomas. Blood. 2012;120(14):2864–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chesi M, Bergsagel PL, Brents LA, Smith CM, Gerhard DS, Kuehl WM. Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines. Blood. 1996;88:674–81.

    CAS  PubMed  Google Scholar 

  89. Klein IA, Resch W, Jankovic M, Oliveira T, Yamane A, Nakahashi H, et al. Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell. 2011;147(1):95–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim B, Lee H, Shin S, Lee ST, Choi JR. Clinical evaluation of massively parallel RNA sequencing for detecting recurrent gene fusions in hematologic malignancies. J Mol Diagn. 2019;21(1):163–70.

    CAS  PubMed  Google Scholar 

  91. Wren D, Walker BA, Brüggemann M, Catherwood MA, Pott C, Stamatopoulos K, et al. Comprehensive translocation and clonality detection in lymphoproliferative disorders by next-generation sequencing. Haematologica. 2017;102(2):e57–60.

    PubMed  PubMed Central  Google Scholar 

  92. Sørensen CD, Jørgensen JM, Nederby L, Hokland P, Nyvold CG. Common consensus LNA probe for quantitative PCR assays in cancer: vehicles for minimal residual disease detection in t(11;14) and t(14;18) positive malignant lymphomas. J Immunol Methods. 2014;406:131–6.

    PubMed  Google Scholar 

  93. Hoster E, Pott C. Minimal residual disease in mantle cell lymphoma: insights into biology and impact on treatment. Hematology Am Soc Hematol Educ Program. 2016;2016(1):437–45.

    PubMed  PubMed Central  Google Scholar 

  94. Pott C, Hoster E, Delfau-Larue MH, Beldjord K, Böttcher S, Asnafi V, et al. Molecular remission is an independent predictor of clinical outcome in patients with mantle cell lymphoma after combined immunochemotherapy: a European MCL intergroup study. Blood. 2010;115(16):3215–23.

    CAS  PubMed  Google Scholar 

  95. Böttcher S, Ritgen M, Buske S, Gesk S, Klapper W, Hoster E, et al. Minimal residual disease detection in mantle cell lymphoma: methods and significance of four-color flow cytometry compared to consensus IGH-polymerase chain reaction at initial staging and for follow-up examinations. Haematologica. 2008;93(4):551–9.

    PubMed  Google Scholar 

  96. Cheminant M, Derrieux C, Touzart A, Schmit S, Grenier A, Trinquand A, et al. Minimal residual disease monitoring by 8-color flow cytometry in mantle cell lymphoma: An EU-MCL and LYSA study. Haematologica. 2016;101(3):336–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Avet-Loiseau H, Lauwers-Cances V, Corre J, Moreau P, Attal M, Munshi N. Minimal residual disease in multiple myeloma: final analysis of the IFM2009 trial. Blood. 2017;130:435.

    Google Scholar 

  98. Ho C, Arcila ME. Minimal residual disease detection of myeloma using sequencing of immunoglobulin heavy chain gene VDJ regions. Semin Hematol. 2018;55(1):13–8.

    PubMed  Google Scholar 

  99. Landgren O. MRD testing in multiple myeloma: from a surrogate marker of clinical outcomes to an every-Day clinical tool. Semin Hematol. 2018;55(1):1–3.

    PubMed  Google Scholar 

  100. Pott C, Brüggemann M, Ritgen M, van der Velden VHJ, van Dongen JJM, Kneba M. MRD detection in B-cell non-Hodgkin lymphomas using Ig gene rearrangements and chromosomal translocations as targets for real-time quantitative PCR. Methods Mol Biol. 1956;2019:199–228.

    Google Scholar 

  101. Camus V, Sarafan-Vasseur N, Bohers E, Dubois S, Mareschal S, Bertrand P, et al. Digital PCR for quantification of recurrent and potentially actionable somatic mutations in circulating free DNA from patients with diffuse large B-cell lymphoma. Leuk Lymphoma. 2016;57(9):2171–9.

    CAS  PubMed  Google Scholar 

  102. Drandi D, Ferrero S, Ladetto M. Droplet digital PCR for minimal residual disease detection in mature lymphoproliferative disorders. Methods Mol Biol. 1768;2018:229–56.

    Google Scholar 

  103. Trotman J, Davies A, Hiddemann W, Hoster E, Marcus R, Schmidt C, et al. Relationship between MRD and PET responses and PFS in previously untreated follicular lymphoma in the GALLIUM trial. J Clin Oncol. 2018;36(15):7557.

    Google Scholar 

  104. Liu H, Johnson JL, Koval G, Malnassy G, Sher D, Damon LE, et al. Detection of minimal residual disease following induction immunochemotherapy predicts progression free survival in mantle cell lymphoma: final results of CALGB 59909. Haematologica. 2012;97(4):579–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Gressin R, Daguindau N, Tempescul A, Moreau A, Carras S, Tchernonog E, et al. A phase 2 study of rituximab, bendamustine, bortezomib and dexamethasone for first-line treatment of older patients with mantle cell lymphoma. Haematologica. 2019;104(1):138–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Chase ML, Armand P. Minimal residual disease in non-Hodgkin lymphoma – current applications and future directions. Br J Haematol. 2018;180(2):177–88.

    PubMed  Google Scholar 

  107. Herrera AF, Armand P. Minimal residual disease assessment in lymphoma: methods and applications. J Clin Oncol. 2017;35(34):3877–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Jacob J, Kelsoe G, Rajewsky K, Weiss U. Intraclonal generation of antibody mutants in germinal centres. Nature. 1991;354:389–92.

    CAS  PubMed  Google Scholar 

  109. Bahler DW, Levy R. Clonal evolution of a follicular lymphoma: evidence for antigen selection. Proc Natl Acad Sci U S A. 1992;89:6770–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Scherer F, Kurtz DM, Newman AM, Stehr H, Craig AF, Esfahani MS, et al. Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci Transl Med. 2016;8(364):364ra155.

    PubMed  PubMed Central  Google Scholar 

  111. Okosun J, Bödör C, Wang J, Araf S, Yang CY, Pan C, et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet. 2014 Feb;46(2):176–81.

    CAS  PubMed  Google Scholar 

  112. Korfi K, Ali S, Heward JA, Fitzgibbon J. Follicular lymphoma, a B cell malignancy addicted to epigenetic mutations. Epigenetics. 2017;12(5):370–7.

    PubMed  PubMed Central  Google Scholar 

  113. Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011;471(7337):189–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011;476(7360):298–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Oricchio E, Nanjangud G, Wolfe AL, Schatz JH, Mavrakis KJ, Jiang M, et al. The Eph-receptor A7 is a soluble tumor suppressor for follicular lymphoma. Cell. 2011;147(3):554–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Pon JR, Wong J, Saberi S, Alder O, Moksa M, Grace Cheng SW, et al. MEF2B mutations in non-Hodgkin lymphoma dysregulate cell migration by decreasing MEF2B target gene activation. Nat Commun. 2015;6:7953.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Rossi D, Berra E, Cerri M, Deambrogi C, Barbieri C, Franceschetti S, et al. Aberrant somatic hypermutation in transformation of follicular lymphoma and chronic lymphocytic leukemia to diffuse large B-cell lymphoma. Haematologica. 2006;91(10):1405–9.

    CAS  PubMed  Google Scholar 

  118. Xerri L, Bachy E, Fabiani B, Canioni D, Chassagne-Clément C, Dartigues-Cuilléres P, et al. Identification of MUM1 as a prognostic immunohistochemical marker in follicular lymphoma using computerized image analysis. Hum Pathol. 2014;45(10):2085–93.

    CAS  PubMed  Google Scholar 

  119. Sweetenham JW, Goldman B, LeBlanc ML, Cook JR, Tubbs RR, Press OW, et al. Prognostic value of regulatory T cells, lymphoma-associated macrophages, and MUM-1 expression in follicular lymphoma treated before and after the introduction of monoclonal antibody therapy: a Southwest Oncology Group Study. Ann Oncol. 2010;21(6):1196–202.

    CAS  PubMed  Google Scholar 

  120. Alhejaily A, Day AG, Feilotter HE, Baetz T, Lebrun DP. Inactivation of the CDKN2A tumor-suppressor gene by deletion or methylation is common at diagnosis in follicular lymphoma and associated with poor clinical outcome. Clin Cancer Res. 2014;20(6):1676–86.

    CAS  PubMed  Google Scholar 

  121. Karube K, Martínez D, Royo C, Navarro A, Pinyol M, Cazorla M, et al. Recurrent mutations of NOTCH genes in follicular lymphoma identify a distinctive subset of tumours. J Pathol. 2014 Nov;234(3):423–30.

    CAS  PubMed  Google Scholar 

  122. Berget E, Molven A, Løkeland T, Helgeland L, Vintermyr OK. IGHV gene usage and mutational status in follicular lymphoma: correlations with prognosis and patient age. Leuk Res. 2015;39(7):702–8.

    CAS  PubMed  Google Scholar 

  123. García-Álvarez M, Alonso-Álvarez S, Prieto-Conde I, Jiménez C, Sarasquete ME, Chillón MC, et al. Immunoglobulin gene rearrangement IGHV3-48 is a predictive marker of histological transformation into aggressive lymphoma in follicular lymphomas. Blood Cancer J. 2019;9(7):52.

    PubMed  PubMed Central  Google Scholar 

  124. Pastore A, Jurinovic V, Kridel R, Hoster E, Staiger AM, Szczepanowski M, et al. Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry. Lancet Oncol. 2015;16(9):1111–22.

    CAS  Google Scholar 

  125. Ahmed M, Zhang L, Nomie K, Lam L, Wang M. Gene mutations and actionable genetic lesions in mantle cell lymphoma. Oncotarget. 2016;7(36):58638–48.

    PubMed  PubMed Central  Google Scholar 

  126. Beà S, Valdés-Mas R, Navarro A, Salaverria I, Martín-Garcia D, Jares P, et al. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci U S A. 2013;110(45):18250–5.

    PubMed  PubMed Central  Google Scholar 

  127. Greiner TC, Dasgupta C, Ho VV, Weisenburger DD, Smith LM, Lynch JC, et al. Mutation and genomic deletion status of ataxia telangiectasia mutated (ATM) and p53 confer specific gene expression profiles in mantle cell lymphoma. Proc Natl Acad Sci U S A. 2006;103(7):2352–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang J, Jima D, Moffitt AB, Liu Q, Czader M, Hsi ED, et al. The genomic landscape of mantle cell lymphoma is related to the epigenetically determined chromatin state of normal B cells. Blood. 2014;123(19):2988–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Rahal R, Frick M, Romero R, Korn JM, Kridel R, Chan FC, et al. Pharmacological and genomic profiling identifies NF-κB-targeted treatment strategies for mantle cell lymphoma. Nat Med. 2014;20(1):87–92.

    CAS  PubMed  Google Scholar 

  130. Kridel R, Meissner B, Rogic S, Boyle M, Telenius A, Woolcock B, et al. Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood. 2012;119(9):1963–71.

    CAS  PubMed  Google Scholar 

  131. Meissner B, Kridel R, Lim RS, Rogic S, Tse K, Scott DW, et al. The E3 ubiquitin ligase UBR5 is recurrently mutated in mantle cell lymphoma. Blood. 2013;121(16):3161–4.

    CAS  PubMed  Google Scholar 

  132. Rossi D, Ferrero S, Bruscaggin A, Ghione P, Di Rocco A, Spina V, et al. A molecular model for the prediction of progression free survival in Young mantle cell lymphoma patients treated with cytarabine-based high dose sequential chemotherapy and autologous stem cell transplantation: results from the MCL0208 phase III trial from Fondazione Italiana Linfomi (FIL). Blood. 2015;126:336.

    Google Scholar 

  133. Greiner TC, Moynihan MJ, Chan WC, Lytle DM, Pedersen A, Anderson JR, et al. p53 mutations in mantle cell lymphoma are associated with variant cytology and predict a poor prognosis. Blood. 1996;87(10):4302–10.

    CAS  PubMed  Google Scholar 

  134. Camacho E, Hernández L, Hernández S, Tort F, Bellosillo B, Bosch F, et al. ATM gene inactivation in mantle cell lymphoma mainly occurs by truncating mutations and missense mutations involving the phosphatidylinositol-3 kinase domain and is associated with increasing numbers of chromosomal imbalances. Blood. 2002;99(1):238–44.

    CAS  PubMed  Google Scholar 

  135. Weston VJ, Oldreive CE, Skowronska A, Oscier DG, Pratt G, Dyer MJS, et al. The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo. Blood. 2010;116:4578–87.

    CAS  PubMed  Google Scholar 

  136. Moding EJ, Lee CL, Castle KD, Oh P, Mao L, Zha S, et al. Atm deletion with dual recombinase technology preferentially radiosensitizes tumor endothelium. J Clin Invest. 2014;124(8):3325–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Haque W, Voong KR, Shihadeh F, Arzu I, Pinnix C, Mazloom A, et al. Radiation therapy is an effective modality in the treatment of mantle cell lymphoma, even in heavily pretreated patients. Clin Lymphoma Myeloma Leuk. 2014;14(6):474–9.

    PubMed  Google Scholar 

  138. Hoster E, Rosenwald A, Berger F, Bernd HW, Hartmann S, Loddenkemper C, et al. Prognostic value of Ki-67 index, cytology, and growth pattern in mantle-cell lymphoma: results from randomized trials of the European mantle cell lymphoma network. J Clin Oncol. 2016;34(12):1386–94.

    CAS  PubMed  Google Scholar 

  139. Geisler CH, Kolstad A, Laurell A, Räty R, Jerkeman M, Eriksson M, et al. The Mantle cell lymphoma international prognostic index (MIPI) is superior to the international prognostic index (IPI) in predicting survival following intensive first-line immunochemotherapy and autologous stem cell transplantation (ASCT). Blood. 2010;115(8):1530–3.

    CAS  PubMed  Google Scholar 

  140. Delfau-Larue MH, Klapper W, Berger F, Jardin F, Briere J, Salles G, et al. High-dose cytarabine does not overcome the adverse prognostic value of CDKN2A and TP53 deletions in mantle cell lymphoma. Blood. 2015;126(5):604–11.

    CAS  PubMed  Google Scholar 

  141. Eskelund CW, Dahl C, Hansen JW, Westman M, Kolstad A, Pedersen LB, et al. TP53 mutations identify younger mantle cell lymphoma patients who do not benefit from intensive chemoimmunotherapy. Blood. 2017;130(17):1903–10.

    CAS  PubMed  Google Scholar 

  142. Weng AP, Ferrando AA, Lee W, Morris JP 4th, Silverman LB, Sanchez-Irizarry C, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269–71.

    CAS  PubMed  Google Scholar 

  143. Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G, et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med. 2007;204(8):1825–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Yang P, Zhang W, Wang J, Liu Y, An R, Jing H. Genomic landscape and prognostic analysis of mantle cell lymphoma. Cancer Gene Ther. 2018;25(5–6):129–40.

    CAS  PubMed  Google Scholar 

  145. Pham LV, Tamayo AT, Yoshimura LC, Lo P, Ford RJ. Inhibition of constitutive NF-kappa B activation in mantle cell lymphoma B cells leads to induction of cell cycle arrest and apoptosis. J Immunol. 2003;171(1):88–95.

    CAS  PubMed  Google Scholar 

  146. Wu C, de Miranda NF, Chen L, Wasik AM, Mansouri L, Jurczak W, et al. Genetic heterogeneity in primary and relapsed mantle cell lymphomas: impact of recurrent CARD11 mutations. Oncotarget. 2016;7(25):38180–90.

    PubMed  PubMed Central  Google Scholar 

  147. Chen RW, Bemis LT, Amato CM, Myint H, Tran H, Birks DK, et al. Truncation in CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma. Blood. 2008;112(3):822–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Mohanty A, Sandoval N, Das M, Pillai R, Chen L, Chen RW, et al. CCND1 mutations increase protein stability and promote ibrutinib resistance in mantle cell lymphoma. Oncotarget. 2016;7(45):73558–72.

    PubMed  PubMed Central  Google Scholar 

  149. Wiestner A, Tehrani M, Chiorazzi M, Wright G, Gibellini F, Nakayama K, et al. Point mutations and genomic deletions in CCND1 create stable truncated cyclin D1 mRNAs that are associated with increased proliferation rate and shorter survival. Blood. 2007;109(11):4599–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Orchard J, Garand R, Davis Z, Babbage G, Sahota S, Matutes E. A subset of t(11;14) lymphoma with mantle cell features displays mutated IgVH genes and includes patients with good prognosis, nonnodal disease. Blood. 2003;101:4975–81.

    CAS  PubMed  Google Scholar 

  151. Welzel N, Le T, Marculescu R, Mitterbauer G, Chott A, Pott C, et al. Templated nucleotide addition and immunoglobulin JH-gene utilization in t(11;14) junctions: implications for the mechanism of translocation and the origin of mantle cell lymphoma. Cancer Res. 2001;61(4):1629–36.

    CAS  PubMed  Google Scholar 

  152. Kienle D, Kröber A, Katzenberger T, Ott G, Leupolt E, Barth TF, et al. VH mutation status and VDJ rearrangement structure in mantle cell lymphoma: correlation with genomic aberrations, clinical characteristics, and outcome. Blood. 2003;102(8):3003–9.

    CAS  PubMed  Google Scholar 

  153. Walsh SH, Thorsélius M, Johnson A, Söderberg O, Jerkeman M, Björck E, et al. Mutated VH genes and preferential VH3-21 use define new subsets of mantle cell lymphoma. Blood. 2003;101(10):4047–54.

    CAS  PubMed  Google Scholar 

  154. Camacho FI, Algara P, Rodríguez A, Ruíz-Ballesteros E, Mollejo M, Martínez N, et al. Molecular heterogeneity in MCL defined by the use of specific VH genes and the frequency of somatic mutations. Blood. 2003;101(10):4042–6.

    CAS  PubMed  Google Scholar 

  155. Fernàndez V, Salamero O, Espinet B, Solé F, Royo C, Navarro A, et al. Genomic and gene expression profiling defines indolent forms of mantle cell lymphoma. Cancer Res. 2010;70(4):1408–18.

    PubMed  Google Scholar 

  156. Scott DW, Abrisqueta P, Wright GW, Slack GW, Mottok A, Villa D, et al. New molecular assay for the proliferation signature in mantle cell lymphoma applicable to formalin-fixed paraffin-embedded biopsies. J Clin Oncol. 2017;35(15):1668–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Iqbal J, Shen Y, Liu Y, Fu K, Jaffe ES, Liu C, et al. Genome-wide miRNA profiling of mantle cell lymphoma reveals a distinct subgroup with poor prognosis. Blood. 2012;119(21):4939–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Navarro A, Clot G, Prieto M, Royo C, Vegliante MC, Amador V, et al. microRNA expression profiles identify subtypes of mantle cell lymphoma with different clinicobiological characteristics. Clin Cancer Res. 2013;19(12):3121–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Navarro A, Bea S, Fernandez V, Prieto M, Salaverria I, Jares P, et al. MicroRNA expression, chromosomal alterations, and immunoglobulin variable heavy chain hypermutations in Mantle cell lymphomas. Cancer Res. 2009;69(17):7071–8.

    CAS  PubMed  Google Scholar 

  160. Husby S, Ralfkiaer U, Garde C, Zandi R, Ek S, Kolstad A, et al. miR-18b overexpression identifies mantle cell lymphoma patients with poor outcome and improves the MIPI-B prognosticator. Blood. 2015;125(17):2669–77.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Y. Loo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Loo, E.Y. (2020). Follicular and Mantle Cell Lymphomas: Technical and Interpretive Considerations; Karyotyping, FISH, Chromosomal Microarray, Sequencing, B Cell Clonality, Minimal Residual Disease. In: Kaur, P. (eds) Follicular Lymphoma and Mantle Cell Lymphoma. Molecular and Translational Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-49741-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49741-5_4

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-49740-8

  • Online ISBN: 978-3-030-49741-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics