Skip to main content

Chaperome Networks – Redundancy and Implications for Cancer Treatment

  • Chapter
  • First Online:
HSF1 and Molecular Chaperones in Biology and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1243))

Abstract

The chaperome is a large family of proteins composed of chaperones, co-chaperones and a multitude of other factors. Elegant studies in yeast and other organisms have paved the road to how we currently understand the complex organization of this large family into protein networks. The goal of this chapter is to provide an overview of chaperome networks in cancer cells, with a focus on two cellular states defined by chaperome network organization. One state characterized by chaperome networks working in isolation and with little overlap, contains global chaperome networks resembling those of normal, non-transformed, cells. We propose that in this state, redundancy in chaperome networks results in a tumor type unamenable for single-agent chaperome therapy. The second state comprises chaperome networks interconnected in response to cellular stress, such as MYC hyperactivation. This is a state where no redundant pathways can be deployed, and is a state of vulnerability, amenable for chaperome therapy. We conclude by proposing a change in how we discover and implement chaperome inhibitor strategies, and suggest an approach to chaperome therapy where the properties of chaperome networks, rather than genetics or client proteins, are used in chaperome inhibitor implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albanese V, Yam AY, Baughman J, Parnot C, Frydman J (2006) Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells. Cell 124:75–88

    Article  PubMed  CAS  Google Scholar 

  • Barrios-Rodiles M, Ellis JD, Blencowe BJ, Wrana JL (2017) LUMIER: a discovery tool for mammalian protein interaction networks. Methods Mol Biol 1550:137–148

    Article  PubMed  CAS  Google Scholar 

  • Bhagwat N, Koppikar P, Keller M, Marubayashi S, Shank K, Rampal R, Qi J, Kleppe M, Patel HJ, Shah SK et al (2014) Improved targeting of JAK2 leads to increased therapeutic efficacy in myeloproliferative neoplasms. Blood 123:2075–2083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bracher A, Verghese J (2015) The nucleotide exchange factors of Hsp70 molecular chaperones. Front Mol Biosci 2:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brehme M, Voisine C (2016) Model systems of protein-misfolding diseases reveal chaperone modifiers of proteotoxicity. Dis Model Mech 9:823–838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brehme M, Voisine C, Rolland T, Wachi S, Soper JH, Zhu Y, Orton K, Villella A, Garza D, Vidal M et al (2014) A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep 9:1135–1150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brehme M, Sverchkova A, Voisine C (2019) Proteostasis network deregulation signatures as biomarkers for pharmacological disease intervention. Curr Opin Syst Biol 15:74–81

    Article  Google Scholar 

  • Buchberger A, Schroder H, Hesterkamp T, Schonfeld HJ, Bukau B (1996) Substrate shuttling between the DnaK and GroEL systems indicates a chaperone network promoting protein folding. J Mol Biol 261:328–333

    Article  PubMed  CAS  Google Scholar 

  • Carrigan PE, Sikkink LA, Smith DF, Ramirez-Alvarado M (2006) Domain:domain interactions within Hop, the Hsp70/Hsp90 organizing protein, are required for protein stability and structure. Protein Sci 15:522–532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Czarnecka AM, Campanella C, Zummo G, Cappello F (2006) Mitochondrial chaperones in cancer: from molecular biology to clinical diagnostics. Cancer Biol Ther 5:714–720

    Article  PubMed  CAS  Google Scholar 

  • Darby JF, Workman P (2011) Chemical biology: many faces of a cancer-supporting protein. Nature 478:334–335

    Article  PubMed  CAS  Google Scholar 

  • Diezmann S (2014) The Candida albicans Hsp90 chaperone network is environmentally flexible and evolutionarily divergent. In: Houry WA (ed) The molecular chaperones interaction networks in protein folding and degradation. Springer, New York, pp 185–206

    Chapter  Google Scholar 

  • Echeverria PC, Bernthaler A, Dupuis P, Mayer B, Picard D (2011) An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine. PLoS One 6:e26044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Echtenkamp FJ, Zelin E, Oxelmark E, Woo JI, Andrews BJ, Garabedian M, Freeman BC (2011) Global functional map of the p23 molecular chaperone reveals an extensive cellular network. Mol Cell 43:229–241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finka A, Goloubinoff P (2013) Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis. Cell Stress Chaperones 18:591–605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finka A, Mattoo RU, Goloubinoff P (2011) Meta-analysis of heat- and chemically upregulated chaperone genes in plant and human cells. Cell Stress Chaperones 16:15–31

    Article  PubMed  CAS  Google Scholar 

  • Gano JJ, Simon JA (2010) A proteomic investigation of ligand-dependent HSP90 complexes reveals CHORDC1 as a novel ADP-dependent HSP90-interacting protein. Mol Cell Proteomics 9:255–270

    Article  PubMed  CAS  Google Scholar 

  • Garcia VM, Morano KA (2014) The chaperone networks: a heat shock protein (Hsp)70 perspective. In: Houry WA (ed) The molecular chaperones interaction networks in protein folding and degradation. Springer New York, New York, pp 83–108

    Chapter  Google Scholar 

  • Gerecitano JF, Modi S, Gajria D, Taldone T, Alpaugh M, DaGama EG, Uddin M, Chiosis G, Lewis JS, Larson SM et al (2013) Using 124I-PU-H71 PET imaging to predict intratumoral concentration in patients on a phase I trial of PU-H71. J Clin Oncol 31:11076

    Article  Google Scholar 

  • Goldstein RL, Yang SN, Taldone T, Chang B, Gerecitano J, Elenitoba-Johnson K, Shaknovich R, Tam W, Leonard JP, Chiosis G et al (2015) Pharmacoproteomics identifies combinatorial therapy targets for diffuse large B cell lymphoma. J Clin Invest 125:4559–4571

    Article  PubMed  PubMed Central  Google Scholar 

  • Goloubinoff P (2017) Editorial: the HSP70 molecular chaperone machines. Front Mol Biosci 4:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong Y, Kakihara Y, Krogan N, Greenblatt J, Emili A, Zhang Z, Houry WA (2009) An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol Syst Biol 5:275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hadizadeh Esfahani A, Sverchkova A, Saez-Rodriguez J, Schuppert AA, Brehme M (2018) A systematic atlas of chaperome deregulation topologies across the human cancer landscape. PLoS Comput Biol 14:e1005890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    Article  PubMed  CAS  Google Scholar 

  • Hartson SD, Matts RL (2012) Approaches for defining the Hsp90-dependent proteome. Biochim Biophys Acta 1823:656–667

    Article  PubMed  CAS  Google Scholar 

  • Horwich AL (2014) Molecular chaperones in cellular protein folding: the birth of a field. Cell 157:285–288

    Article  PubMed  CAS  Google Scholar 

  • Jacob P, Hirt H, Bendahmane A (2017) The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol J 15:405–414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jamuczak AE, Eyers CE, Schwartz JM, Grant CM, Hubbard SJ (2015) Quantitative proteomics and network analysis of SSA1 and SSB1 deletion mutants reveals robustness of chaperone HSP70 network in Saccharomyces cerevisiae. Proteomics 15:3126–3139

    Article  CAS  Google Scholar 

  • Jhaveri K, Dunphy M, Wang R, Comen E, Fornier M, Moynahan ME, Bromberg J, Ma W, Patil S, Taldone T et al (2019) Tumor epichaperome expression using 124I PU-H71 PET (PU-PET) as a biomarker of response for PU-H71 plus nab-paclitaxel in HER2 negative (HER2-) metastatic breast cancer (MBC). Cancer Res 79:P6-20-03

    Google Scholar 

  • Jinwal UK, Akoury E, Abisambra JF, O’Leary JC 3rd, Thompson AD, Blair LJ, Jin Y, Bacon J, Nordhues BA, Cockman M et al (2013) Imbalance of Hsp70 family variants fosters tau accumulation. FASEB J 27:1450–1459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joshi S, Wang T, Araujo TLS, Sharma S, Brodsky JL, Chiosis G (2018) Adapting to stress – chaperome networks in cancer. Nat Rev Cancer 18:562–575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11:579–592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kishinevsky S, Wang T, Rodina A, Chung SY, Xu C, Philip J, Taldone T, Joshi S, Alpaugh ML, Bolaender A et al (2018) HSP90-incorporating chaperome networks as biosensor for disease-related pathways in patient-specific midbrain dopamine neurons. Nat Commun 9:4345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Korcsmaros T, Kovacs IA, Szalay MS, Csermely P (2007) Molecular chaperones: the modular evolution of cellular networks. J Biosci 32:441–446

    Article  PubMed  CAS  Google Scholar 

  • Kourtis N, Lazaris C, Hockemeyer K, Balandran JC, Jimenez AR, Mullenders J, Gong Y, Trimarchi T, Bhatt K, Hu H et al (2018) Oncogenic hijacking of the stress response machinery in T cell acute lymphoblastic leukemia. Nat Med 24:1157–1166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kucine N, Marubayashi S, Bhagwat N, Papalexi E, Koppikar P, Sanchez Martin M, Dong L, Tallman MS, Paietta E, Wang K et al (2015) Tumor-specific HSP90 inhibition as a therapeutic approach in JAK-mutant acute lymphoblastic leukemias. Blood 126:2479–2483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar A, Rizzolo K, Zilles S, Babu M, Houry WA (2018) Computational analysis of the chaperone interaction networks. Methods Mol Biol 1709:275–291

    Article  PubMed  CAS  Google Scholar 

  • Lambert JP, Ivosev G, Couzens AL, Larsen B, Taipale M, Lin ZY, Zhong Q, Lindquist S, Vidal M, Aebersold R et al (2013) Mapping differential interactomes by affinity purification coupled with data-independent mass spectrometry acquisition. Nat Methods 10:1239–1245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee AS (2014) Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat Rev Cancer 14:263–276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu XD, Morano KA, Thiele DJ (1999) The yeast Hsp110 family member, Sse1, is an Hsp90 cochaperone. J Biol Chem 274:26654–26660

    Article  PubMed  CAS  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J (2007) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131:121–135

    Article  PubMed  CAS  Google Scholar 

  • Moulick K, Ahn JH, Zong H, Rodina A, Cerchietti L, Gomes DaGama EM, Caldas-Lopes E, Beebe K, Perna F, Hatzi K et al (2011) Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat Chem Biol 7:818–826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Navlakha S, He X, Faloutsos C, Bar-Joseph Z (2014) Topological properties of robust biological and computational networks. J R Soc Interface 11:20140283

    Article  PubMed  PubMed Central  Google Scholar 

  • Nayar U, Lu P, Goldstein RL, Vider J, Ballon G, Rodina A, Taldone T, Erdjument-Bromage H, Chomet M, Blasberg R et al (2013) Targeting the Hsp90-associated viral oncoproteome in gammaherpesvirus-associated malignancies. Blood 122:2837–2847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Meara TR, O’Meara MJ, Polvi EJ, Pourhaghighi MR, Liston SD, Lin ZY, Veri AO, Emili A, Gingras AC, Cowen LE (2019) Global proteomic analyses define an environmentally contingent Hsp90 interactome and reveal chaperone-dependent regulation of stress granule proteins and the R2TP complex in a fungal pathogen. PLoS Biol 17:e3000358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ojala PM (2013) Naughty chaperone as a target for viral cancer. Blood 122:2767–2768

    Article  PubMed  CAS  Google Scholar 

  • Palotai R, Szalay MS, Csermely P (2008) Chaperones as integrators of cellular networks: changes of cellular integrity in stress and diseases. IUBMB Life 60:10–18

    Article  PubMed  CAS  Google Scholar 

  • Panaretou B, Siligardi G, Meyer P, Maloney A, Sullivan JK, Singh S, Millson SH, Clarke PA, Naaby-Hansen S, Stein R et al (2002) Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol Cell 10:1307–1318

    Article  PubMed  CAS  Google Scholar 

  • Pillarsetty N, Jhaveri K, Taldone T, Caldas-Lopes E, Punzalan B, Joshi S, Bolaender A, Uddin MM, Rodina A, Yan P et al (2019) Paradigms for precision medicine in epichaperome cancer therapy. Cancer Cell 36(5):559–573.e7

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266

    Article  PubMed  CAS  Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  • Ritossa FM (1964) Experimental activation of specific loci in polytene chromosomes of Drosophila. Exp Cell Res 35:601–607

    Article  PubMed  CAS  Google Scholar 

  • Rizzolo K, Houry WA (2019) Multiple functionalities of molecular chaperones revealed through systematic mapping of their interaction networks. J Biol Chem 294:2142–2150

    Article  PubMed  CAS  Google Scholar 

  • Rizzolo K, Huen J, Kumar A, Phanse S, Vlasblom J, Kakihara Y, Zeineddine HA, Minic Z, Snider J, Wang W et al (2017) Features of the chaperone cellular network revealed through systematic interaction mapping. Cell Rep 20:2735–2748

    Article  PubMed  CAS  Google Scholar 

  • Roboz GJ, Sugita M, Mosquera JM, Wilkes DC, Nataraj S, Jimenez-Flores RA, Bareja R, Yan L, Eng KW, Croyle JA et al (2018) Targeting the epichaperome as an effective precision medicine approach in a novel PML-SYK fusion acute myeloid leukemia. Blood 132:1435

    Article  Google Scholar 

  • Rodina A, Wang T, Yan P, Gomes ED, Dunphy MP, Pillarsetty N, Koren J, Gerecitano JF, Taldone T, Zong H et al (2016) The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature 538:397–401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rospert S, Chacinska A (2006) Distinct yet linked: chaperone networks in the eukaryotic cytosol. Genome Biol 7:208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schopf FH, Biebl MM, Buchner J (2017) The HSP90 chaperone machinery. Nat Rev Mol Cell Biol 18:345–360

    Article  PubMed  CAS  Google Scholar 

  • Shaner L, Morano KA (2007) All in the family: atypical Hsp70 chaperones are conserved modulators of Hsp70 activity. Cell Stress Chaperones 12:1–8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shrestha L, Patel HJ, Chiosis G (2016) Chemical tools to investigate mechanisms associated with HSP90 and HSP70 in disease. Cell Chem Biol 23:158–172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Speranza G, Anderson L, Chen AP, Do K, Eugeni M, Weil M, Rubinstein L, Majerova E, Collins J, Horneffer Y et al (2018) First-in-human study of the epichaperome inhibitor PU-H71: clinical results and metabolic profile. Invest New Drugs 36:230–239

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Hartson SD, Matts RL (2015) Identification of proteins associated with Aha1 in HeLa cells by quantitative proteomics. Biochim Biophys Acta 1854:365–380

    Article  PubMed  CAS  Google Scholar 

  • Tai W, Guzman ML, Chiosis G (2016) The epichaperome: the power of many as the power of one. Oncoscience 3:266–267

    Article  PubMed  PubMed Central  Google Scholar 

  • Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, Karras GI, Lindquist S (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150:987–1001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taipale M, Tucker G, Peng J, Krykbaeva I, Lin ZY, Larsen B, Choi H, Berger B, Gingras AC, Lindquist S (2014) A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways. Cell 158:434–448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taldone T, Rodina A, DaGama Gomes EM, Riolo M, Patel HJ, Alonso-Sabadell R, Zatorska D, Patel MR, Kishinevsky S, Chiosis G (2013) Synthesis and evaluation of cell-permeable biotinylated PU-H71 derivatives as tumor Hsp90 probes. Beilstein J Org Chem 9:544–556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taldone T, Ochiana SO, Patel PD, Chiosis G (2014) Selective targeting of the stress chaperome as a therapeutic strategy. Trends Pharmacol Sci 35:592–603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taldone T, Wang T, Rodina A, Pillarsetty NVK, Digwal CS, Sharma S, Yan P, Joshi S, Pagare PP, Bolaender A et al (2019) A chemical biology approach to the chaperome in cancer-HSP90 and beyond. Cold Spring Harb Perspect Biol

    Google Scholar 

  • Truman AW, Kristjansdottir K, Wolfgeher D, Ricco N, Mayampurath A, Volchenboum SL, Clotet J, Kron SJ (2015) Quantitative proteomics of the yeast Hsp70/Hsp90 interactomes during DNA damage reveal chaperone-dependent regulation of ribonucleotide reductase. J Proteomics 112:285–300

    Article  PubMed  CAS  Google Scholar 

  • Verba KA, Agard DA (2017) How Hsp90 and Cdc37 lubricate kinase molecular switches. Trends Biochem Sci 42:799–811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voisine C, Pedersen JS, Morimoto RI (2010) Chaperone networks: tipping the balance in protein folding diseases. Neurobiol Dis 40:12–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voos W, Rottgers K (2002) Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim Biophys Acta 1592:51–62

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Venable J, LaPointe P, Hutt DM, Koulov AV, Coppinger J, Gurkan C, Kellner W, Matteson J, Plutner H et al (2006) Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127:803–815

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Rodina A, Dunphy MP, Corben A, Modi S, Guzman ML, Gewirth DT, Chiosis G (2019) Chaperome heterogeneity and its implications for cancer study and treatment. J Biol Chem 294:2162–2179

    Article  PubMed  CAS  Google Scholar 

  • Weidenauer L, Wang T, Joshi S, Chiosis G, Quadroni MR (2017) Proteomic interrogation of HSP90 and insights for medical research. Expert Rev Proteomics 14:1105–1117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zong H, Gozman A, Caldas-Lopes E, Taldone T, Sturgill E, Brennan S, Ochiana SO, Gomes-DaGama EM, Sen S, Rodina A et al (2015) A hyperactive signalosome in acute myeloid leukemia drives addiction to a tumor-specific Hsp90 species. Cell Rep 13:2159–2173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

G.C. is supported by the US National Institutes of Health (NIH) (R01 CA172546, R56 AG061869, R01 CA155226, P01 CA186866, P30 CA08748 and P50 CA192937), the Steven A. Greenberg charitable trust, the Mr. William H. Goodwin and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research and the Experimental Therapeutics Center of the Memorial Sloan Kettering Cancer Center; T.W. is supported by the Lymphoma Research Foundation; M.L.G. is supported by the NIH (R01 CA172546, R01 CA102031), the Irma T. Hirschl/Monique Weill-Caulier Trust and Unravel Pediatric Cancer Foundation.

Author Contributions

P.Y., R.I.P. and M.L.G. researched data for the article and contributed to the writing of the article and to the review of the manuscript. T.W. designed the figures and their content. G.C. designed the content of the manuscript, researched data for the article and wrote, edited and reviewed the manuscript.

Declaration of Interests

Memorial Sloan Kettering Cancer Center holds the intellectual rights to the epichaperome portfolio. Samus Therapeutics, of which G.C. has partial ownership and is a member of its board of directors, has licensed the portfolio. G.C., P.Y. and M.L.G. are inventors on the licensed intellectual property. All other authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Chiosis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yan, P., Wang, T., Guzman, M.L., Peter, R.I., Chiosis, G. (2020). Chaperome Networks – Redundancy and Implications for Cancer Treatment. In: Mendillo, M.L., Pincus, D., Scherz-Shouval, R. (eds) HSF1 and Molecular Chaperones in Biology and Cancer. Advances in Experimental Medicine and Biology, vol 1243. Springer, Cham. https://doi.org/10.1007/978-3-030-40204-4_6

Download citation

Publish with us

Policies and ethics