Skip to main content
Log in

Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

In the crowded environment of human cells, folding of nascent polypeptides and refolding of stress-unfolded proteins is error prone. Accumulation of cytotoxic misfolded and aggregated species may cause cell death, tissue loss, degenerative conformational diseases, and aging. Nevertheless, young cells effectively express a network of molecular chaperones and folding enzymes, termed here “the chaperome,” which can prevent formation of potentially harmful misfolded protein conformers and use the energy of adenosine triphosphate (ATP) to rehabilitate already formed toxic aggregates into native functional proteins. In an attempt to extend knowledge of chaperome mechanisms in cellular proteostasis, we performed a meta-analysis of human chaperome using high-throughput proteomic data from 11 immortalized human cell lines. Chaperome polypeptides were about 10 % of total protein mass of human cells, half of which were Hsp90s and Hsp70s. Knowledge of cellular concentrations and ratios among chaperome polypeptides provided a novel basis to understand mechanisms by which the Hsp60, Hsp70, Hsp90, and small heat shock proteins (HSPs), in collaboration with cochaperones and folding enzymes, assist de novo protein folding, import polypeptides into organelles, unfold stress-destabilized toxic conformers, and control the conformal activity of native proteins in the crowded environment of the cell. Proteomic data also provided means to distinguish between stable components of chaperone core machineries and dynamic regulatory cochaperones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MDa:

Megadaltons

Pg:

Picogram

ER:

Endoplasmic reticulum

NEF:

Nucleotide exchange factor

Chaperome:

Members of the chaperone cochaperone, and the folding enzymes PDIs and PPIs

PDIs:

Peptidyl disulfide isomerases

PPIs:

Peptidylprolyl isomerases

SILAC:

Stable isotope labeling with amino acids in cell culture

MS:

Mass spectrometry

IBAQ:

Intensity-based absolute quantification

SD:

Standard deviation

Proteostasis:

Protein homeostasis

Proteopathies:

Protein conformational diseases

References

  • Albanese V, Reissmann S, Frydman J (2010) A ribosome-anchored chaperone network that facilitates eukaryotic ribosome biogenesis. J Cell Biol 189(1):69–U105. doi:10.1083/jcb.201001054

    Article  PubMed  CAS  Google Scholar 

  • Albe KR, Butler MH, Wright BE (1990) Cellular concentrations of enzymes and their substrates. J Theor Biol 143(2):163–195

    Article  PubMed  CAS  Google Scholar 

  • Azem A, Diamant S, Kessel M, Weiss C, Goloubinoff P (1995) The protein-folding activity of chaperonins correlates with the symmetric GroEL(14)(GroES(7))(2) heterooligomer. Proc Natl Acad Sci USA 92(26):12021–12025. doi:10.1073/pnas.92.26.12021

    Article  PubMed  CAS  Google Scholar 

  • Ben-Zvi A, De los Rios P, Dietler G, Goloubinoff P (2004) Active solubilization and refolding of stable protein aggregates by cooperative unfolding action of individual Hsp70 chaperones. J Biol Chem 279(36):37298–37303. doi:10.1074/jbc.M405627200

    Article  PubMed  CAS  Google Scholar 

  • Blacque OE, Leroux MR (2006) Bardet–Biedl syndrome: an emerging pathomechanism of intracellular transport. Cell Mol Life Sci 63(18):2145–2161. doi:10.1007/s00018-006-6180-x

    Article  PubMed  CAS  Google Scholar 

  • Cassina L, Casari G (2009) The tightly regulated and compartmentalised import, sorting and folding of mitochondrial proteins. Open Biol J 2:200–221. doi:10.2174/1874196700902010200

    Article  CAS  Google Scholar 

  • Cong Y, Baker ML, Jakana J, Woolford D, Miller EJ, Reissmann S, Kumar RN, Redding-Johanson AM, Batth TS, Mukhopadhyay A, Ludtke SJ, Frydman J, Chiu W (2010) 4.0-Angstrom resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proc Natl Acad Sci USA 107(11):4967–4972. doi:10.1073/pnas.0913774107

    Article  PubMed  CAS  Google Scholar 

  • Cooper GM (2000) The cell: a molecular approach, 2nd edn. ASM, Washington

    Google Scholar 

  • Coppinger JA, Hutt DM, Razvi A, Koulov AV, Pankow S, Yates JR III, Balch WE (2012) A chaperone trap contributes to the onset of cystic fibrosis. PLoS One 7(5):e37682. doi:10.1371/journal.pone.0037682

    Article  PubMed  CAS  Google Scholar 

  • Csermely P, Kajtar J, Hollosi M, Jalsovszky G, Holly S, Kahn CR, Gergely P, Soti C, Mihaly K, Somogyi J (1993) ATP induces a conformational change of the 90-kDa heat shock protein (Hsp90). J Biol Chem 268(3):1901–1907

    PubMed  CAS  Google Scholar 

  • De los Rios P, Ben-Zvi A, Slutsky O, Azem A, Goloubinoff P (2006) Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. Proc Natl Acad Sci U S A 103(16):6166–6171

    Article  PubMed  CAS  Google Scholar 

  • Dekker C, Stirling PC, McCormack EA, Filmore H, Paul A, Brost RL, Costanzo M, Boone C, Leroux MR, Willison KR (2008) The interaction network of the chaperonin CCT. EMBO J 27(13):1827–1839. doi:10.1038/emboj.2008.108

    Article  PubMed  CAS  Google Scholar 

  • Dekker C, Willison KR, Taylor WR (2012) On the evolutionary origin of the chaperonins. Proteins 79:1172–1192

    Article  Google Scholar 

  • Diamant S, Azem A, Weiss C, Goloubinoff P (1995) Effect of free and ATP-bound magnesium and manganese ions on the atpase activity of chaperonin GroEL(14). Biochem-Us 34(1):273–277. doi:10.1021/Bi00001a033

    Article  CAS  Google Scholar 

  • Diamant S, Ben-Zvi AP, Bukau B, Goloubinoff P (2000) Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery. J Biol Chem 275(28):21107–21113. doi:10.1074/jbc.M001293200

    Article  PubMed  CAS  Google Scholar 

  • Diamant S, Goloubinoff P (1998) Temperature-controlled activity of DnaK-DnaJ-GrpE chaperones: protein-folding arrest and recovery during and after heat shock depends on the substrate protein and the GrpE concentration. Biochem-US 37(27):9688–9694. doi:10.1021/Bi980338u

    Article  CAS  Google Scholar 

  • Dittmar KD, Demady DR, Stancato LF, Krishna P, Pratt WB (1997) Folding of the glucocorticoid receptor by the heat shock protein (hsp) 90-based chaperone machinery—the role of p23 is to stabilize receptor-hsp90 heterocomplexes formed by hsp90-p60-hsp70. J Biol Chem 272(34):21213–21220. doi:10.1074/jbc.272.34.21213

    Article  PubMed  CAS  Google Scholar 

  • Duncan R, Hershey JWB (1983) Identification and quantitation of levels of protein synthesis initiation factors in crude HeLa cell lysates by two-dimensional polyacrylamide gel electrophoresis. J Biol Chem 258(11):7228–7235

    PubMed  CAS  Google Scholar 

  • Echeverria PC, Bernthaler A, Dupuis P, Mayer B, Picard D (2011) An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine. PLoS One 6(10):e26044. doi:10.1371/journal.pone.0026044

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg E, Greene LE (2007) Multiple roles of auxilin and Hsc70 in clathrin-mediated endocytosis. Traffic 8(6):640–646. doi:10.1111/j.1600-0854.2007.00568.x

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26(10):597–604. doi:10.1016/S0968-0004(01)01938-7

    Article  PubMed  CAS  Google Scholar 

  • Erlinger S, Saier MH (1982) Decrease in protein-content and cell volume of cultured dog kidney epithelial cells during growth—importance for transport measurements. Vitro Cell Dev B 18(3):196–202

    Article  CAS  Google Scholar 

  • Eymery A, Horard B, El Atifi-Borel M, Fourel G, Berger F, Vitte AL, Van den Broeck A, Brambilla E, Fournier A, Callanan M, Gazzeri S, Khochbin S, Rousseaux S, Gilson E, Vourc'h C (2009) A transcriptomic analysis of human centromeric and pericentric sequences in normal and tumor cells. Nucleic Acids Res 37(19):6340–6354. doi:10.1093/Nar/Gkp639

    Article  PubMed  CAS  Google Scholar 

  • Fiaux J, Horst J, Scior A, Preissler S, Koplin A, Bukau B, Deuerling E (2010) Structural analysis of the ribosome-associated complex (RAC) reveals an unusual Hsp70/Hsp40 interaction. J Biol Chem 285(5):3227–3234. doi:10.1074/jbc.M109.075804

    Article  PubMed  CAS  Google Scholar 

  • Fink AL (1999) Chaperone-mediated protein folding. Physiol Rev 79(2):425–449

    PubMed  CAS  Google Scholar 

  • Finka A, Mattoo RU, Goloubinoff P (2011) Meta-analysis of heat- and chemically upregulated chaperone genes in plant and human cells. Cell Stress Chaperones 16(1):15–31. doi:10.1007/s12192-010-0216-8

    Article  PubMed  CAS  Google Scholar 

  • Geiger T, Wehner A, Schaab C, Cox J (2012) Mann M (2012) Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol Cell Proteomics 11(3):M111.014050. doi:10.1074/mcp.M111.014050

    Article  PubMed  Google Scholar 

  • Genest O, Hoskins JR, Camberg JL, Doyle SM, Wickner S (2011) Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling. Proc Natl Acad Sci U S A 108(20):8206–8211. doi:10.1073/pnas.1104703108

    Article  PubMed  CAS  Google Scholar 

  • Goloubinoff P, Christeller JT, Gatenby AA, Lorimer GH (1989a) Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on 2 chaperonin proteins and Mg-Atp. Nature 342(6252):884–889

    Article  PubMed  CAS  Google Scholar 

  • Goloubinoff P, De Los Rios P (2007) The mechanism of Hsp70 chaperones: (entropic) pulling the models together. Trends Biochem Sci 32(8):372–380. doi:10.1016/j.tibs.2007.06.008

    Article  PubMed  CAS  Google Scholar 

  • Goloubinoff P, Gatenby AA, Lorimer GH (1989b) GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337(6202):44–47. doi:10.1038/337044a0

    Article  PubMed  CAS  Google Scholar 

  • Gragerov A, Nudler E, Komissarova N, Gaitanaris GA, Gottesman ME, Nikiforov V (1992) Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proc Natl Acad Sci U S A 89(21):10341–10344. doi:10.1073/pnas.89.21.10341

    Article  PubMed  CAS  Google Scholar 

  • Gross AC (1996) Function and regulation of the heat shock proteins. In: Neidhardt FC, Curtiss R (eds) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. ASM, Washington

    Google Scholar 

  • Hemmingsen SM, Woolford C, Vandervies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333(6171):330–334

    Article  PubMed  CAS  Google Scholar 

  • Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Bio 13(2):89–102. doi:10.1038/Nrm3270

    CAS  Google Scholar 

  • Hinault MP, Ben-Zvi A, Goloubinoff P (2006) Chaperones and proteases—cellular fold-controlling factors of proteins in neurodegenerative diseases and aging. J Mol Neurosci 30(3):249–265. doi:10.1385/Jmn/30:03:249

    Article  PubMed  CAS  Google Scholar 

  • Hinault MP, Farina-Henriquez-Cuendet A, Goloubinoff P (2011) Molecular chaperones and associated cellular clearance mechanisms against toxic protein conformers in Parkinson's disease. Neurodegener Dis 8(6):397–412. doi:10.1159/000324514

    Article  PubMed  CAS  Google Scholar 

  • Jin JH, Li GJ, Davis J, Zhu D, Wang Y, Pan C, Zhang J (2007) Identification of novel proteins associated with both alpha-synuclein and DJ-1. Mol Cell Proteomics 6(5):845–859. doi:10.1074/mcp.M600182-MCP200

    Article  PubMed  CAS  Google Scholar 

  • Kalia LV, Kalia SK, Chau H, Lozano AM, Hyman BT, McLean PJ (2011) Ubiquitinylation of alpha-synuclein by carboxyl terminus Hsp70-interacting protein (CHIP) is regulated by Bcl-2-associated athanogene 5 (BAG5). PLoS One 6(2). doi:10.1371/journal.pone.0014695

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14(1):105–111. doi:10.1007/s12192-008-0068-7

    Article  PubMed  CAS  Google Scholar 

  • Karagoz GE, Duarte AMS, Ippel H, Uetrecht C, Sinnige T, van Rosmalen M, Hausmann J, Heck AJR, Boelens R, Rudiger SGD (2011) N-terminal domain of human Hsp90 triggers binding to the cochaperone p23. Proc Natl Acad Sci U S A 108(2):580–585. doi:10.1073/pnas.1011867108

    Article  PubMed  CAS  Google Scholar 

  • Kikis EA, Gidalevitz T, Morimoto RI (2010) Protein homeostasis in models of aging and age-related conformational disease. Adv Exp Med Biol 694:138–159. doi:10.1007/978-1-4419-7002-2

    Article  PubMed  CAS  Google Scholar 

  • Kline KG, Sussman MR (2010) Protein quantitation using isotope-assisted mass spectrometry. Annu Rev Biophys 39:291–308. doi:10.1146/annurev.biophys.093008.131339

    Article  PubMed  CAS  Google Scholar 

  • Koplin A, Preissler S, Ilina Y, Koch M, Scior A, Erhardt M, Deuerling E (2010) A dual function for chaperones SSB-RAC and the NAC nascent polypeptide-associated complex on ribosomes. J Cell Biol 189(1):57–68. doi:10.1083/jcb.200910074

    Article  PubMed  CAS  Google Scholar 

  • Lew VL, Raftos JE, Sorette M, Bookchin RM, Mohandas N (1995) Generation of normal human red-cell volume, hemoglobin content, and membrane area distributions by birth or regulation. Blood 86(1):334–341

    PubMed  CAS  Google Scholar 

  • Lewis VA, Hynes GM, Dong Z, Saibil H, Willison K (1992) T-Complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol. Nature 358(6383):249–252. doi:10.1038/358249a0

    Article  PubMed  CAS  Google Scholar 

  • Lin Z, Madan D, Rye HS (2008) GroEL stimulates protein folding through forced unfolding. Nat Struct Mol Biol 15(3):303–311. doi:10.1038/Nsmb.1394

    Article  PubMed  CAS  Google Scholar 

  • Llorca O, Martin-Benito J, Grantham J, Ritco-Vonsovici M, Willison KR, Carrascosa JL, Valpuesta JM (2001) The ‘sequential allosteric ring’ mechanism in the eukaryotic chaperonin-assisted folding of actin and tubulin. EMBO J 20(15):4065–4075. doi:10.1093/emboj/20.15.4065

    Article  PubMed  CAS  Google Scholar 

  • Llorca O, McCormack EA, Hynes G, Grantham J, Cordell J, Carrascosa JL, Willison KR, Fernandez JJ, Valpuesta JM (1999) Eukaryotic type II chaperonin CCT interacts with actin through specific subunits. Nature 402(6762):693–696

    Article  PubMed  CAS  Google Scholar 

  • Lodish HF (2000) Molecular cell biology, 4th edn. W.H. Freeman, New York

    Google Scholar 

  • Luciani AM, Rosi A, Matarrese P, Arancia G, Guidoni L, Viti V (2001) Changes in cell volume and internal sodium concentration in HeLa cells during exponential growth and following ionidamine treatment. Eur J Cell Biol 80(2):187–195. doi:10.1078/0171-9335-00102

    Article  PubMed  CAS  Google Scholar 

  • Lundin VF, Leroux MR, Stirling PC (2010) Quality control of cytoskeletal proteins and human disease. Trends Biochem Sci 35(5):288–297. doi:10.1016/j.tibs.2009.12.007

    Article  PubMed  CAS  Google Scholar 

  • Lurje G, Lenz HJ (2009) EGFR signaling and drug discovery. Oncology-Basel 77(6):400–410. doi:10.1159/000279388

    Article  CAS  Google Scholar 

  • Marzec M, Eletto D, Argon Y (2012) GRP94: An Hsp90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. BBA Mol Cell Res 1823(3):774–787. doi:10.1016/j.bbamcr.2011.10.013

    CAS  Google Scholar 

  • Melville MW, McClellan AJ, Meyer AS, Darveau A, Frydman J (2003) The Hsp70 and TRiC/CCT chaperone systems cooperate in vivo to assemble the von Hippel–Lindau tumor suppressor complex. Mol Cell Biol 23(9):3141–3151. doi:10.1128/Mcb.23.9.3141-3151.2003

    Article  PubMed  CAS  Google Scholar 

  • Morimoto RI (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Gene Dev 22(11):1427–1438. doi:10.1101/Gad.1657108

    Article  PubMed  CAS  Google Scholar 

  • Muller P, Ruckova E, Halada P, Coates PJ, Hrstka R, Lane DP, Vojtesek B (2012) C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances. Oncogene 1-10. doi:http://www.nature.com/onc/journal/vaop/ncurrent/suppinfo/onc2012314s1.html

  • Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J, Paabo S, Mann M (2011) Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol 7:548. doi:10.1038/Msb.2011.81

    Article  PubMed  Google Scholar 

  • Nakamoto H, Vigh L (2007) The small heat shock proteins and their clients. Cell Mol Life Sci 64(3):294–306. doi:10.1007/s00018-006-6321-2

    Article  PubMed  CAS  Google Scholar 

  • Neupert W, Schatz G (1981) How proteins are transported into mitochondria. Trends Biochem Sci 6(1):1–4

    Article  CAS  Google Scholar 

  • Pierpaoli EV, Sandmeier E, Baici A, Schonfeld HJ, Gisler S, Christen P (1997) The power stroke of the DnaK/DnaJ/GrpE molecular chaperone system. J Mol Biol 269(5):757–768. doi:10.1006/jmbi.1997.1072

    Article  PubMed  CAS  Google Scholar 

  • Polier S, Dragovic Z, Hartl FU, Bracher A (2008) Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 133(6):1068–1079. doi:10.1016/j.cell.2008.05.022

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD (1984) Citation classic—actin and myosin and cell-movement. Life Sci 30:13–13

    Google Scholar 

  • Posakony J, England J, Attardi G (1977) Mitochondrial growth and division during the cell cycle in HeLa cells. J Cell Biol 74(2):468–491. doi:10.1083/jcb.74.2.468

    Article  PubMed  CAS  Google Scholar 

  • Prodromou C (2012) The ‘active life’ of Hsp90 complexes. BBA Mol Cell Res 1823(3):614–623. doi:10.1016/j.bbamcr.2011.07.020

    CAS  Google Scholar 

  • Rampelt H, Kirstein-Miles J, Nillegoda NB, Chi K, Scholz SR, Morimoto RI, Bukau B (2012) Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO J 31 (21):4221-4235. doi:http://www.nature.com/emboj/journal/v31/n21/suppinfo/emboj2012264a_S1.html

  • Rampelt H, Mayer M, Bukau B (2011) Nucleotide exchange factors for Hsp70 chaperones. In: Calderwood SK, Prince TL (eds) Molecular chaperones, vol 787, Methods in molecular biology. Humana, New York, pp 83–91. doi:10.1007/978-1-61779-295-3_7

    Chapter  Google Scholar 

  • Rapoport TA (2007) Transport of proteins in and out of the endoplasmic reticulum. FASEB J 21(5):A207–A207

    Google Scholar 

  • Riggs DL, Roberts PJ, Chirillo SC, Cheung-Flynn J, Prapapanich V, Ratajczak T, Gaber R, Picard D, Smith DF (2003) The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. EMBO J 22(5):1158–1167

    Article  PubMed  CAS  Google Scholar 

  • Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396(6709):336–342. doi:10.1038/24550

    Article  PubMed  CAS  Google Scholar 

  • Salaklang J, Steitz B, Finka A, O'Neil CP, Moniatte M, van der Vlies AJ, Giorgio TD, Hofmann H, Hubbell JA, Petri-Fink A (2008) Superparamagnetic nanoparticles as a powerful systems biology characterization tool in the physiological context. Angew Chem Int Edit 47(41):7857–7860. doi:10.1002/anie.200800357

    Article  CAS  Google Scholar 

  • Schmidt A, Beck M, Malmstrom J, Lam H, Claassen M, Campbell D, Aebersold R (2011) Absolute quantification of microbial proteomes at different states by directed mass spectrometry. Molecular Systems Biology 7: 510. doi:http://www.nature.com/msb/journal/v7/n1/suppinfo/msb201137_S1.html

  • Schuermann JP, Jiang JW, Cuellar J, Llorca O, Wang LP, Gimenez LE, Jin SP, Taylor AB, Demeler B, Morano KA, Hart PJ, Valpuesta JM, Lafer EM, Sousa R (2008) Structure of the Hsp110:Hsc70 nucleotide exchange machine. Mol Cell 31(2):232–243. doi:10.1016/j.molcel.2008.05.006

    Article  PubMed  CAS  Google Scholar 

  • Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342. doi:10.1038/Nature10098

    Article  PubMed  Google Scholar 

  • Sharma K, Vabulas RM, Macek B, Pinkert S, Cox J, Mann M, Hartl FU (2012) Quantitative proteomics reveals that Hsp90 inhibition preferentially targets kinases and the DNA damage response. Mol Cell Proteomics 11(3). doi:10.1074/mcp.M111.014654

  • Sharma SK, De Los Rios P, Christen P, Lustig A, Goloubinoff P (2010) The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase. Nat Chem Biol 6(12):914–920. doi:10.1038/Nchembio.455

    Article  PubMed  CAS  Google Scholar 

  • Sharma SK, De Los Rios P, Goloubinoff P (2011) Probing the different chaperone activities of the bacterial Hsp70–Hsp40 system using a thermolabile luciferase substrate. Proteins Struct Funct Bioinform 79(6):1991–1998. doi:10.1002/Prot.23024

    Article  CAS  Google Scholar 

  • Shorter J (2011) The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS One 6(10). doi:10.1371/journal.pone.0026319

  • Siegenthaler RK, Christen P (2006) Tuning of DnaK chaperone action by nonnative protein sensor DnaJ and thermosensor GrpE. J Biol Chem 281(45):34448–34456. doi:10.1074/jbc.M606382200

    Article  PubMed  CAS  Google Scholar 

  • Siegers K, Waldmann T, Leroux MR, Grein K, Shevchenko A, Schiebel E, Hartl FU (1999) Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the chaperonin–GimC system. EMBO J 18(1):75–84. doi:10.1093/emboj/18.1.75

    Article  PubMed  CAS  Google Scholar 

  • Sousa R, Lafer EM (2006) Keep the traffic moving: mechanism of the Hsp70 motor. Traffic 7(12):1596–1603. doi:10.1111/j.1600-0854.2006.00497.x

    Article  PubMed  CAS  Google Scholar 

  • Tissieres A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster—relation to chromosome puffs. J Mol Biol 84(3):389–398

    Article  PubMed  CAS  Google Scholar 

  • Torok Z, Vigh L, Goloubinoff P (1996) Fluorescence detection of symmetric GroEL(14)(GroES(7))(2) heterooligomers involved in protein release during the chaperonin cycle. J Biol Chem 271(27):16180–16186

    Article  PubMed  CAS  Google Scholar 

  • Van de Water L, 3rd, Olmsted JB (1980) The quantitation of tubulin in neuroblastoma cells by radioimmunoassay. J Biol Chem 255(22):10744–10751

    Google Scholar 

  • van der Vaart A, Ma JP, Karplus M (2004) The unfolding action of GroEL on a protein substrate. Biophys J 87(1):562–573. doi:10.1529/biophysj.103.037333

    Article  PubMed  Google Scholar 

  • Veinger L, Diamant S, Buchner J, Goloubinoff P (1998) The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem 273(18):11032–11037. doi:10.1074/jbc.273.18.11032

    Article  PubMed  CAS  Google Scholar 

  • Volpe P, Eremenko T (1970) Quantitative studies on cell proteins in suspension cultures. Eur J Biochem 12(1):195–200. doi:10.1111/j.1432-1033.1970.tb00837.x

    Article  PubMed  CAS  Google Scholar 

  • Wang ZM, Shen W, Kotler DP, Heshka S, Wielopolski L, Aloia JF, Nelson ME, Pierson RN, Heymsfield SB (2003) Total body protein: a new cellular level mass and distribution prediction model. Am J Clin Nutr 78(5):979–984

    PubMed  CAS  Google Scholar 

  • Weiss YG, Bromberg Z, Raj N, Raphael J, Goloubinoff P, Ben-Neriah Y, Deutschman CS (2007) Enhanced heat shock protein 70 expression alters proteasomal degradation of I kappa B kinase in experimental acute respiratory distress syndrome. Crit Care Med 35(9):2128–2138. doi:10.1097/01.Ccm.0000278915.78030.74

    Article  PubMed  CAS  Google Scholar 

  • Wistow GJ, Piatigorsky J (1988) Lens crystallins—the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem 57:479–504. doi:10.1146/annurev.biochem.57.1.479

    Article  PubMed  CAS  Google Scholar 

  • Wolf SF, Schlessinger D (1977) Nuclear metabolism of ribosomal RNA in growing, methionine-limited, and ethionine-treated HeLa cells. Biochem-Us 16(12):2783–2791. doi:10.1021/Bi00631a031

    Article  CAS  Google Scholar 

  • Yebenes H, Mesa P, Munoz IG, Montoya G, Valpuesta JM (2011) Chaperonins: two rings for folding. Trends Biochem Sci 36(8):424–432. doi:10.1016/j.tibs.2011.05.003

    Article  PubMed  CAS  Google Scholar 

  • Yeyati PL, Bancewicz RM, Maule J, van Heyningen V (2007) Hsp90 selectively modulates phenotype in vertebrate development. PLoS Genet 3(3):431–447. doi:10.1371/journal.pgen.0030043

    Article  CAS  Google Scholar 

  • Young JC, Hoogenraad NJ, Hartl FU (2003) Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112(1):41–50. doi:10.1016/S0092-8674(02)01250-3

    Article  PubMed  CAS  Google Scholar 

  • Zuehlke A, Johnson JL (2010) Hsp90 and co-chaperones twist the functions of diverse client proteins. Biopolym 93(3):211–217. doi:10.1002/Bip.21292

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Faculty of Biology and Medicine of Lausanne University of Lausanne and by Grant 31003A-140512/1 from the Swiss National Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Goloubinoff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Raw polypeptide abundances in 11 imortalized human cell lines. Bar graphs showing high disparity of (A) absolute polypeptide copy numbers per cell and (B) protein concentration, in the 11 different immortalized human cell lines (Geiger et al. 2012). Total polypeptide copy number and SD are from three independent measures. Hatched boxes are 1010 polypeptides and 300 mg/ml per cell as previously reported (Albe et al. 1990). (DOCX 62 kb)

Supplementary Table 1

Numeral proportions of 11,731 polypeptides in 11 immortalized human cell lines and individual polypeptide copy number in HeLa cells. The numeral proportions of polypeptides with a p value less than 0.1 are labeled in bold. The polypeptide average copy numbers and SD in HeLa cells are given in a separate sheet (XLSX 7413 kb)

Supplementary Table 2

Mass proportions of 11,731 polypeptides in 11 immortalized human cell lines and individual polypeptide mass in HeLa cells. The mass proportions of polypeptides with a p value less than 0.1 are labeled in bold. The average mass and SD (in picograms) of each polypeptide in HeLa cells are given in a separate sheet (XLSX 9413 kb)

Supplementary Table 3

List of human 147 chaperome members. Numeral proportions, copy numbers, mass proportions with corresponding p values, and mass of each detected chaperome member in HeLa cells (XLSX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finka, A., Goloubinoff, P. Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis. Cell Stress and Chaperones 18, 591–605 (2013). https://doi.org/10.1007/s12192-013-0413-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-013-0413-3

Keywords

Navigation