Skip to main content

Linear Megaplasmids Spreading in the Andean Resistome

  • Chapter
  • First Online:
Microbial Ecosystems in Central Andes Extreme Environments

Abstract

High-altitude wetlands and lakes in the Argentinean Puna are extreme and pristine environments. Bacteria living in such habitats must adapt to extremely harsh conditions, such as oligotrophy, high ultraviolet radiation, and high arsenic concentrations, among others. Commonly, genetic traits that confer resistance to the above factors could be encoded in extrachromosomal elements. In actinobacteria isolated from these high-altitude habitats, screening for plasmids has revealed the presence of novel linear megaplasmids for the genera Micrococcus and Brevibacterium. These linear replicons belong to a class of elements called invertrons, which are characterized by terminal inverted repeats and terminal proteins covalently attached to the DNA 5′ ends. Nucleotide sequencing studies of these linear plasmids has shown the presence of genes required for the survival in these particular habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albarracín VH, Gärtner W, Farías ME (2016) Forged under the Sun: life and art of extremophiles from Andean lakes. Photochem Photobiol 92(1):14–28

    Article  PubMed  CAS  Google Scholar 

  • Albarracín VH, Kurth D, Ordoñez OF, Belfiore C, Luccini E, Salum GM, Piacentini RD, Farías ME (2015) High-up: a remote reservoir of microbial extremophiles in central Andean wetlands. Front Microbiol 6:1404

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson DL, Hickman DD, Reilly BE (1966) Structure of Bacillus subtilis bacteriophage φ29 and the length of φ29 deoxyribonucleic acid. J Bacteriol 91(5):2081–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azman AS, Othman I, Velu S, Chan KG, Lee LH (2015) Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity. Front Microbiol 6:856

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker S, Hardy J, Sanderson KE, Quail M, Goodhead I, Kingsley RA, Dougan G (2007) A novel linear plasmid mediates flagellar variation in Salmonella typhi. PLoS Pathog 3(5):e59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barbour AG, Garon CF (1987) Linear plasmids of the bacterium Borrelia burgdorferi have covalently closed ends. Science 237(4813):409–411

    Article  CAS  PubMed  Google Scholar 

  • Belluscio A (2009) A high window in the past. Nat Dig 6:34–36

    Article  Google Scholar 

  • Belluscio A (2010) Hostile volcanic lake teems with life. Nat News. https://doi.org/10.1038/news.2010.161

  • Bentley SD, Brown S, Murphy LD, Harris DE, Quail MA, Parkhill J, Yamasaki M (2004) SCP1, a 356023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol Microbiol 51(6):1615–1628

    Article  CAS  PubMed  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1–26

    Article  Google Scholar 

  • Blaisonneau J, Nosek J, Fukuhara H (1999) Linear DNA plasmid pPK2 of Pichia kluyveri: distinction between cytoplasmic and mitochondrial linear plasmids in yeasts. Yeast 15(9):781–791

    Article  CAS  PubMed  Google Scholar 

  • Bröker D, Arenskötter M, Legatzki A, Nies DH, Steinbüchel A (2004) Characterization of the 101-kilobase-pair megaplasmid pKB1, isolated from the rubber-degrading bacterium Gordonia westfalica Kb1. J Bacteriol 186(1):212–225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burgdorfer W, Barbour AG, Hayes SF, Benach JL, Grunwaldt E, Davis JP (1982) Lyme disease—a tick-borne spirochetosis? Science 216(4552):1317–1319

    Article  CAS  PubMed  Google Scholar 

  • Chater KF, Kinashi H (2007) Streptomyces linear plasmids: their discovery, functions, interactions with other replicons, and evolutinonary significance. In: Meinhardt F, Klassen R (eds) Microbial linear plasmids. Springer, Berlin, pp 1–32

    Google Scholar 

  • Chen CW (2007) Streptomyces linear plasmids: replication and telomeres. In: Meinhardt F, Klassen R (eds) Microbial linear plasmids. Springer, Berlin, pp 33–61

    Chapter  Google Scholar 

  • Crossman LC (2005) Plasmid replicons of Rhizobium. Biochem Soc Trans 33:157–158

    Article  CAS  PubMed  Google Scholar 

  • Das S, Ward LR, Burke C (2008) Prospects of using marine actinobacteria as probiotics in aquaculture. Appl Microbiol Biotechnol 81(3):419–429

    Article  CAS  PubMed  Google Scholar 

  • Demain AL (1999) Pharmaceutically active secondary metabolites of microorganisms. Appl Microbiol Biotechnol 52(4):455–463

    Article  CAS  PubMed  Google Scholar 

  • Demergasso C, Casamayor EO, Chong G, Galleguillos P, Escudero L, Pedrós-Alió C (2004) Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama Desert, Northern Chile. FEMS Microbiol Ecol 48(1):57–69

    Article  CAS  PubMed  Google Scholar 

  • Dib JR, Angelov A, Liebl W, Döbber J, Voget S, Schuldes J, Daniel R (2015) Complete genome sequence of the linear plasmid pJD12 hosted by Micrococcus sp. D12, isolated from a high-altitude volcanic lake in Argentina. Genome Announc 3(3): e00627-15

    Google Scholar 

  • Dib JR, Liebl W, Wagenknecht M, Farías ME, Meinhardt F (2013) Extrachromosomal genetic elements in Micrococcus. Appl Microbiol Biotechnol 97(1):63–75

    Article  CAS  PubMed  Google Scholar 

  • Dib JR, Motok J, Fernandez Zenoff V, Ordoñez O, Farías ME (2008) Occurrence of resistance to antibiotics, UV-B and arsenic in bacteria isolated from extreme environments in high altitude (above 4400 m) Andean wetlands. Curr Microbiol 56(5):510–517

    Article  CAS  PubMed  Google Scholar 

  • Dib JR, Perez MF, Schuldes J, Poehlein A, Wagenknecht M, Farías ME, Daniel R (2018) Complete genome sequences of pLMA1 and pLMA7, two large linear plasmids of Micrococcus strains isolated from a high-altitude lake in Argentina. Genome Announc 6(8): e00010-18

    Google Scholar 

  • Dib JR, Schuldes J, Thürmer A, Farias ME, Daniel R, Meinhardt F (2013a) Complete genome sequence of pAP13, a large linear plasmid of a Brevibacterium strain isolated from a saline lake at 4,200 meters above sea level in Argentina. Genome Announc 1(6): e00878-13

    Google Scholar 

  • Dib JR, Schuldes J, Thürmer A, Farias ME, Daniel R, Meinhardt F (2013b) First complete sequence of a giant linear plasmid from a Micrococcus strain isolated from an extremely high-altitude lake. Genome Announc 1(6): e00885-13

    Google Scholar 

  • Dib JR, Wagenknecht M, Farías ME, Meinhardt F (2015) Strategies and approaches in plasmidome studies—uncovering plasmid diversity disregarding of linear elements? Front Microbiol 6:463

    Article  PubMed  PubMed Central  Google Scholar 

  • Dib JR, Wagenknecht M, Hill RT, Farías ME, Meinhardt F (2010a) First report of linear megaplasmids in the genus Micrococcus. Plasmid 63(1):40–45

    Article  CAS  PubMed  Google Scholar 

  • Dib JR, Wagenknecht M, Hill RT, Farías ME, Meinhardt F (2010b) Novel linear megaplasmid from Brevibacterium sp. isolated from extreme environment. J Basic Microbiol 50(3):280–284

    Article  CAS  PubMed  Google Scholar 

  • Dib JR, Weiss A, Neumann A, Ordoñez O, Estévez MC, Farías ME (2009) Isolation of bacteria from remote high altitude Andean wetlands able to grow in the presence of antibiotics. Recent Pat Antiinfect Drug Discov 4(1):66–76

    Article  CAS  PubMed  Google Scholar 

  • Dworkin MS, Schwan TG, Anderson DE (2002) Tick-borne relapsing fever in North America. Med Clin 86(2):417–433

    Google Scholar 

  • Embley TM, Stackebrandt E (1994) The molecular phylogency and systematics of the actinomycetes. Annu Rev Microbiol 48(1):257–289

    Article  CAS  PubMed  Google Scholar 

  • Farías ME, Rascovan N, Toneatti DM, Albarracín VH, Flores MR, Poiré DG, Collavino MM, Aguilar OM, Vazquez MP, Polerecky L (2013) The discovery of stromatolites developing at 3570 m above sea level in a high-altitude volcanic lake Socompa, Argentinean Andes. PLoS One 8(1):e53497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fetzner S, Kolkenbrock S, Parschat K (2007) Catabolic linear plasmids. In: Meinhardt F, Klassen R (eds) Microbial linear plasmids. Springer, Berlin, pp 63–98

    Chapter  Google Scholar 

  • Flores MR, Ordoñez OF, Maldonado MJ, Farías ME (2009) Isolation of UV-B resistant bacteria from two high altitude Andean lakes (4,400 m) with saline and non saline conditions. J Gen Appl Microbiol 55(6):447–458

    Article  CAS  PubMed  Google Scholar 

  • Francis I, Gevers D, Karimi M, Holsters M, Vereecke D (2007) Linear plasmids and phytopathogenicity. In: Meinhardt F, Klassen R (eds) Microbial linear plasmids. Springer, Berlin, pp 99–116

    Chapter  Google Scholar 

  • Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732

    Article  CAS  PubMed  Google Scholar 

  • Gil R, Sabater-Muñoz B, Perez-Brocal V, Silva FJ, Latorre A (2006) Plasmids in the aphid endosymbiont Buchnera aphidicola with the smallest genomes: a puzzling evolutionary story. Gene 370:17–25

    Article  CAS  PubMed  Google Scholar 

  • Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3(9):679

    Article  CAS  PubMed  Google Scholar 

  • Griffiths AJ (1995) Natural plasmids of filamentous fungi. Microbiol Rev 59(4):673–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halary S, Leigh JW, Cheaib B, Lopez P, Bapteste E (2010) Network analyses structure genetic diversity in independent genetic worlds. Proc Natl Acad Sci U S A 107(1):127–132

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa T, Otake N, Yonehara H, Tanaka T, Sakaguchi K (1979) Isolation and characterization of plasmids from Streptomyces. J Antibiot 32(12):1348–1350

    Article  CAS  Google Scholar 

  • Hertwig S (2007) Linear plasmids and prophages in Gram-negative bacteria. In: Meinhardt F, Klassen R (eds) Microbial linear plasmids. Berlin: Springer, pp 141–162

    Chapter  Google Scholar 

  • Heuer H, Abdo Z, Smalla K (2008) Patchy distribution of flexible genetic elements in bacterial populations mediates robustness to environmental uncertainty. FEMS Microbiol Ecol 65:361–371

    Article  CAS  PubMed  Google Scholar 

  • Hinnebusch J, Barbour AG (1991) Linear plasmids of Borrelia burgdorferi have a telomeric structure and sequence similar to those of a eukaryotic virus. J Bacteriol 173(22):7233–7239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinnebusch J, Bergstrom S, Barbour AG (1990) Cloning and sequence analysis of linear plasmid telomeres of the bacterium Borrelia burgdorferi. Mol Microbiol 4(5):811–818

    Article  CAS  PubMed  Google Scholar 

  • Hinnebusch J, Tilly K (1993) Linear plasmids and chromosomes in bacteria. Mol Microbiol 10(5):917–922

    Article  CAS  PubMed  Google Scholar 

  • Jerke K, Nakatsu CH, Beasley F, Konopka A (2008) Comparative analysis of eight Arthrobacter plasmids. Plasmid 59(2):73–85

    Article  CAS  PubMed  Google Scholar 

  • Kalkus J, Reh M, Schlegel HG (1990) Hydrogen autotrophy of Nocardia opaca strains is encoded by linear megaplasmids. Microbiology 136(6):1145–1151

    CAS  Google Scholar 

  • Kav AB, Sasson G, Jami E, Doron-Faigenboim A, Benhar I, Mizrahi I (2012) Insights into the bovine rumen plasmidome. Proc Natl Acad Sci U S A 109(14):5452–5457

    Article  CAS  PubMed Central  Google Scholar 

  • Keen CL, Mendelovitz S, Cohen G, Aharonowitz Y, Roy KL (1988) Isolation and characterization of a linear DNA plasmid from Streptomyces clavuligerus. Mol Gen Genet 212(1):172–176

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi Y, Hirai K, Gunge N, Hishinuma F (1985) Hairpin plasmid—a novel linear DNA of perfect hairpin structure. EMBO J 4(7):1881–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinashi H (2011) Giant linear plasmids in Streptomyces: a treasure trove of antibiotic biosynthetic clusters. J Antibiot 64:19–25

    Article  CAS  Google Scholar 

  • Klassen R, Meinhardt F (2007) Linear protein-primed replicating plasmids in eukaryotic microbes. In: Meinhardt F, Klassen R (eds) Microbial linear plasmids. Berlin: Springer, pp 187–226

    Google Scholar 

  • Koonin EV, Wolf YI (2008) Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 36(21):6688–6719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurth D, Amadio A, Ordoñez OF, Albarracín VH, Gärtner W, Farías ME (2017) Arsenic metabolism in high altitude modern stromatolites revealed by metagenomic analysis. Sci Rep 7(1):1024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M, Fernandes C, Dosanjh M (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci U S A 103(42):15582–15587

    Article  PubMed  PubMed Central  Google Scholar 

  • Medema MH, Trefzer A, Kovalchuk A, van den Berg M, Müller U, Heijne W, Bovenberg RA (2010) The sequence of a 1.8-Mb bacterial linear plasmid reveals a rich evolutionary reservoir of secondary metabolic pathways. Genome Biol Evol 2:212–224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meinhardt F, Kempken F, Kämper J, Esser K (1990) Linear plasmids among eukaryotes: fundamentals and application. Curr Genet 17(2):89–95

    Article  CAS  PubMed  Google Scholar 

  • Meinhardt F, Klassen R (2007) Microbial linear plasmids, vol 7. Springer, Berlin

    Book  Google Scholar 

  • Meinhardt F, Schaffrath R, Larsen M (1997) Microbial linear plasmids. Appl Microbiol Biotechnol 47:329–336

    Article  CAS  PubMed  Google Scholar 

  • Miller SC, Porcella SF, Raffel SJ, Schwan TG, Barbour AG (2013) Large linear plasmids of Borrelia species that cause relapsing fever. J Bacteriol 195(16):3629–3639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novick RP (2003) Mobile genetic elements and bacterial toxinoses: the superantigen-encoding pathogenicity islands of Staphylococcus aureus. Plasmid 49:93–105

    Article  CAS  PubMed  Google Scholar 

  • Ordoñez OF, Flores MR, Dib JR, Paz A, Farías ME (2009) Extremophile culture collection from Andean lakes: extreme pristine environments that host a wide diversity of microorganisms with tolerance to UV radiation. Microb Ecol 58(3):461–473

    Article  PubMed  Google Scholar 

  • Overhage J, Sielker S, Homburg S, Parschat K, Fetzner S (2005) Identification of large linear plasmids in Arthrobacter spp. encoding the degradation of quinaldine to anthranilate. Microbiology 151(2):491–500

    Article  CAS  PubMed  Google Scholar 

  • Picardeau M, Vincent V (1997) Characterization of large linear plasmids in mycobacteria. J Bacteriol 179(8):2753–2756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pring DR, Levings CR, Hu WWL, Timothy DH (1977) Unique DNA associated with mitochondria in the “S”-type cytoplasm of male-sterile maize. Proc Natl Acad Sci U S A 74(7):2904–2908

    Article  CAS  Google Scholar 

  • Rascovan N, Maldonado J, Vazquez MP, Farías ME (2016) Metagenomic study of red biofilms from Diamante Lake reveals ancient arsenic bioenergetics in haloarchaea. ISME J 10(2):299–309

    Article  CAS  PubMed  Google Scholar 

  • Rasuk MC, Kurth D, Flores MR, Contreras M, Novoa F, Poire D, Farias ME (2014) Microbial characterization of a gypsum endoevaporitic ecosystem in Salar de Llamara Chile. Microb Ecol 68(3):483–494

    Article  CAS  PubMed  Google Scholar 

  • Rasuk MC, Kurth D, Flores MR, Contreras M, Novoa F, Poire D, Farias ME (2015) Bacterial diversity in microbial mats and sediments from Atacama Desert. Microb Ecol 71(1):44–56

    Article  PubMed  CAS  Google Scholar 

  • Ravel J, Schrempf H, Hill RT (1998) Mercury resistance is encoded by transferable giant linear plasmids in two Chesapeake Bay Streptomyces strains. Appl Environ Microbiol 64:3383–3388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravel J, Wellington EM, Hill RT (2000) Interspecific transfer of Streptomyces giant linear plasmids in sterile amended soil microcosms. Appl Environ Microbiol 66(2):529–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saint Girons I, Old IG, Davidson BE (1994) Molecular biology of the Borrelia, bacteria with linear replicons. Microbiology 140(8):1803–1816

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi K (1990) Invertrons, a class of structurally and functionally related genetic elements that includes linear DNA plasmids, transposable elements, and genomes of adeno-type viruses. Microbiol Rev 54(1):66–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrempf H (2001) Recognition and degradation of chitin by streptomycetes. Antonie Van Leeuwenhoek 79(3–4):285–289

    Article  CAS  PubMed  Google Scholar 

  • Sekine M, Tanikawa S, Omata S, Saito M, Fujisawa T, Tsukatani N, Nishiko R (2006) Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4. Environ Microbiol 8(2):334–346

    Article  CAS  PubMed  Google Scholar 

  • Shimizu S, Kobayashi H, Masai E, Fukuda M (2001) Characterization of the 450-kb linear plasmid in a polychlorinated biphenyl degrader, Rhodococcus sp. strain RHA1. Appl Environ Microbiol 67(5):2021–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stecker C, Johann A, Herzberg C, Averhoff B, Gottschalk G (2003) Complete nucleotide sequence and genetic organization of the 210-kilobase linear plasmid of Rhodococcus erythropolis BD2. J Bacteriol 185(17):5269–5274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stinear TP, Hong H, Frigui W, Pryor MJ, Brosch R, Garnier T, Cole ST (2005) Common evolutionary origin for the unstable virulence plasmid pMUM found in geographically diverse strains of Mycobacterium ulcerans. J Bacteriol 187(5):1668–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stinear TP, Pryor MJ, Porter JL, Cole ST (2005) Functional analysis and annotation of the virulence plasmid pMUM001 from Mycobacterium ulcerans. Microbiology 151(3):683–692

    Article  CAS  PubMed  Google Scholar 

  • Takarada H, Sekine M, Hosoyama A (2009) Rhodococcus opacus B4, complete genome. NCBI reference sequence: NC_012522.1. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/nuccore/NC_012522. Accessed 25 Aug, 2019

  • Taylor DE, Gibreel A, Tracz DM, Lawley TD (2004) Antibiotic resistance plasmids. In: Plasmid biology. American Society of Microbiology Press, Washington, DC, pp 473–492

    Google Scholar 

  • Top EM, Springael D (2003) The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 14(3):262–269

    Article  CAS  PubMed  Google Scholar 

  • Turmel M, Bellemare G, Lee RW, Lemieux C (1986) A linear DNA molecule of 5.9 kilobase-pairs is highly homologous to the chloroplast DNA in the green alga Chlamydomonas moewusii. Plant Mol Biol 6(5):313–319

    Article  CAS  PubMed  Google Scholar 

  • Van der Meer JR, Sentchilo V (2003) Genomic islands and the evolution of catabolic pathways in bacteria. Curr Opin Biotechnol 14:248–254

    Article  PubMed  CAS  Google Scholar 

  • Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71(3):495–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagenknecht M, Dib JR, Thürmer A, Daniel R, Farías ME, Meinhardt F (2010) Structural peculiarities of linear megaplasmid, pLMA1, from Micrococcus luteus interfere with pyrosequencing reads assembly. Biotechnol Lett 32:1853–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagenknecht M, Meinhardt F (2011a) Copy number determination, expression analysis of genes potentially involved in replication, and stability assays of pAL1—the linear megaplasmid of Arthrobacter nitroguajacolicus Rü61a. Microbiol Res 166:14–26

    Article  CAS  PubMed  Google Scholar 

  • Wagenknecht M, Meinhardt F (2011b) Replication-involved genes of pAL1, the linear plasmid of Arthrobacter nitroguajacolicus Rü61a—phylogenetic and transcriptional analysis. Plasmid 65:176–184

    Article  CAS  PubMed  Google Scholar 

  • Warren JM, Simmons MP, Wu Z, Sloan DB (2016) Linear plasmids and the rate of sequence evolution in plant mitochondrial genomes. Genome Biol Evol 8(2):364–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JC, Lessard PA, Sengupta N, Windsor SD, O’Brien XM, Bramucci M, Sinskey AJ (2007) TraA is required for megaplasmid conjugation in Rhodococcus erythropolis AN12. Plasmid 57(1):55–70

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Agencia Nacional de Promoción Científica y Tecnológica (Proyectos de Investigación Científica y Tecnológica (PICT) number 2014-1716) and by the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián Rafael Dib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wagenknecht, M., Pérez, M.F., Dib, J.R. (2020). Linear Megaplasmids Spreading in the Andean Resistome. In: Farías, M. (eds) Microbial Ecosystems in Central Andes Extreme Environments. Springer, Cham. https://doi.org/10.1007/978-3-030-36192-1_18

Download citation

Publish with us

Policies and ethics