Skip to main content

An Integrated Transcriptomic, Proteomic, and Metabolomic Approach to Unravel the Molecular Mechanisms of Metal Stress Tolerance in Plants

  • Chapter
  • First Online:
Plant-Metal Interactions

Abstract

Industrialization coupled with modern agricultural practices is resulting in heavy metal contamination of both our terrestrial and aquatic systems very rapidly. Metal stress induces a number of morphological, physiological, and genetic defects and thus limits plant growth and productivity. Further, metal stress causes nutritional and water stresses besides oxidative damage in plants. But, plants have evolved diverse intricate mechanisms in order to cope with heavy metal toxicities. Undoubtedly, phytochelatins, metallothione in proteins, and several transcription factors play pivotal roles during metal detoxification and in plant survival under such metal toxicities. Recent advances in transcriptomic, proteomic, and metabolomic approaches have facilitated us to dissect out the complex mechanisms of metal accumulation/tolerance in different plants and their effective management. This book chapter summarizes transcriptomic, proteomic, and metabolomic changes associated with metal stress and how such an understanding can help in generating crop plants that are resilient to metal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahsan N, Lee DG, Kim KH, Alam I, Lee SH, Lee KW, Lee H, Lee BH (2010) Analysis of arsenic stress-induced differentially expressed proteins in rice leaves by two-dimensional gel electrophoresis coupled with mass spectrometry. Chemosphere 78:224–231

    Article  CAS  PubMed  Google Scholar 

  • Ahsan N, Nakamura T, Komatsu S (2012) Differential responses of microsomal proteins and metabolites in two contrasting cadmium (Cd)-accumulating soybean cultivars under Cd stress. Amino Acids 42:317–327

    Article  CAS  PubMed  Google Scholar 

  • Akashi K, Nishimura N, Ishida Y, Yokota A (2004) Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon. Biochem Bioph Res Commun 323:72–78

    Article  CAS  Google Scholar 

  • Al Mahmud J, Hasanuzzaman M, Nahar K, Rahman A, Hossain MS, Fujita M (2017) Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromium tolerance in Brassica juncea L. Ecotoxicol Environ Saf 144:216–226

    Article  PubMed  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals- concepts and applications. Chemosphere 91:869–881

    Article  CAS  PubMed  Google Scholar 

  • Alves M, Moes S, Jenö P, Pinheiro C, Passarinho J, Ricardo CP (2011) The analysis of Lupinusalbus root proteome revealed cytoskeleton altered features due to long-term boron deficiency. J Proteome 74:1351–1363

    Article  CAS  Google Scholar 

  • Anjum NA, Gill SS, Duarte AC, Pereira E, Ahmad I (2013) Silver nanoparticles in soil plant systems. J Nanopart Res 15:1–26. https://doi.org/10.1007/s11051-013-1896-7

    Article  Google Scholar 

  • Anjum NA, Hasanuzzaman M, Hossain MA, Thangavel P, Roychoudhury A, Gill SS, Rodrigo MAM, Adam V, Fujita M, Kizek R, Duarte AC, Pereira E, Ahmad I (2015) Jacks of metal/metalloid chelation trade in plants-an overview. Front Plant Sci 6:192. https://doi.org/10.3389/fpls.2015.00192

    Article  PubMed  PubMed Central  Google Scholar 

  • Arenhart RA, Lima JC, Pedron M, Carvalho FE, Silveira JA, Rosa SB, Caverzan A, Andrade CM, Schünemann M, Margis R, Margis-Pinheiro M (2013) Involvement of ASR genes in aluminium tolerance mechanisms in rice. Plant Cell Environ 36:52–67

    Article  CAS  PubMed  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal polluted soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Michael Lewis publishers, Boca Raton, pp 85–107

    Google Scholar 

  • Barcelo J, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13:1–37. https://doi.org/10.1080/01904169009364057

    Article  CAS  Google Scholar 

  • Bernhard WR, Kagi JH (1987) Purification and characterization of a typical cadmium-binding polypeptides from Zea mays. Experientia Suppl 52:309–315

    Article  CAS  PubMed  Google Scholar 

  • Bona E, Marsano M, Massa M, Cattaneo C, Cesaro P, Argese E, Toppi LS, Cavaletto M, Berta G (2011) Proteomic analysis as a tool for investigating arsenic stress in Pterisvittata roots colonized or not by arbuscular mycorrhizal symbiosis. J Proteome 74:1338–1350

    Article  CAS  Google Scholar 

  • Burkhead JL, Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182:799–816. https://doi.org/10.1111/j.1469-8137.2009.02846.x

    Article  CAS  PubMed  Google Scholar 

  • Carvajal M, Cooke DT, Clarkson DT (1996) Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function. Planta 199:372–381

    Article  CAS  Google Scholar 

  • Casterline JL, Barnett NM (1982) Cadmium-binding components in soybean plants. Plant Physiol 69:1004–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castrillo G, Sánchez-Bermejo E, de Lorenzo L, Crevillén P, Fraile-Escanciano A, Tc M, Mouriz A, Catarecha P, Sobrino-Plata J, Olsson S, Leo Del Puerto Y, Mateos I, Rojo E, Hernández LE, Jarillo JA, Piñeiro M, Paz-Ares J, Leyva A (2013) WRKY6 Transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. Plant Cell 25:2944–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Pan Y, Wang S, Ding Y, Yang W, Zhu C (2012) Overexpression of a protein disulfideisomerase-like protein from Methanothermobacter thermoautotrophicum enhances mercury tolerance in transgenic rice. Plant Sci 197:10–20

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zhi J, Zhang H, Li J, Zhao Q, Xu J (2017) Transcriptome analysis of Phytolaccaamericana L. in response to cadmium stress. PLoS One 12(9):e0184681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chia MA, Lombardi AT, Melão MGG, Parrish C (2015) Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae). Aquat Toxicol 160:87–95

    Article  CAS  PubMed  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  PubMed  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  PubMed  Google Scholar 

  • Collin VC, Eymery F, Genty B, Rey P, Havaux M (2008) Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal induced oxidative stress. Plant Cell Environ 31:244–8257

    CAS  PubMed  Google Scholar 

  • Cuypers A, Smeets K, Vangronsveld J (2009) Heavy metal stress in plants. In: Hirt H (ed) Plant stress biology: from genomics to systems biology. Wiley-VCH Verlag, Weinheim, pp 161–178

    Chapter  Google Scholar 

  • Dago A, Gonzalez I, Arino C, Diaz-Cruz JM, Esteban M (2014) Chemometrics applied to the analysis of induced phytochelatins in Hordeum vulgare plants stressed with various toxic non-essential metals and metalloids. Talanta 118:201–209. https://doi.org/10.1016/j.talanta.2013.09.058

    Article  CAS  PubMed  Google Scholar 

  • DalCorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 50:1268–1280

    Article  CAS  PubMed  Google Scholar 

  • DalCorso G, Fasani E, Furini A (2013) Recent advances in the analysis of metal hyperaccumulation and hypertolerance in plants using proteomics. Front Plant Sci 4:280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dalvi AA, Bhalerao SA (2013) Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Annals of Plant Sciences 2:362–368

    Google Scholar 

  • Duan GL, Hu Y, Lui WJ, Kneer R, Zhao FJ, Zhu YG (2011) Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grains. Environ Exp Bot 71:416–421. https://doi.org/10.1016/j.envexpbot.2011.02.016

    Article  CAS  Google Scholar 

  • Elbaz B, Shoshani-Knaani N, David-Assael O, Mizrachy-Dagri T, Mizrahi K, Saul H, Brook E, Berezin I, Shaul O (2006) High expression in leaves of the zinc hyperaccumulator Arabidopsis halleri of AhMHX, a homolog of an Arabidopsis thaliana vacuolar metal/proton exchanger. Plant Cell Environ 29:1179–1190

    Article  CAS  PubMed  Google Scholar 

  • Enger MD, Tesmer JG, Travis GL, Barham SS (1986) Clonal variation of cadmium response in human-tumor cell-lines. Am J Phys 250:C256–C263

    Article  CAS  Google Scholar 

  • Feleafel MN, Mirdad ZM (2013) Hazard and effects of pollution by lead on vegetable crops. J Agric Environ Ethic 26:547–567. https://doi.org/10.1007/s10806-012-9403-1

    Article  Google Scholar 

  • Freisinger E (2011) Structural features specific to plant metallothioneins. J Biol Inorg Chem 16:1035–1045. https://doi.org/10.1007/s00775-011-0801-z

    Article  CAS  PubMed  Google Scholar 

  • Führs H, Behrens C, Gallien S, Heintz D, Van Dorsselaer A, Braun HP, Horst WJ (2010) Physiological and proteomic characterization of manganese sensitivity and tolerance in rice (Oryza sativa) in comparison with barley (Hordeumvulgare). Ann Bot 105:1129–1140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fukao Y, Ferjani A, Tomioka R, Nagasaki N, Kurata R, Nishimori Y, Fujiwara M, Maeshima M (2011) iTRAQ analysis reveals mechanisms of growth defects due to excess zinc in Arabidopsis. Plant Physiol 155:1893–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabbrielli R, Pandolfini T, Espen L, Palandri MR (1999) Growth, peroxidase activity and cytological modifications in Pisum sativum seedlings exposed to Ni2+ toxicity. J Plant Physiol 155:639–645. https://doi.org/10.1016/s0176-1617(99)80066-2

    Article  CAS  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46. https://doi.org/10.1016/j.envexpbot.2012.04.006

    Article  CAS  Google Scholar 

  • Gao J, Sun L, Yang X, Liu JX (2013) Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfrediiHance. PLoS One 8:e64643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Luo M, Zhu Y, He Y, Wang Q, Zhang C (2015) Transcriptome sequencing and differential gene expression analysis in Viola yedoensis Makino (Fam. Violaceae) responsive to cadmium (Cd) pollution. Biochem Biophys Res Commun 459:60–65

    Article  CAS  PubMed  Google Scholar 

  • Gautam N, Verma PK, Verma S, Tripathi RD, Trivedi PK, Adhikari B (2012) Genome-wide identification of rice class I metallothionein gene: tissue expression patterns and induction in response to heavy metal stress. Funct Integr Genomics 12:635–647. https://doi.org/10.1007/s10142-012-0297-98

    Article  CAS  PubMed  Google Scholar 

  • Gekeler W, Grill E, Winnacker EL, Zenk MH (1989) Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins. Z Naturforsch 44:361–369

    Article  CAS  Google Scholar 

  • Gothberg A, Greger M, Holm K, Bengtsson BE (2004) Influence of nutrient levels on uptake and effects of mercury, cadmium, and lead in water spinach. J Environ Qual 33:1247–1255. https://doi.org/10.2134/jeq2004.1247

    Article  PubMed  Google Scholar 

  • Grill E, Gekeler W, Winnacker E-L, Zenk MH (1986) Homo-phytochelatins are heavy metal-binding peptides of homo-glutathione containing Fabales. FEBS Lett 205:47–50

    Article  CAS  Google Scholar 

  • Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamyl cysteine dipeptidyltranspeptidase (phytochelatin synthase). Proc Natl Acad Sci U S A 86:6838–6842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198. https://doi.org/10.1016/S0005-2736(00)00138-3

    Article  CAS  PubMed  Google Scholar 

  • Guo WJ, Bundithya W, Goldsbrough PB (2003) Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. New Phytol 159:369–381. https://doi.org/10.1046/j.1469-8137.2003.00813.x

    Article  CAS  PubMed  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11. https://doi.org/10.1093/jexbot/53.366.1

    Article  CAS  PubMed  Google Scholar 

  • Han FX, Sridhar BBM, Monts DL, Su Y (2004) Phytoavailability and toxicity of trivalent and hexavalent chromium to Brassica juncea. New Phytol 162:489–499. https://doi.org/10.1111/j.1469-8137.2004.01027.x

    Article  CAS  Google Scholar 

  • Han X, Yin H, Song X, Zhang Y, Liu M, Sang J, jiang J, Li J, Zhuo R (2016) Integration of small RNAs, degradome and transcriptome sequencing in hyperaccumulator Sedum alfredii uncovers a complex regulatory network and provides insights into cadmium phytoremediation. Plant Biotechnol J 14:1470–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassinen VH, Tervahauta AI, Schat H, Kärenlampi SO (2011) Plant metallothioneins-metal chelators with ROS scavenging activity? Plant Biol 13:225–232. https://doi.org/10.1111/j.1438-8677.2010.00398.x

    Article  CAS  PubMed  Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette ML, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765

    Article  CAS  PubMed  Google Scholar 

  • Higashimoto M, Isoyama N, Ishibashi S, Inoue M, Takiguchi M, Suzuki S, Ohnishi Y, Sato M (2009) Tissue-dependent preventive effect of metallothionein against DNA damage in dyslipidemic mice under repeated stresses of fasting or restraint. Life Sci 84:569–575

    Article  CAS  PubMed  Google Scholar 

  • Hossain Z, Komatsu S (2012) Contribution of proteomic studies towards understanding plant heavy metal stress response. Front Plant Sci 3:310

    PubMed  Google Scholar 

  • Hossain MA, Piyatida P, Jaime A, da Silva T, Fujita M (2012a) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot. https://doi.org/10.1155/2012/872875

    Article  CAS  Google Scholar 

  • Hossain Z, Hajika M, Komatsu S (2012b) Comparative proteome analysis of high and low cadmium accumulating soybeans under cadmium stress. Amino Acids 43:2393–2416

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Cheng Y, Guan Q, Liu D, Takano T, Liu S (2006). A metallothionein-like protein of rice (rgMT) functions in E. coli and its gene expression is induced by abiotic stresses. Biotechnol Lett 28:1749–1753

    Article  CAS  PubMed  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2009) Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int J Plant Prod 3:65–76

    CAS  Google Scholar 

  • Karin M, Cathala G, Nguyenhuu MC (1983) Expression and regulation of a human metallothionein gene carried on an autonomously replicating shuttle vector. Proc Natl Acad Sci U S A 80:4040–4044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MIR, Khan NA (2014) Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma 251:1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Kieffer P, Dommes J, Hoffmann L, Hausman JF, Renaut J (2008) Quantitative changes in protein expression of cadmium exposed poplar plants. Proteomics 8:2514–2430

    Article  CAS  PubMed  Google Scholar 

  • Kieffer P, Planchon S, Oufir M, Ziebel J, Dommes J, Hoffmann L (2009) Combining proteomics and metabolite analyses to unravel cadmium stress- response in poplar leaves. J Proteome Res 8:400–417

    Article  CAS  PubMed  Google Scholar 

  • Klapheck S, Chrost B, Starke J, Zimmermann H (1992) γ-Glutamylcysteinylserine: a new homologue of glutathione in plants of the family Poaceae. Bot Acta 105:174–179

    Article  CAS  Google Scholar 

  • Kondo N, lsobe M, Imai K, Goto T (1985) Synthesis of metallothionein-like peptides cadystin A and B occurring in a fission yeast, and their isomers. Agric Biol Chem 49:71–83

    CAS  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    Article  CAS  PubMed  Google Scholar 

  • Laureysens I, Blust R, De Temmerman L, Lemmens C, Ceulemans R (2004) Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations. Environ Pollut 131:485–494

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Bae DW, Kim SH, Han HJ, Liu X, Park HC, Lim CO, Lee SY, Chung WS (2010) Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. J Plant Physiol 167:161–168

    Article  CAS  PubMed  Google Scholar 

  • Leopold I, Gunther D, Schmidt J, Neumann D (1999) Phytochelatins and heavy metal tolerance. Phytochemistry 50:1323–1328

    Article  CAS  Google Scholar 

  • Lingua G, Bona E, Todeschini V, Cattaneo C, Marsano F, Berta G, Cavaletto M (2012) Effects of heavy metal and arbuscularmycorrhiza on the leaf proteome of a selected Poplar clone: a time course analysis. PLoS One 7:e38662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Wu H, Ji C, Wei L, Zhao J, Yu J (2013) An integrated proteomic and metabolomic study on the chronic effects of mercury in Suaeda salsa under an environmentally relevant salinity. PLoS One 8:e64041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Xu L, Wang Y, Shen H, Zhu X, Zhang K, Chen Y, Yu R, Limera C, Liu L (2015a) Transcriptome-wide analysis of chromium-stress responsive microRNAs to explore miRNA8 mediated regulatory networks in radish (Raphanus sativus L.). Sci Rep 5:14024

    Google Scholar 

  • Liu T, Zhu S, Tang Q, Tang S (2015b) Genome-wide transcriptomic profiling of ramie (Boehmeria nivea L. Gaud) in response to cadmium stress. Gene 558:131–137

    Article  CAS  PubMed  Google Scholar 

  • Llamas A, Ullrich CI, Sanz A (2000) Cd2+effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (Oryza sativa L.) roots. Plant Soil 219:21–28. https://doi.org/10.1023/A:1004753521646

    Article  CAS  Google Scholar 

  • Llamas A, Ullrich CI, Sanz A (2008) Ni2+ toxicity in rice: effect on membrane functionality and plant water content. Plant Physiol Biochem 46:905–910. https://doi.org/10.1016/j.plaphy.2008.05.006

    Article  PubMed  Google Scholar 

  • Loebus J, Leitenmaier B, Meissner D, Braha B, Krauss GJ, Dobritzsch D, Freisinger E (2013) The major function of a metallothionein from the aquatic fungus Heliscus lugdunensis is cadmium detoxification. J Inorg Biochem 127:253–260

    Article  CAS  PubMed  Google Scholar 

  • Lux A, Martinka M, Vaculık M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37. https://doi.org/10.1093/jxb/erq281

    Article  CAS  PubMed  Google Scholar 

  • Lv Y, Deng X, Quan L, Xia Y, Shen Z (2013) Metallothioneins BcMT1 and BcMT2 from Brassica campestris enhance tolerance to cadmium and copper and decrease production of reactive oxygen species in Arabidopsis thaliana. Plant Soil 367:507–519

    Article  CAS  Google Scholar 

  • Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68:1–13. https://doi.org/10.1016/j.envexpbot.2009.10.011

    Article  CAS  Google Scholar 

  • Maggio A, Joly RJ (1995) Effects of mercuric chloride on the hydraulic conductivity of tomato root systems (evidence for a channel-mediated water pathway). Plant Physiol 109:331–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malar S, Vikram SS, Favas PJC, Perumal V (2014) Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhorniacrassipes (Mart.)]. Bot Stud 55:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manara A (2012) Plant responses to heavy metal toxicity. In: Furini A (ed) Plants and heavy metals, Springer briefs in molecular science. Springer, Dordrecht, pp 27–53

    Chapter  Google Scholar 

  • Margoshes M, Valle BL (1957) A cadmium protein from equine kidney cortex. J Am Chem Soc 79:4813–4814

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London, pp 405–435

    Book  Google Scholar 

  • Mehes-Smith M, Nkongolo K, Cholewa E (2013) Coping mechanisms of plants to metal contaminated soil. In: Steven S (ed) Environmental change and sustainability, InTech Open, London, UK. https://doi.org/10.5772/55124.8

  • Mehra RK, Winge DR (1988) Cu(I) binding to the Saccharomyces pombe γ-glutamylpeptides varying in chain lengths. Arch Biochem Biophys 265:381–389

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Cózatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J, Schroeder JI (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54:249–259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meuwly P, Thibault P, Rauser WE (1993) γ-Glutamylcysteinyl glutamic acid; a new homologue of glutathione in maize seedlings exposed to cadmium. FEBS Lett 336:472–476

    Article  CAS  PubMed  Google Scholar 

  • Meuwly P, Thibault P, Schwan AL, Rauser WE (1995) Three families of thiol peptides are induced by cadmium in maize. Plant J 7:391–400

    Article  CAS  PubMed  Google Scholar 

  • Mir G, Domènech J, Huguet G, Guo WJ, Goldsbrough P, Atrian S, Molinas M (2004) A plant type 2 metallothionein (MT) from cork tissue responds to oxidative stress. J Exp Bot 55:2483–2493

    Article  CAS  PubMed  Google Scholar 

  • Montargès-Pelletier E, Chardot V, Echevarria G, Michot LJ, Bauer A, Morel JL (2008) Identification of nickel chelators in three hyperaccumulating plants: an X-ray spectroscopic study. Phytochemistry 69:1695–1709

    Article  PubMed  CAS  Google Scholar 

  • Morelli E, Scarano G (2001) Synthesis and stability of phytochelatins induced by cadmium and lead in the marine diatom Phaeodactylum tricornutum. Mar Environ Res 52:383–395. https://doi.org/10.1016/S0141-1136(01)00093-9

    Article  CAS  PubMed  Google Scholar 

  • Nadgorska-Socha A, Kafel A, Kandziora-Ciupa M, Gospodarek J, Zawisza-Raszka A (2013) Accumulation of heavy metals and antioxidant responses in Viciafaba plants grown on monometallic contaminated soil. Environ Sci Pollut Res 20:1124–1134

    Article  CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Rahmana A, Suzuki T, Fujita M (2016) Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through up-regulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicol Environ Saf 126:245–255

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nath S, Panda P, Mishra S, Dey M, Choudhury S, Sahoo L, Panda SK (2014) Arsenic stress in rice: redox consequences and regulation by iron. Plant Physiol Biochem 80:203–210

    Article  CAS  PubMed  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Iqbal M, Khan R, Syeed S, Khan NA (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci 3:1476–1489. https://doi.org/10.4236/ajps.2012.310178

    Article  CAS  Google Scholar 

  • Oono Y, Yazawa T, Kawahara Y, Kanamori H, Kobayashi F, Sasaki H, Mori S, Wu Z, Handa H, Itoh T, Matsumoto T (2014) Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in drought stress signal pathways in rice. PLoS One 9:e96946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oono Y, Yazawa T, Kanamori H, Sasaki H, Mori S, Handa H, Matsumoto T (2016) Genome-wide transcriptome analysis of cadmium stress in rice. BioMed Res Int 2016:9739505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Opdenakker K, Remans T, Keunen E, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to Cd or Cu excess leads to oxidative stress mediated alterations in MAP Kinase transcript levels. Environ Exp Bot 83:53–61

    Article  CAS  Google Scholar 

  • Pandey S, Rai R, Rai LC (2012) Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC7120 under arsenic stress. J Proteome 75:921–937

    Article  CAS  Google Scholar 

  • Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52:199–223

    Article  CAS  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548. https://doi.org/10.1046/j.1365-313X.2002.01442.x

    Article  CAS  PubMed  Google Scholar 

  • Peroza EA, Schmucki R, Guntert P, Freisinger E, Zerbe O (2009) The β-domain of wheat metallothionein: a metal binding domain with a distinctive structure. J Mol Biol 387:207–218

    Article  CAS  PubMed  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? and what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  PubMed  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants. The case for organic acids, amino acids, phytin and metallothioneins. Cell Biochem Biophys 31:19–48

    Article  CAS  PubMed  Google Scholar 

  • Rezvani M, Zaefarian F, Miransari M, Nematzadeh GA (2012) Uptake and translocation of cadmium and nutrients by Aeluropus littoralis. Arch Agron Soil Sci 58:1413–1425. https://doi.org/10.1080/03650340.2011.591385

    Article  CAS  Google Scholar 

  • Ritter A, Ubertini M, Romac S, Gaillard F, Delage L, Mann A, Cock JM, Tonon T, Correa JA, Potin P (2010) Copper stress proteomics highlights local adaptation of two strains of the model brown alga Ectocarpussiliculosus. Proteomics 10:2074–2088

    Article  CAS  PubMed  Google Scholar 

  • Robinson NJ, Urwin PE, Robinson PJ, Jackson PJ (1994) Gene expression in relation to metal toxicity and tolerance. In: Basra AS (ed) Stress-induced gene expression in plants. Harwood Academic Publisher, UK, pp 209–248

    Google Scholar 

  • Rodriguez-Celma J, Rellan-Alvarez R, Abadia A, Abadia J, Lopez- Millan AF (2010) Changes induced by two levels of cadmium toxicity in the 2-DE protein profile of tomato roots. J Proteome 73:1694–1706

    Article  CAS  Google Scholar 

  • Roosens NH, Bernard C, Leplae R, Verbruggen N (2004) Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens. FEBS Lett 577:9–16. https://doi.org/10.1016/j.febslet.2004.08.084

    Article  CAS  PubMed  Google Scholar 

  • Roosens NH, Leplae R, Bernard C, Verbruggen N (2005) Variations in plant metallothioneins: the heavy metal hyper accumulator Thlaspi caerulescens as a study case. Planta 222:716–729. https://doi.org/10.1007/s00425-005-0006-1

    Article  CAS  PubMed  Google Scholar 

  • Rucinska-Sobkowiak R (2016) Water relations in plants subjected to heavy metal stresses. Acta Physiol Plant 38:257. https://doi.org/10.1007/s11738-016-2277-5

    Article  CAS  Google Scholar 

  • Rucinska-Sobkowiak R, Nowaczyk G, KrzesÅ‚owska M, Rabeda I, Jurga S (2013) Water status and water diffusion transport in lupine roots exposed to lead. Environ Exp Bot 87:100–109. https://doi.org/10.1016/j.envexpbot.2012.09.012

    Article  CAS  Google Scholar 

  • Ruttkay-Nedecky B, Nejd L, Gumulec J, Zitka O, Masarik M, Eckschlager T, Stiborova M, Adam V, Kizek R (2013) The role of metallothionein in oxidative stress. Int J Mol Sci 14:6044–6066. https://doi.org/10.3390/ijms14036044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salt DE, Rauser WE (1995) Mg-ATP dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samson SLA, Gedamu L (1997) Molecular Analyses of Metallothionein Gene Regulation. Progress in Nucleic Acid Research and Molecular Biology 59:257–288

    Google Scholar 

  • Schneider T, Schellenberg M, Meyer S, Keller F, Gehrig P, Riedel K, Lee Y, Eberl L, Martinoia E (2009) Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeumvulgare L.) plants. Proteomics 9:2668–2677

    Article  CAS  PubMed  Google Scholar 

  • Semane B, Dupae J, Cuypers A, Noben JP, Tuomainen M, Tervahauta A, Sirpa K, Frank Van B, Karen S, Jaco V (2010) Leaf proteome responses of Arabidopsisthaliana exposed to mild cadmium stress. J Plant Physiol 167:247–254

    Article  CAS  PubMed  Google Scholar 

  • Seth CS, Chaturvedi PK, Misra V (2008) The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotoxicol Env Saf 71:76–85

    Article  CAS  Google Scholar 

  • Seth C, Remans T, Keunen E, Jozefczak M, Gielen H, Opdenakker K, Weyens N, Vangronsveld J, Cuypers A (2012) Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ 35:334–346. https://doi.org/10.1111/j.1365-3040.2011.02338.x

    Article  CAS  PubMed  Google Scholar 

  • Shameer K, Ambika S, Varghese SM, Karaba N, Udayakumar M, Sowdhamini R (2009) STIFDB – Arabidopsis stress-responsive transcription factor data base. Int J Plant Genomics 2009:583429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma I (2012) Arsenic induced oxidative stress in plants. Biologia 67:447–453. https://doi.org/10.2478/s11756-012-0024-y

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  PubMed  Google Scholar 

  • Sharmin SA, Alam I, Kim KH, Kim YG, Kim PJ, Bahk JD, Lee BH (2012) Chromium-induced physiological and proteomic alterations in roots of Miscanthussinensis. Plant Sci 187:113–126

    Article  CAS  PubMed  Google Scholar 

  • Shen ZG, Zhao FJ, McGrath SP (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ 20:898–906

    Article  CAS  Google Scholar 

  • Shiu SH, Shih MC, Li WH (2005) Transcription factor families have much higher expansion rates in plants than in animals. Plant Physiol 139:18–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla D, Kesari R, Tiwari M, Dwivedi S, Tripathi RD, Nath P, Trivedi PK (2013) Expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in Escherchia coli and Arabidopsis enhances heavy metal(loid)s accumulation. Protoplasma 250:1263–1272. https://doi.org/10.1007/s00709-013-0508-9

    Article  CAS  PubMed  Google Scholar 

  • Silva P, Matos M (2016) Assessment of the impact of aluminum on germination, early growth and free proline content in Lactuca sativa L. Ecotoxicol Environ Saf 131:151–156

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2015) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    PubMed  Google Scholar 

  • Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metal in transgenic microalgae. Plant Cell 14:2837–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobrino-Plata J, Ortega-Villasante C, Flores-Cáceres ML, Escobar C, Del Campo FF, Hernández LE (2009) Differential alterations of antioxidant defenses as bioindicators of mercury and cadmium toxicity in alfalfa. Chemosphere 77:946–954. https://doi.org/10.1016/j.chemosphere.2009.08.007

    Article  CAS  PubMed  Google Scholar 

  • Sobrino-Plata J, Meyssen D, Cuypers A, Escobar C, Hernández LE (2014) Glutathione is a key antioxidant metabolite to cope with mercury and cadmium stress. Plant Soil 377:369–381

    Article  CAS  Google Scholar 

  • Solanki R, Dhankhar R (2011) Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia 66:195–204. https://doi.org/10.2478/s11756-011-0005-6

    Article  CAS  Google Scholar 

  • Song WY, Mendoza-Cozatl DG, Lee Y, Schroeder JI, Ahn SN, Lee H, Wicker T, Martinoia E (2014) Phytochelatin-metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis. Plant Cell Environ 37:1192–1201. https://doi.org/10.1111/pce.12227

    Article  CAS  PubMed  Google Scholar 

  • Srivalli S, Khanna-Chopra R (2008) Delayed wheat flag leaf senescence due to the removal of spikelets is associated with increased activities of leaf antioxidant enzymes, reduced glutathione/oxidized glutathione ratio and oxidative damage to mitochondrial proteins. Plant Physiol Biochem 47:663–670. https://doi.org/10.1016/j.plaphy.2009.03.015

    Article  CAS  Google Scholar 

  • Subashchandrabose SR, Wang L, Venkateswarlu K, Naidu R, Megharaj M (2017) Interactive effects of PAHs and heavy metal mixtures on oxidative stress in Chlorella sp. MM3 as determined by artificial neural network and genetic algorithm. Algal Res 21:203–212

    Article  Google Scholar 

  • Sun JY, Shen ZG (2007) Effects of Cd stress on photosynthetic characteristics and nutrient uptake of cabbages with different Cd-tolerance. Chin J Appl Ecol 18:2605–2610

    CAS  Google Scholar 

  • Sytar O, Kumar A, Latowski D, Kuczynska P, StrzaÅ‚ka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxifcation mechanisms in plants. Acta Physiol Plant 385:985–999

    Article  CAS  Google Scholar 

  • Takahashi H, Kawakatsu T, Wakasa Y, Hayashi S, Takaiwa F (2012) A rice transmembrane bZIP transcription factor, OsbZIP39, regulates the endoplasmic reticulum stress response. Plant Cell Physiol 53:144–153

    Article  CAS  PubMed  Google Scholar 

  • Thangavel P, Long S, Minocha R (2007) Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension cultures under cadmium and zinc stress. Plant Cell Tissue Org Cult 88:201–216. https://doi.org/10.1007/s11240-006-9192-1

    Article  CAS  Google Scholar 

  • Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Usman K, Mienda BS, Idris S, Idris ZL (2015) Type-4 plant metallothioneins (MT4): an overview of Hordeum vulgare. Int J Tech Res Appl 3:269–271

    Google Scholar 

  • Vaculık M, Konlechner C, Langer I, Adlassnig W, Puschenreiter M, Lux A, Hauser MT (2012) Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities. Environ Pollut 163:117–126. https://doi.org/10.1016/j.envpol.2011.12.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vannini C, Marsoni M, Domingo G, Antognoni F, Biondi S, Bracale M (2009) Proteomic analysis of chromate-induced modifications in Pseudokirchneriellasubcapitata. Chemosphere 76:1372–1379

    Article  CAS  PubMed  Google Scholar 

  • Vasak M, Hasler DW (2000) Metallothioneins: new functional and structural insights. Curr Opin Chem Biol 4:177–183

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776. https://doi.org/10.1111/j.1469-8137.2008.02748.x

    Article  CAS  PubMed  Google Scholar 

  • Viehweger K (2014) How plants cope with heavy metals. Bot Stud 55:1–12

    Article  CAS  Google Scholar 

  • Walliwalagedara C, van Keulen H, Willard B, Wei R (2012) Differential proteome analysis of Chlamydomonasreinhardtii response to arsenic exposure. Am J Plant Sci 3:764–772

    Article  CAS  Google Scholar 

  • Wang HC, Wu JS, Chia JC, Yang CC, Wu YJ, Juang RH (2009) Phytochelatin synthase is regulated by protein phosphorylation at a threonine residue near its catalytic site. J Agric Food Chem 57:7348–7355. https://doi.org/10.1021/jf9020152

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Hu H, Zhu LY, Li XX (2012) Response to nickel in the proteome of the metal accumulator plant Brassica juncea. J Plant Interact 7:230–237

    Article  CAS  Google Scholar 

  • Wang R, Gao F, Guo BG, Huang JC, Wang L, Zhou YJ (2013) Short-term chromium-stress-induced alterations in the maize leaf proteome. Int J Mol Sci 14:11125–11144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Xu L, Shen H, Wang J, Liu W, Zhu X, Wang R, Sun X, Liu L (2015) Metabolomic analysis with GC-MS to reveal potential metabolites and biological pathways involved in Pb and Cd stress response of radish roots. Sci Rep 5:18296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witters N, Van Slycken S, Meers E, Adriaensen K, Meiresonne L, Tack FMG, Vangronsveld J, Thewys T (2009) Short-rotation coppice of willow for phytoremediation of a metal-contaminated agricultural area: a sustainability assessment. Bioenergy Res 2:144–152

    Article  Google Scholar 

  • Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, Rockman MV, Romano LA (2003) The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20:1377–1419

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Chen C, Du J, Liu H, Cui Y, Zhang Y, He Y, Wang Y, Chu C, Feng Z, Li J, Ling HQ (2012) Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiol 158:790–800. https://doi.org/10.1104/pp.111.190983

    Article  CAS  PubMed  Google Scholar 

  • Wu CS, Chen DY, Chang CF, Li MJ, Hung KY, Chen LJ, Chen PW (2014) The promoter and the 50-untranslated region of rice metallothionein OsMT2b gene are capable of directing high-level gene expression in germinated rice embryos. Plant Cell Rep 33:793–806

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zhu Y, Ge Q, Li Y, Sun J, Zhang Y, Liu X (2012) Comparative physiological responses of Solanumnigrum and Solanumtorvum to cadmium stress. New Phytol 196:125–138

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Wang Y, Liu W, Wang J, Zhu X, Zhang K, Yu R, Wang R, Xie Y, Zhang W, Gong Y, Liu L (2015) De novo sequencing of root transcriptome reveals complex cadmium-responsive regulatory networks in radish (Raphanussativus L.). Plant Sci 236:313–323

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara T, Hodoshima H, Miyano Y, Shoji K, Shimada H, Goto F (2006) Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants. Plant Cell Rep 25:365–373. https://doi.org/10.1007/s00299-005-0092-3

    Article  CAS  PubMed  Google Scholar 

  • Yu L-J, Luo Y-F, Liao B, Xie L-J, Chen L, Xiao S, Li JT, Hu S, Shu W-S (2012) Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryzasativa). New Phytol 195:97–112

    Article  CAS  PubMed  Google Scholar 

  • Yu R, Li D, Du X, Xia S, Liu C, Shi G (2017) Comparative transcriptome analysis reveals key cadmium transport-related genes in roots of two pakchoi (Brassica rapa L. ssp. chinensis) cultivars. BMC Genomics 18:587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yusuf M, Fariduddin Q, Ahmad A (2012) 24-Epibrassinolide modulates growth, nodulation, antioxidant system, and osmolyte in tolerant and sensitive varieties of Vignaradiata under different levels of nickel: a shotgun approach. Plant Physiol Biochem 57:143–153

    Article  CAS  PubMed  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants- a review. Gene 179:21–30

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Lian C, Shen Z (2009) Proteomic identification of small, copper-responsive proteins in germinating embryos of Oryzasativa. Ann Bot 103:923–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Sun YL, Cui SX, Chen M, Yang HM, Liu HM, Chai TY, Huang F (2011) Cd induced changes in leaf proteome of the hyperaccumulator plant Phytolaccaamericana. Chemosphere 85:56–66

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Yao W, Wang S, Wang X, Jiang T (2014) The metallothionein gene, TaMT3, from Tamarix androssowii confers Cd2+ tolerance in tobacco. Int J Mol Sci 15:10398–10409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimeri AM, Dhankher OP, McCaig B, Meagher RB (2005) The plant MT1 metallothioneins are stabilized by binding cadmiums and are required for cadmium tolerance and accumulation. Plant Mol Biol 58:839–855. https://doi.org/10.1007/s11103-005-8268-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

PBK is grateful to the CSIR, New Delhi, for providing Emeritus Scientist Fellowship.

Conflict of Interest

Authors declare that they do not have any conflict of interests regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parihar, P. et al. (2019). An Integrated Transcriptomic, Proteomic, and Metabolomic Approach to Unravel the Molecular Mechanisms of Metal Stress Tolerance in Plants. In: Srivastava, S., Srivastava, A., Suprasanna, P. (eds) Plant-Metal Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-20732-8_1

Download citation

Publish with us

Policies and ethics