Skip to main content

Construction of Partial Differential Equations with Conditional Symmetries

  • Chapter
  • First Online:
Integrability, Supersymmetry and Coherent States

Abstract

Nonlinear PDEs having given conditional symmetries are constructed. They are obtained starting from the invariants of the conditional symmetry generator and imposing the extra condition given by the characteristic of the symmetry. Series of examples of new equations, constructed starting from the conditional symmetries of Boussinesq, are presented and discussed thoroughly to show and clarify the methodology introduced.

Dedicated to our colleague and friend, Véronique Hussin, on her 60th anniversary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972)

    MATH  Google Scholar 

  2. D.J. Arrigo, B.P. Ashley, S.J. Bloomberg, T.W. Deatherage, Nonclassical symmetries of a nonlinear diffusion–convection/wave equation and equivalents systems. Symmetry 8, 140 (2016)

    Article  MathSciNet  Google Scholar 

  3. N. Bîlă, J. Niesen, On a new procedure for finding nonclassical symmetries. J. Symb. Comput. 38, 1523–1533 (2004)

    Article  MathSciNet  Google Scholar 

  4. G.W. Bluman, Use and construction of potential symmetries. Math. Comput. Model. 18, 1–14 (1993)

    Article  MathSciNet  Google Scholar 

  5. G.W. Bluman, J.D. Cole, The general similarity solutions of the heat equation. J. Math. Mech. 18, 1025–1042 (1969)

    MathSciNet  MATH  Google Scholar 

  6. G.W. Bluman, S. Kumei, Symmetries of Differential Equations (Springer, New York, 2002)

    MATH  Google Scholar 

  7. G.W. Bluman, S. Kumei, G.J. Reid, New classes of symmetries for partial differential equations. J. Math. Phys. 29, 806–811 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  8. J. Boussinesq, Théorie de l’intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire. Comptes Rendus 72, 755–759 (1871)

    MATH  Google Scholar 

  9. J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 7, 55–108 (1872)

    MathSciNet  MATH  Google Scholar 

  10. D. Catalano Ferraioli, Nonlocal aspects of λ-symmetries and ODEs reduction. J. Phys. A: Math. Theor. 40, 5479–5489 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  11. T. Chaolu, G. Bluman, An algorithmic method for showing existence of nontrivial nonclassical symmetries of partial differential equations without solving determining equations. J. Math. Anal. Appl. 411, 281–296 (2014)

    Article  MathSciNet  Google Scholar 

  12. P.A. Clarkson, Nonclassical symmetry reductions of the Boussinesq equation. Chaos Solitons Fractals 5, 2261–2301 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  13. P.A. Clarkson, M.D. Kruskal, New similarity reductions of the Boussinesq equation. J. Math. Phys. 30, 2201–2213 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  14. P.A. Clarkson, E.L. Mansfield, Symmetry reductions and exact solutions of shallow water wave equations. Acta Appl. Math. 39, 245–276 (1995)

    Article  MathSciNet  Google Scholar 

  15. W.I. Fushchich, Conditional symmetry of the equations of nonlinear mathematical physics. Ukr. Math. J. 43, 1350–1364 (1991)

    Article  MathSciNet  Google Scholar 

  16. W.I. Fushchich, R.Z. Zhdanov, Conditional symmetry and reduction of partial differential equations. Ukr. Math. J. 44, 875–886 (1993)

    Article  MathSciNet  Google Scholar 

  17. R.K. Gupta, M. Singh, Nonclassical symmetries and similarity solutions of variable coefficient coupled KdV system using compatibility method. Nonlinear Dyn. 87, 1543–1552 (2017)

    Article  MathSciNet  Google Scholar 

  18. M.S. Hashemi, M.C. Nucci, Nonclassical symmetries for a class of reaction-diffusion equations: the method of heir-equations J. Nonlinear Math. Phys. 20, 44–60 (2013)

    Article  MathSciNet  Google Scholar 

  19. R. Hernández–Heredero, E.G. Reyes, Nonlocal symmetries and a Darboux transformation for the Camassa-Holm equation. J. Phys. A: Math. Theor. 42, 182002 (2009)

    Google Scholar 

  20. L. Ji, C.Z. Qu, S. Shen, Conditional Lie-Backlund symmetry of evolution system and application for reaction-diffusion system. Stud. Appl. Math. 133, 118–149 (2014)

    Article  MathSciNet  Google Scholar 

  21. I.S. Krasil’shchik, A.M. Vinogradov, Nonlocal trends in the geometry of differential equations: symmetries, conservation laws, and Bäcklund transformations. Symmetries of partial differential equations, Part I. Acta Appl. Math. 15, 161–209 (1989)

    Google Scholar 

  22. D. Levi, P. Winternitz, Nonclassical symmetry reduction: example of the Boussinesq equation. J. Phys. A: Math. Gen. 22, 2915–2924 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  23. D. Levi, M.C. Nucci, M.A. Rodríguez, λ symmetries for the reduction of continuous and discrete equations. Acta Appl. Math. 122, 311–321 (2012)

    Google Scholar 

  24. C. Muriel, J.L. Romero, New methods of reduction for ordinary differential equations. IMA J. Appl. Math. 66, 111–125 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  25. M.C. Nucci, P.A. Clarkson, The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh-Nagumo equation. Phys. Lett. A 164, 49–56 (1992)

    Google Scholar 

  26. P.J. Olver, Applications of Lie Groups to Differential Equations (Springer, New York, 1993)

    Book  Google Scholar 

  27. R.O. Popovych, N.M. Ivanova, O.O. Vaneeva, Potential nonclassical symmetries and solutions of fast diffusion equation. Phys. Lett. A 362, 166–173 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  28. G.J. Reid, A.D. Wittkopf, A. Boulton, Reduction of systems of nonlinear partial differential equations to simplified involutive forms. Eur. J. Appl. Math. 7, 604–635 (1996)

    Article  MathSciNet  Google Scholar 

  29. E.G. Reyes, Nonlocal symmetries and the Kaup-Kupershmidt equation. J. Math. Phys. 46, 073507 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  30. E.G. Reyes, On nonlocal symmetries of some shallow water equations. J. Phys. A: Math. Theor. 40, 4467–4476 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  31. P.M.M. Rocha, F.C. Khannab, T.M. Rocha Filhoa, A.E. Santana, Non-classical symmetries and invariant solutions of non-linear Dirac equations. Commun. Nonlinear Sci. Num. Simul. 26, 201–210 (2015)

    Article  MathSciNet  Google Scholar 

  32. A.C. Scott, in Bäcklund Transformations, ed. by R. M. Miura. Lecture Notes in Mathematics, vol. 515 (Springer, Berlin, 1975), pp. 80–105

    Google Scholar 

  33. A. Sergyeyev, Constructing conditionally integrable evolution systems in (1+1) dimensions: a generalization of invariant modules approach. J. Phys. A: Math. Gen. 35, 7653–7660 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  34. A. Sergyeyev, On the classification of conditionally integrable evolution systems in (1+1) dimensions. J. Math. Sci. 136, 4392–4400 (2006)

    Article  MathSciNet  Google Scholar 

  35. M. Toda, Studies of a nonlinear lattice. Phys. Rep. 18, 1–125 (1975)

    Article  ADS  Google Scholar 

  36. A.M. Vinogradov, I.S. Krasil’shchik, A method of calculating higher symmetries of nonlinear evolutionary equations, and nonlocal symmetries (Russian). Dokl. Akad. Nauk SSSR 253(6), 1289–1293 (1980)

    ADS  MathSciNet  Google Scholar 

  37. N.J. Zabusky, A synergetic approach to problems of nonlinear dispersive wave propagation and interaction, in Nonlinear Partial Differential Equations, ed. by W.F. Ames (Academic, New York, 1967), pp. 233–258

    Google Scholar 

  38. V.E. Zakharov, On stochastization of one-dimensional chains of nonlinear oscillations. Sov. Phys. JETP 38, 108–110 (1974)

    ADS  Google Scholar 

Download references

Acknowledgements

DL has been supported by INFN IS-CSN4 Mathematical Methods of Nonlinear Physics. DL thanks ZT and the SUNY Polytechnic Institute for their warm hospitality at Utica when this work was started. DL thanks the Departamento de Física Téorica of the Complutense University in Madrid for its hospitality. MAR was supported by the Spanish MINECO under project FIS 2015-63966-P. D. Nedza, summer student of ZT, contributed to the verification of some of the computations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Decio Levi .

Editor information

Editors and Affiliations

Appendix: Determining Equations for \(\hat X_2\) and \(\hat X_6\)

Appendix: Determining Equations for \(\hat X_2\) and \(\hat X_6\)

For completeness we present here the determining equation of the conditional symmetries when ξ = 1 and η = 0 for which we have been able just to present some particular solutions

$$\displaystyle \begin{aligned} &g_{xx}+3 f g_x+(5f'+4f^{2})g+4f^{4}y+7 f'f^{2}y-2f'f =0, {} \end{aligned} $$
(45)
$$\displaystyle \begin{aligned} &g_{yy}+ \left(5 yf^2 -5 y f'+3 g\right)g_x+2\left(8y f^2 +10 y f'+g\right) f g \\ & +2 y^2 f \left(13 f^4-20 f^{\prime 2}+16 f^2 f'\right) =0. {} \end{aligned} $$
(46)
$$\displaystyle \begin{aligned} &\phi_{uuuu}\phi^4+ (4 \phi_{uu}^2+6 \phi_{u} \phi_{uuu} +4 \phi_{xuuu} ) \phi^3+ (7 \phi_{uu} \phi_{u}^2+2 (6 \phi_{xuu} +1 ) \phi_{u} \\ & +\phi_{uu} (12 \phi_{xu} +u )+6 (\phi_{uuu} \phi_{x} +\phi_{xxuu} ) ) \phi^2+ (8 \phi_{xu}^2+2 (2 \phi_{u}^2+u ) \phi_{xu} \\ & +\phi_{x} (10 \phi_{u} \phi_{uu} +12 \phi_{xuu} +3 )+4 \phi_{uu} \phi_{xx} +6 \phi_{u} \phi_{xxu} +4 \phi_{xxxu} ) \phi \\& +3 \phi_{uu} \phi_{x}^2 +4 \phi_{u} \phi_{x} \phi_{xu} +u \phi_{xx} +4 \phi_{xu} \phi_{xx} +6 \phi_{x} \phi_{xxu} +\phi_{xxxx} +\phi_{y}=0. \end{aligned} $$
(47)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Levi, D., Rodríguez, M.A., Thomova, Z. (2019). Construction of Partial Differential Equations with Conditional Symmetries. In: Kuru, Ş., Negro, J., Nieto, L. (eds) Integrability, Supersymmetry and Coherent States. CRM Series in Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-20087-9_17

Download citation

Publish with us

Policies and ethics