Skip to main content
Log in

Symmetry reductions and exact solutions of shallow water wave equations

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

In this paper we study symmetry reductions and exact solutions of the shallow water wave (SWW) equation

$$u_{xxxt} + \alpha u_x u_{xt} + \beta u_t u_{xx} - u_{xt} - u_{xx} = 0,$$

whereα andβ are arbitrary, nonzero, constants, which is derivable using the so-called Boussinesq approximation. Two special cases of this equation, or the equivalent nonlocal equation obtained by settingu x =U, have been discussed in the literature. The caseα=2β was discussed by Ablowitz, Kaup, Newell and Segur (Stud. Appl. Math.,53 (1974), 249), who showed that this case was solvable by inverse scattering through a second-order linear problem. This case and the caseα=β were studied by Hirota and Satsuma (J. Phys. Soc. Japan,40 (1976), 611) using Hirota's bi-linear technique. Further, the caseα=β is solvable by inverse scattering through a third-order linear problem.

In this paper, a catalogue of symmetry reductions is obtained using the classical Lie method and the nonclassical method due to Bluman and Cole (J. Math. Mech,18 (1969), 1025). The classical Lie method yields symmetry reductions of (1) expressible in terms of the first, third and fifth Painlevé transcendents and Weierstrass elliptic functions. The nonclassical method yields a plethora of exact solutions of (1) withα=β which possess a rich variety of qualitative behaviours. These solutions all like a two-soliton solution fort < 0 but differ radically fort > 0 and may be viewed as a nonlinear superposition of two solitons, one travelling to the left with arbitrary speed and the other to the right with equal and opposite speed. These families of solutions have important implications with regard to the numerical analysis of SWW and suggests that solving (1) numerically could pose some fundamental difficulties. In particular, one would not be able to distinguish the solutions in an initial-value problem since an exponentially small change in the initial conditions can result in completely different qualitative behaviours.

We compare the two-soliton solutions obtained using the nonclassical method to those obtained using the singular manifold method and Hirota's bi-linear method.

Further, we show that there is an analogous nonlinear superposition of solutions for two (2+1)dimensional generalisations of the SWW Equation (1) withα=β. This yields solutions expressible as the sum of two solutions of the Korteweg-de Vries equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M. J. and Clarkson, P. A.:Solitons, Nonlinear Evolution Equations and Inverse Scattering, Lect. Notes Math., Vol. 149, C.U.P., Cambridge, 1991.

    Google Scholar 

  2. Ablowitz, M. J., Kaup, D. J., Newell, A. C., and Segur, H.:Stud. Appl. Math. 53 (1974), 249–315.

    Google Scholar 

  3. Ablowitz, M. J., Ramani, A., and Segur, H.:Phys. Rev. Lett. 23 (1978), 333–338.

    Google Scholar 

  4. Ablowitz, M. J., Ramani, A., and Segur, H.:J. Math. Phys. 21 (1980), 715–721.

    Google Scholar 

  5. Ablowitz, M. J., Schober, C., and Herbst, B. M.:Phys. Rev. Lett. 71 (1993), 2683–2686.

    Google Scholar 

  6. Ablowitz, M. J. and Villarroel, J.:Stud. Appl. Math. 85 (1991), 195–213.

    Google Scholar 

  7. Anderson, R. L. and Ibragimov, N. H.:Lie-Bäcklund Transformations in Applications, SIAM, Philadelphia, 1979.

    Google Scholar 

  8. Benjamin, T. B., Bona, J. L., and Mahoney, J.:Phil. Trans. R. Soc. Land. Ser. A 272 (1972), 47–78.

    Google Scholar 

  9. Bluman, G. W. and Cole, J. D.:J. Math. Mech. 18 (1969), 1025–1042.

    Google Scholar 

  10. Bluman, G. W. and Kumei, S.:Symmetries and Differential Equations, inAppl. Math. Sci., Vol. 81, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  11. Bogoyavlenskii, O. I.:Math. USSR Izves. 34 (1990), 245–259.

    Google Scholar 

  12. Bogoyavlenskii, O. I.:Russ. Math. Surv. 45 (1990), 1–86.

    Google Scholar 

  13. Boiti, M., Leon, J. J-P, Manna, M., and Pempinelli, F.:Inverse Problems 2 (1986), 271–279.

    Google Scholar 

  14. Buchberger, B.: in J. Rice (ed.),Mathematical Aspects of Scientific Software, Springer-Verlag, 1988, pp. 59–87.

  15. Champagne, B., Hereman, W., and Winternitz, P.:Comp. Phys. Comm. 66 (1991), 319–340.

    Google Scholar 

  16. Clarkson, P. A.: Nonclassical symmetry reductions for the Boussinesq equation, inChaos, Solitons and Fractals, 1994, to appear.

  17. Clarkson, P. A. and Kruskal, M. D.:J. Math. Phys. 30 (1989), 2201–2213.

    Google Scholar 

  18. Clarkson, P. A. and Mansfield, E. L.:Physica D 70 (1994), 250–288.

    Google Scholar 

  19. Clarkson, P. A. and Mansfield, E. L.:Nonlinearity 7 (1994), 975–1000.

    Google Scholar 

  20. Clarkson, P. A. and Mansfield, E. L.: Algorithms for the nonclassical method of symmetry reductions,SIAM J. Appl. Math., 1994, to appear.

  21. Clarkson, P. A. and Mansfield, E. L.: Exact solutions for some (2+1)-dimensional shallow water wave equations, Preprint, Department of Mathematics, University of Exeter, 1994.

  22. Cole, J. D.:Quart. Appl. Math. 9 (1951), 225–236.

    Google Scholar 

  23. Conte, R. and Musette, M.:J. Math. Phys. 32 (1991), 1450–1457.

    Google Scholar 

  24. Deift, P., Tomei, C., Trubowitz, E.:Comm. Pure Appl. Math. 35 (1982), 567–628.

    Google Scholar 

  25. Dorizzi, B., Grammaticos, B., Ramani, A., and Winternitz, P.:J. Math. Phys. 27 (1986), 2848–2852.

    Google Scholar 

  26. Espinosa, A. and Fujioka, J.:J. Phys. Soc. Japan 63 (1994), 1289–1294.

    Google Scholar 

  27. Gardner, C. S., Greene, J. M., Kruskal, M. D., and Miura, R.:Phys. Rev. Lett. 19 (1967), 1095–1097.

    Google Scholar 

  28. Gilson, C. R., Nimmo, J. J. C., and Willox, R.:Phys. Lett. 180A (1993), 337–345.

    Google Scholar 

  29. Fushchich, W. I.:Ukrain. Math. J. 43 (1991), 1456–1470.

    Google Scholar 

  30. Hereman, W.:Euromath Bull. 1(2) (1994), 45–79.

    Google Scholar 

  31. Hietarinta, J.: in R. Conte and N. Boccara (eds),Partially Integrable Evolution Equations in Physics, NATO ASI Series C: Mathematical and Physical Sciences, Vol. 310, Kluwer, Dordrecht, 1990, pp. 459–478.

    Google Scholar 

  32. Hirota, R.: in R. K. Bullough and P. J. Caudrey (eds),Solitons, Topics in Current Physics, Vol. 17, Springer-Verlag, Berlin, 1980, pp. 157–176.

    Google Scholar 

  33. Hirota, R. and Itô, M.:J. Phys. Soc. Japan 52 (1983), 744–748.

    Google Scholar 

  34. Hirota, E. and Satsuma, J.:J. Phys. Soc. Japan 40 (1976), 611–612.

    Google Scholar 

  35. Hopf, E.:Comm. Pure Appl. Math. 3 (1950), 201–250.

    Google Scholar 

  36. Ince, E. L.:Ordinary Differential Equations, Dover, New York, 1956.

    Google Scholar 

  37. Jimbo, M. and Miwa, T.:Publ. R.I.M.S. 19 (1983), 943–1001.

    Google Scholar 

  38. Leble, S. B. and Ustinov, N. V.:Inverse Problems 210 (1994), 617–633.

    Google Scholar 

  39. Levi, D. and Winternitz, P.:J. Phys. A: Math. Gen. 22 (1989), 2915–2924.

    Google Scholar 

  40. Mansfield, E. L.:Diffgrob: A symbolic algebra package for analysing systems of PDE using Maple, ftp euclid.exeter.ac.uk, login: anonymous, password: your email address, directory: pub/liz, 1993.

  41. Mansfield, E. L. and Fackerell, E. D.: Differential Gröbner Bases, Preprint 92/108, Macquarie University, Sydney, Australia, 1992.

    Google Scholar 

  42. McLeod, J. B. and Olver, P. J.:SIAM J. Math. Anal. 14 (1983), 488–506.

    Google Scholar 

  43. Musette, M., Lambert, F., and Decuyper, J. C.:J. Phys. A: Math. Gen. 20 (1987), 6223–6235.

    Google Scholar 

  44. Olver, P. J.:Applications of Lie Groups to Differential Equations, 2nd edn, Graduate Texts Math., Vol. 107, Springer-Verlag, New York, 1993.

    Google Scholar 

  45. Olver, P. J. and Rosenau, P.:Phys. Lett. 114A (1986), 107–112.

    Google Scholar 

  46. Olver, P. J. and Rosenau, P.:SIAM J. Appl. Math. 47 (1987), 263–275.

    Google Scholar 

  47. Peregrine, H.:J. Fluid Mech. 25 (1966), 321–330.

    Google Scholar 

  48. Reid, G. J.:J. Phys. A: Math. Gen. 23 (1990), L853-L859.

    Google Scholar 

  49. Reid, G. J.:Europ. J. Appl. Math. 2 (1991), 293–318.

    Google Scholar 

  50. Reid, G. J. and Wittkopf, A.: A Differential Algebra Package for Maple, ftp 137.82.36.21 login: anonymous, password: your email address, directory: pub/standardform, 1993.

  51. Schwarz, F.:Computing 49 (1992), 95–115.

    Google Scholar 

  52. Tamizhmani, K. M. and Punithavathi, P.:J. Phys. Soc. Japan 59 (1990), 843–847.

    Google Scholar 

  53. Topunov, V. L.:Acta Appl. Math. 16 (1989), 191–206.

    Google Scholar 

  54. Weiss, J.:J. Math. Phys. 24 (1983), 1405–1413.

    Google Scholar 

  55. Weiss, J., Tabor, M., and Carnevale, G.:J. Math. Phys. 24 (1983), 522–526.

    Google Scholar 

  56. Whittaker, E. E. and Watson, G. M.:Modern Analysis, 4th edn, C.U.P., Cambridge, 1927.

    Google Scholar 

  57. Winternitz, P.: Lie groups and solutions of nonlinear partial differential equations, in L. A. Ibort and M. A. Rodriguez (eds),Integrable Systems, Quantum Groups, and Quantum Field Theories, NATO ASI Series C., Vol. 409, Kluwer, Dordrecht, 1993, pp. 429–495.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarkson, P.A., Mansfield, E.L. Symmetry reductions and exact solutions of shallow water wave equations. Acta Appl Math 39, 245–276 (1995). https://doi.org/10.1007/BF00994636

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00994636

Mathematics subject classification (1991)

Key words

Navigation