Skip to main content

Impact of Pulsed Light on Food Constituents

  • Chapter
  • First Online:
Effect of Emerging Processing Methods on the Food Quality

Abstract

As one of the emerging non-thermal food treatment technologies, pulsed light (PL) has been intensively studied since the twenty first century. PL technology uses intermittent light pulses to treat food products without leaving any residues. The current use of PL technology is for decontamination purposes. The decontamination effects of PL treatment rely on primarily light with the different wavelength and the pulsed energy. Therefore, this chapter starts by explaining the disinfection mechanism of PL technology, where analysis of the UV disinfection mechanism would be helpful. Unlike electron beam, X-rays, and gamma rays, UV light is non-ionizing irradiation and does not break molecular bonds. The UV light can be emitted either as a continuous wave (continuous light) or in short duration pulses of 1–20 per second as in the case of pulsed light. Continuous UV light may be categorized into three types according to the emission spectrum: (1) short-wave UV (UV-C) with wavelengths from 200 to 280 nm, (2) medium-wave UV (UV-B) with wavelengths from 280 to 320 nm, and (3) long-wave UV (UV-A) with wavelengths from 320 to 400 nm. UV-C has been used for disinfection of air, surface, water, and liquid foods. The mechanisms responsible for microbial inactivation by UV light are believed to be due to the photochemical, photothermal and photophysical effects on microbes exposed to UV light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiló-Aguayo, I., Charles, F., Renard, C. M. G. C., Page, D., & Carlin, F. (2013). Pulsed light effects on surface decontamination, physical qualities and nutritional composition of tomato fruit. Postharvest Biology and Technology, 86, 29–36.

    Article  Google Scholar 

  • Bhavya, M. L., & Umesh Hebbar, H. (2017). Pulsed light processing of foods for microbial safety. Food Quality and Safety, 1(3), 187–202.

    Article  CAS  Google Scholar 

  • Bintsis, T., Litopoulou-Tzanetaki, E., & Robinson, R. K. (2000). Existing and potential applications of ultraviolet light in the food industry – a critical review. Journal of the Science of Food and Agriculture, 80(6), 637–645.

    Article  CAS  PubMed  Google Scholar 

  • Birmpa, A., Vantarakis, A., Paparrodopoulos, S., Whyte, P., & Lyng, J. (2014). Efficacy of three light technologies for reducing microbial populations. BioMed Research International. https://doi.org/10.1155/2014/673939

    Article  Google Scholar 

  • Brandt, A., Serrano Oria, Ó., Kallon, M., & Bazzano, A. N. (2017). Infant feeding policy and programming during the 2014–2015 ebola virus disease outbreak in Sierra Leone. Global Health: Science and Practice, 5(3), 507–515.

    Google Scholar 

  • Can, F. O., Demirci, A., Puri, V. M., & Gourama, H. (2014). Decontamination of hard cheeses by pulsed UV light. Journal of Food Protection, 77(10), 1723–1731.

    Article  PubMed  Google Scholar 

  • Cheigh, C.-I., Hwang, H.-J., & Chung, M.-S. (2013). Intense pulsed light (IPL) and UV-C treatments for inactivating Listeria monocytogenes on solid medium and seafoods. Food Research International, 54(1), 745–752.

    Article  CAS  Google Scholar 

  • Cheigh, C.-I., Park, M.-H., Chung, M.-S., Shin, J.-K., & Park, Y.-S. (2012). Comparison of intense pulsed light- and ultraviolet (UVC)-induced cell damage in Listeria monocytogenes and Escherichia coli O157:H7. Food Control, 25(2), 654–659.

    Article  CAS  Google Scholar 

  • Djenane, D., Sánchez-Escalante, A., Beltrán, J. A., & Roncalés, P. (2001). Extension of the retail display life of fresh beef packaged in modified atmosphere by varying lighting conditions. Journal of Food Science, 66(1), 181–186.

    Article  CAS  Google Scholar 

  • Dunn, J. (1995). Pulsed-light treatment of food and packaging. Food Technology, 49, 95–98.

    Google Scholar 

  • Elmnasser, N., Dalgalarrondo, M., Orange, N., Bakhrouf, A., Haertlé, T., Federighi, M., & Chobert, J.-M. (2008). Effect of pulsed-light treatment on milk proteins and lipids. Journal of Agricultural and Food Chemistry, 56(6), 1984–1991.

    Article  CAS  PubMed  Google Scholar 

  • Elmnasser, N., Guillou, S., Leroi, F., Orange, N., Bakhrouf, A., & Federighi, M. (2007). Pulsed-light system as a novel food decontamination technology: A review. Canadian Journal of Microbiology, 53(7), 813–821.

    Article  CAS  PubMed  Google Scholar 

  • FDA. (1996). Code of federal regulations. 21CFR179.41. Retrieved from https://www.ecfr.gov/cgi-bin/text-idx?SID=980dfb81a14d4d705047084321e162b8&mc=true&tpl=/ecfrbrowse/Title21/21cfr179_main_02.tpl

  • Fernández, M., Ganan, M., Guerra, C., & Hierro, E. (2014). Protein oxidation in processed cheese slices treated with pulsed light technology. Food Chemistry, 159, 388–390.

    Article  PubMed  Google Scholar 

  • Fernández, M., Hospital, X. F., Arias, K., & Hierro, E. (2016). Application of pulsed light to sliced cheese: Effect on Listeria inactivation, sensory quality and volatile profile. Food and Bioprocess Technology, 9(8), 1335–1344.

    Article  Google Scholar 

  • Fine, F., & Gervais, P. (2004). Efficiency of pulsed UV light for microbial decontamination of food powders. Journal of Food Protection, 67(4), 787–792.

    Article  CAS  PubMed  Google Scholar 

  • Ganan, M., Hierro, E., Hospital, X. F., Barroso, E., & Fernández, M. (2013). Use of pulsed light to increase the safety of ready-to-eat cured meat products. Food Control, 32(2), 512–517.

    Article  Google Scholar 

  • Gardner, D. W., & Shama, G. (2000). Modeling UV-induced inactivation of microorganisms on surfaces. Journal of Food Protection, 63(1), 63–70.

    Article  CAS  PubMed  Google Scholar 

  • Gómez, P. L., Salvatori, D. M., García-Loredo, A., & Alzamora, S. M. (2012). Pulsed light treatment of cut apple: Dose effect on color, structure, and microbiological stability. Food and Bioprocess Technology, 5(6), 2311–2322.

    Article  Google Scholar 

  • Gómez-López, V. M., Devlieghere, F., Bonduelle, V., & Debevere, J. (2005). Intense light pulses decontamination of minimally processed vegetables and their shelf-life. International Journal of Food Microbiology, 103(1), 79–89.

    Article  PubMed  Google Scholar 

  • Gorny, J. R. (2003). A summary of CA and MA requirements and recommendations for fresh-cut (minimally processed) fruits and vegetables. Acta Horticulturae, 600, 609–614.

    Article  Google Scholar 

  • Guerrero-Beltrán, J. A., & Barbosa-Cánovas, G. V. (2004). Review: Advantages and limitations on processing foods by UV light. Food Science and Technology International, 10(3), 137–147.

    Article  Google Scholar 

  • Hierro, E., Ganan, M., Barroso, E., & Fernández, M. (2012). Pulsed light treatment for the inactivation of selected pathogens and the shelf-life extension of beef and tuna carpaccio. International Journal of Food Microbiology, 158(1), 42–48.

    Article  PubMed  Google Scholar 

  • Huang, Y., & Chen, H. (2014). A novel water-assisted pulsed light processing for decontamination of blueberries. Food Microbiology, 40, 1–8.

    Article  PubMed  Google Scholar 

  • Huang, Y., & Chen, H. (2015). Inactivation of Escherichia coli O157:H7, Salmonella and human norovirus surrogate on artificially contaminated strawberries and raspberries by water-assisted pulsed light treatment. Food Research International, 72, 1–7.

    Article  CAS  Google Scholar 

  • Huang, Y., Sido, R., Huang, R., & Chen, H. (2015). Application of water-assisted pulsed light treatment to decontaminate raspberries and blueberries from Salmonella. International Journal of Food Microbiology, 208, 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y.-W., & Toledo, R. (1982). Effect of high doses of high and low intensity UV irradiation on surface microbiological counts and storage-life of fish. Journal of Food Science, 47(5), 1667–1669.

    Article  Google Scholar 

  • Ignat, A., Manzocco, L., Maifreni, M., Bartolomeoli, I., & Nicoli, M. C. (2014). Surface decontamination of fresh-cut apple by pulsed light: Effects on structure, colour and sensory properties. Postharvest Biology and Technology, 91, 122–127.

    Article  Google Scholar 

  • Jourdan-da Silva, N., Fabre, L., Robinson, E., Fournet, N., Nisavanh, A., Bruyand, M., … Le Hello, S. (2018). Ongoing nationwide outbreak of Salmonella Agona associated with internationally distributed infant milk products, France, December 2017. Euro Surveillance: Bulletin Europeen Sur Les Maladies Transmissibles = European Communicable Disease Bulletin, 23(2). https://doi.org/10.2807/1560-7917.ES.2018.23.2.17-00852

  • Kasahara, I., Carrasco, V., & Aguilar, L. (2015). Inactivation of Escherichia coli in goat milk using pulsed ultraviolet light. Journal of Food Engineering, 152, 43–49.

    Article  CAS  Google Scholar 

  • Keener, L., & Krishnamurthy, K. (2014). Shedding light on food safety: Applications of pulsed light processing. Food Safety Magazine, 20, 28–33.

    Google Scholar 

  • Kuo, F.-L., Carey, J. B., & Ricke, S. C. (1997). UV irradiation of shell eggs: Effect on populations of aerobes, molds, and inoculated Salmonella Typhimurium. Journal of Food Protection, 60(6), 639–643.

    Article  PubMed  Google Scholar 

  • Lee, B. H., Kermasha, S., & Baker, B. E. (1989). Thermal, ultrasonic and ultraviolet inactivation of Salmonella in thin films of aqueous media and chocolate. Food Microbiology, 6(3), 143–152.

    Article  Google Scholar 

  • Lilie, M., Hein, S., Wilhelm, P., & Mueller, U. (2007). Decontamination of spices by combining mechanical and thermal effects – an alternative approach for quality retention. International Journal of Food Science & Technology, 42(2), 190–193.

    Article  CAS  Google Scholar 

  • Luksiene, Z., Buchovec, I., & Viskelis, P. (2013). Impact of high-power pulsed light on microbial contamination, health promoting components and shelf life of strawberries. Food Technology and Biotechnology, 51, 284.

    Google Scholar 

  • Maftei, N. A., Ramos-Villarroel, A. Y., Nicolau, A. I., Martín-Belloso, O., & Soliva-Fortuny, R. (2014). Influence of processing parameters on the pulsed-light inactivation of Penicillium expansum in apple juice. Food Control, 41, 27–31.

    Article  Google Scholar 

  • Miller, B. M., Sauer, A., & Moraru, C. I. (2012). Inactivation of Escherichia coli in milk and concentrated milk using pulsed-light treatment. Journal of Dairy Science, 95(10), 5597–5603.

    Article  CAS  PubMed  Google Scholar 

  • Moreira, M. R., Álvarez, M. V., Martín-Belloso, O., & Soliva-Fortuny, R. (2017). Effects of pulsed light treatments and pectin edible coatings on the quality of fresh-cut apples: A hurdle technology approach. Journal of the Science of Food and Agriculture, 97(1), 261–268.

    Article  CAS  PubMed  Google Scholar 

  • Mullen, J. (2017). Baby formula recalled worldwide over salmonella scare. CNN Money.

    Google Scholar 

  • Nicorescu, I., Nguyen, B., Chevalier, S., & Orange, N. (2014). Effects of pulsed light on the organoleptic properties and shelf-life extension of pork and salmon. Food Control, 44, 138–145.

    Article  Google Scholar 

  • Nicorescu, I., Nguyen, B., Moreau-Ferret, M., Agoulon, A., Chevalier, S., & Orange, N. (2013). Pulsed light inactivation of Bacillus subtilis vegetative cells in suspensions and spices. Food Control, 31(1), 151–157.

    Article  Google Scholar 

  • Niemira, B. A. (2014). Irradiation, microwave, and alternative energy-based treatments for low-water activity foods. In J. B. Gurtler, M. P. Doyle, & J. L. Kornacki (Eds.), The Microbiological safety of low water activity foods and spices (pp. 389–401). New York, NY: Springer.

    Chapter  Google Scholar 

  • Oms-Oliu, G., Aguiló-Aguayo, I., Martín-Belloso, O., & Soliva-Fortuny, R. (2010). Effects of pulsed light treatments on quality and antioxidant properties of fresh-cut mushrooms (Agaricus bisporus). Postharvest Biology and Technology, 56(3), 216–222.

    Article  CAS  Google Scholar 

  • Oms-Oliu, G., Martín-Belloso, O., & Soliva-Fortuny, R. (2010). Pulsed light treatments for food preservation. A review. Food and Bioprocess Technology, 3(1), 13–23.

    Article  Google Scholar 

  • Orlowska, M., Koutchma, T., Grapperhaus, M., Gallagher, J., Schaefer, R., & Defelice, C. (2012). Continuous and pulsed ultraviolet light for nonthermal treatment of liquid foods. Part 1: Effects on quality of fructose solution, apple juice, and milk. Food and Bioprocess Technology, 6(6), 1580–1592.

    Article  Google Scholar 

  • Ozer, N. P., & Demirci, A. (2006). Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes inoculated on raw salmon fillets by pulsed UV-light treatment. International Journal of Food Science & Technology, 41(4), 354–360.

    Article  CAS  Google Scholar 

  • Paškevičiūtė, E., & Lukšienė, Ž. (2009). High-power pulsed light for decontamination of chicken breast surface. Cheminė Technologija, 4, 53.

    Google Scholar 

  • Rajkovic, A., Tomasevic, I., De Meulenaer, B., & Devlieghere, F. (2017). The effect of pulsed UV light on Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, Staphylococcus aureus and staphylococcal enterotoxin A on sliced fermented salami and its chemical quality. Food Control, 73, 829–837.

    Article  CAS  Google Scholar 

  • Rysstad, G., & Kolstad, J. (2006). Extended shelf life milk—advances in technology. International Journal of Dairy Technology, 59(2), 85–96.

    Article  Google Scholar 

  • Siddique, M. A. B., Maresca, P., Pataro, G., & Ferrari, G. (2016). Effect of pulsed light treatment on structural and functional properties of whey protein isolate. Food Research International, 87, 189–196.

    Article  CAS  PubMed  Google Scholar 

  • Smith, W. L., Lagunas-Solar, M. C., & Cullor, J. S. (2002). Use of pulsed ultraviolet laser light for the cold pasteurization of bovine milk. Journal of Food Protection, 65(9), 1480–1482.

    Article  PubMed  Google Scholar 

  • Steenland, K., Whelan, E., Deddens, J., Stayner, L., & Ward, E. (2003). Ethylene oxide and breast cancer incidence in a cohort study of 7576 women (United States). Cancer Causes & Control, 14(6), 531–539.

    Article  Google Scholar 

  • Tomašević, I. (2015). Intense light pulses upset the sensory quality of meat products. Tehnologija Mesa, 56, 1–7.

    Article  Google Scholar 

  • Tomašević, I., & Rajković, A. (2015). The sensory quality of meat, game, poultry, seafood and meat products as affected by intense light pulses: A systematic review. Procedia Food Science, 5, 285–288.

    Article  Google Scholar 

  • van Aardt, M., Duncan, S. E., Marcy, J. E., Long, T. E., O’Keefe, S. F., & Nielsen-Sims, S. R. (2005). Aroma analysis of light-exposed milk stored with and without natural and synthetic antioxidants. Journal of Dairy Science, 88(3), 881–890.

    Article  PubMed  Google Scholar 

  • Wallner-Pendleton, E. A., Sumner, S. S., Froning, G. W., & Stetson, L. E. (1994). The use of ultraviolet radiation to reduce Salmonella and psychrotrophic bacterial contamination on poultry carcasses. Poultry Science, 73(8), 1327–1333.

    Article  CAS  PubMed  Google Scholar 

  • Xu, W., & Wu, C. (2016). The impact of pulsed light on decontamination, quality, and bacterial attachment of fresh raspberries. Food Microbiology, 57, 135–143.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Ruan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peng, P. et al. (2019). Impact of Pulsed Light on Food Constituents. In: Roohinejad, S., Koubaa, M., Greiner, R., Mallikarjunan, K. (eds) Effect of Emerging Processing Methods on the Food Quality. Springer, Cham. https://doi.org/10.1007/978-3-030-18191-8_5

Download citation

Publish with us

Policies and ethics