Advertisement

Cell Migration in Microfluidic Devices: Invadosomes Formation in Confined Environments

  • Pei-Yin Chi
  • Pirjo Spuul
  • Fan-Gang Tseng
  • Elisabeth GenotEmail author
  • Chia-Fu ChouEmail author
  • Alessandro Taloni
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1146)

Abstract

The last 20 years have seen the blooming of microfluidics technologies applied to biological sciences. Microfluidics provides effective tools for biological analysis, allowing the experimentalists to extend their playground to single cells and single molecules, with high throughput and resolution which were inconceivable few decades ago. In particular, microfluidic devices are profoundly changing the conventional way of studying the cell motility and cell migratory dynamics. In this chapter we will furnish a comprehensive view of the advancements made in the research domain of confinement-induced cell migration, thanks to the use of microfluidic devices. The chapter is subdivided in three parts. Each section will be addressing one of the fundamental questions that the microfluidic technology is contributing to unravel: (i) where cell migration takes place, (ii) why cells migrate and, (iii) how the cells migrate. The first introductory part is devoted to a thumbnail, and partially historical, description of microfluidics and its impact in biological sciences. Stress will be put on two aspects of the devices fabrication process, which are crucial for biological applications: materials used and coating methods. The second paragraph concerns the cell migration induced by environmental cues: chemical, leading to chemotaxis, mechanical, at the basis of mechanotaxis, and electrical, which induces electrotaxis. Each of them will be addressed separately, highlighting the fundamental role of microfluidics in providing the well-controlled experimental conditions where cell migration can be induced, investigated and ultimately understood. The third part of the chapter is entirely dedicated to how the cells move in confined environments. Invadosomes (the joint name for podosomes and invadopodia) are cell protrusion that contribute actively to cell migration or invasion. The formation of invadosomes under confinement is a research topic that only recently has caught the attention of the scientific community: microfluidic design is helping shaping the future direction of this emerging field of research.

Keywords

Microfluidics Coating Cell migration Chemotaxis Mechanotaxis Haptotaxis Durotaxis Plithotaxis Electrotaxis Invadosomes Podosomes Invadopodia Confinement Microenvironment 

Notes

Acknowledgements

This work was supported in part by the AS Thematic Projects [AS-106-TP-A03] and the Ministry of Science and Technology (ROC) [105-2112-M-001-021-MY3, 106-2627-M-001-001, and 106-2119-M-001-005]. A.T. acknowledges the European Research Council through the Advanced Grant No.291002 SIZEFFECTS. P.S. acknowledges the support of TalTech Young Investigator grant B61, Estonian Research Council Starting Grant PUT1130 and G.F.Parrot Travel Grant. E.G. laboratory (http://genot-lab.org/) is funded by INSERM, the Ligue contre le Cancer, committee of the Gironde, the University of Bordeaux (transversal project HYPOXCELL) and the “Marfans” Association. The Invadosome Consortium is an international network of laboratories interested in adhesion structures involved in invasive processes. It is open to the entire scientific community (http://www.invadosomes.org/). We thank Chia-Tzi Kuo for the help in drawing Fig. 6.3. Confocal images of Fig. 6.1 were performed in part through the use of the advanced optical microscopes at Division of Instrument Service of Academia Sinica and with the assistance of Shu-Chen Shen.

References

  1. Alberts B, Johnson A, Lewis J et al (2002) The extracellular matrix of animals. In: Molecular biology of the cell, 4th edn. Garland Science, New YorkGoogle Scholar
  2. Alenghat FJ, Ingber DE (2002) Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE 119:pe6–pe6Google Scholar
  3. Alexander NR, Branch KM, Parekh A et al (2008) Extracellular matrix rigidity promotes invadopodia activity. Curr Biol 18(17):1295–1299PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alt W, Deutsch A, Dunn G (2012) Dynamics of cell and tissue motion. Birkhäuser, BaselGoogle Scholar
  5. Andresen V, Pollok K, Rinnenthal JL (2012) High-resolution intravital microscopy. PLoS One 7(12):e50915PubMedPubMedCentralCrossRefGoogle Scholar
  6. Berthier E, Young EWK, Beebe D (2012) Engineers are from PDMS-land, biologists are from polystyrenia. Lab Chip 12(7):1224–1237PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bhuwania R, Cornfine S, Fang Z et al (2012) Supervillin couples myosin-dependent contractility to podosomes and enables their turnover. J Cell Sci 125(Pt9):2300–2314PubMedPubMedCentralCrossRefGoogle Scholar
  8. Brassard D, Clime L, Kebin L et al (2011) 3D thermoplastic elastomer microfluidic devices for biological probe immobilization. Lab Chip 11(23):4099–4107PubMedCrossRefPubMedCentralGoogle Scholar
  9. Budday S, Nay R, de Rooij R et al (2015) Mechanical properties of gray and white matter brain tissue by indentation. J Mech Behav Biomed Mater 46:318–330PubMedPubMedCentralCrossRefGoogle Scholar
  10. Caelen I, Bernard A, Juncker D et al (2000) Formation of gradients of proteins on surfaces with microfluidic networks. Langmuir 16(24):9125–9130CrossRefGoogle Scholar
  11. Castro-Castro A, Marchesin V, Monteiro P, Lodillinsky C, Rosse C, Chavrier P (2016) Cellular and molecular mechanisms of MT1-MMP-deis now present in the text.Pendent cancer cell invasion. Annu Rev Cell Dev Biol 32:555–576Google Scholar
  12. Carter SB (1967) Haptotaxis and the mechanism of cell motility. Nature 213(5073):256–260PubMedCrossRefPubMedCentralGoogle Scholar
  13. Cervero P, Wiesner C, Boussou A et al (2018) Lymphocyte-specific protein 1 regulates mechanosensory oscillation of podosomes and actin isoform-based actomyosin symmetry breaking. Nat Commun 9(1):515PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chang HC, Yeo LY (2009) Electrokinetically driven microfluidics and nanofluidics. Cambridge University Press, Cambridge, NY, pp 379–406Google Scholar
  15. Charati SG, Stern SA (1998) Diffusion of gases in silicone polymers: molecular dynamics simulations. Macromolecules 31(16):5529–5535CrossRefGoogle Scholar
  16. Chaurey V, Block F, Su YH et al (2012) Nanofiber size-dependent sensitivity of fibroblast directionality to the methodology for scaffold alignment. Acta Biomater 8:3982–3990PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chiu DT, deMello AJ, Di Carlo D et al (2017) Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences. Chem 2(2):201–223CrossRefGoogle Scholar
  18. Collin O, Tracqui P, Stephanou A et al (2006) Spatiotemporal dynamics of actin-rich adhesion microdomains: influence of substrate flexibility. J Cell Sci 119(Pt 9):1914–1925PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cortese B, Palama IE, D’Amone S et al (2014) Influence of electrotaxis on cell behaviour. Integr Biol 6(9):817–830CrossRefGoogle Scholar
  20. Dalby MJ, Riehle MO, Sutherland DS et al (2005) Morphological and microarray analysis of human fibroblasts cultured on nanocolumns produced by colloidal lithography. Eur Cell Mater 9(1):1–8PubMedPubMedCentralGoogle Scholar
  21. Daubon T, Spuul P, Alonso F et al (2016) E VEGF-A stimulates podosome-mediated collagen-IV proteolysis in microvascular endothelial cells. J Cell Sci 129(13):2586–2598PubMedCrossRefPubMedCentralGoogle Scholar
  22. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143PubMedCrossRefPubMedCentralGoogle Scholar
  23. Doolin MT, Stroka KM (2018) Physical confinement alters cytoskeletal contributions towards human mesenchymal stem cell migration. Cytoskeleton 75(3):103–117Google Scholar
  24. Duffy DM, Garrett SM, Ellis SE et al (2008) Influence of supramammary lymph node extract on in vitro cell proliferation. Cell Prolif 41(2):299–309PubMedCrossRefPubMedCentralGoogle Scholar
  25. Englert DL, Manson MD, Jayaraman A (2009) Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients. Appl Environ Microbiol 75(13):4557–4564PubMedPubMedCentralCrossRefGoogle Scholar
  26. Evstrapov AA (2017) Micro-and nanofluidic systems in devices for biological, medical and environmental research. J Phys Conf Ser 917(2). IOP PublishingGoogle Scholar
  27. Feng J, Levine H, Mao X et al (2018) Stiffness sensing and cell motility: durotaxis and contact guidance. bioRxiv:320705Google Scholar
  28. Gabriel EM, Fisher DT, Evans S et al (2018) Intravital microscopy in the study of the tumor microenvironment: from bench to human application. Oncotarget 9(28):20165PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gawden-Bone C, Zhou Z, King E et al (2010) Dendritic cell podosomes are protrusive and invade the extracellular matrix using metalloproteinase MMP-14. J Cell Sci 123(pt9):1427–1437PubMedPubMedCentralCrossRefGoogle Scholar
  30. Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10(1):21–33CrossRefGoogle Scholar
  31. Genot E, Gligorijevic B (2014) Invadosomes in their natural habitat. Eur J Cell Biol 93(0):367–379PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gravesen P, Branebjerg J, Jensen OS (1993) Microfluidics-a review. J Micromech Microeng 3(4):168CrossRefGoogle Scholar
  33. Gu J, Gupta R, Chou CF, Wei Q, Zenhausern F (2007) A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature. Lab Chip 7(9):1198–1201PubMedCrossRefGoogle Scholar
  34. Hamm HE (1998) The many faces of G protein signaling. J Biol Chem 273(2):669–672PubMedCrossRefGoogle Scholar
  35. Han SJ, Bielawski KS, Ting LH et al (2012) Decoupling substrate stiffness, spread area, and micropost density: a close spatial relationship between traction forces and focal adhesions. Biophys J 103(4):640–648PubMedPubMedCentralCrossRefGoogle Scholar
  36. Handorf AM, Zhou Y, Halanski MA et al (2015) Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 11(1):1–15PubMedPubMedCentralCrossRefGoogle Scholar
  37. Harburger DS, Calderwood DA (2009) Integrin signalling at a glance. J Cell Sci 122(2):159–163PubMedCrossRefGoogle Scholar
  38. Harland B, Walcott S, Sun XS (2011) Adhesion dynamics and durotaxis in migrating cells. Phys Biol 8(1):015011PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hartman CD, Isenberg BC, Chua SG et al (2017) Extracellular matrix type modulates cell migration on mechanical gradients. Exp Cell Res 359(2):361–366PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hepler JR, Gilman AG (1992) G proteins. Trends Biochem Sci 17(10):383–387PubMedCrossRefPubMedCentralGoogle Scholar
  41. Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B 126(843):136–195CrossRefGoogle Scholar
  42. Hirooka S, Akashi T, Ando N et al (2011) Localization of the invadopodia-related proteins actinin-1 and cortactin to matrix-contact-side cytoplasm of cancer cells in surgically resected lung adenocarcinomas. Pathobiology 78(1):10–23PubMedCrossRefGoogle Scholar
  43. Hsu S, Thakar R, Liepmann D et al (2005) Effects of shear stress on endothelial cell haptotaxis on micropatterned surfaces. Biochem Biophys Res Commun 337(1):401–409PubMedCrossRefGoogle Scholar
  44. Infante E, Castagnino A, Ferrari R et al (2018) LINC complex-Lis1 interplay controls MT1-MMP matrix digest-on-demand response for confined tumor cell migration. Nat Commun 9(1):2443PubMedPubMedCentralCrossRefGoogle Scholar
  45. Irimia D (2010) Microfluidic technologies for temporal perturbations of chemotaxis. Annu Rev Biomed Eng 12:259–284PubMedPubMedCentralCrossRefGoogle Scholar
  46. Irimia D, Geba DA, Toner M (2006) Universal microfluidic gradient generator. Anal Chem 78(10):3472–3477PubMedPubMedCentralCrossRefGoogle Scholar
  47. Irimia D, Geba DA, Toner M (2009) Spontaneous migration of cancer cells under conditions of mechanical confinement. Integr Biol 1(8–9):506–512CrossRefGoogle Scholar
  48. Jiang X, Bruzewicz DA, Wong AP et al (2005a) Directing cell migration with asymmetric micropatterns. Proc Natl Acad Sci 102(4):975–978PubMedCrossRefGoogle Scholar
  49. Jiang X, Xu Q, Dertinger SK et al (2005b) A general method for patterning gradients of biomolecules on surfaces using microfluidic networks. Anal Chem 77(8):2338–2347PubMedCrossRefGoogle Scholar
  50. Juin A, Billottet C, Moreau VC et al (2012) Physiological type I collagen organization induces the formation of a novel class of linear invadosomes. Mol Biol Cell 23(2):297–309PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kai FB, Laklai H, Weaver VM (2016) Force matters: biomechanical regulation of cell invasion and migration in disease. Trends Cell Biol 26(7):486–497PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kedziora KM, Isogai T, Jalink K et al (2016) Invadosomes–shaping actin networks to follow mechanical cues. Front Biosci (Landmark Ed) 21:1092–1117CrossRefGoogle Scholar
  53. Keenan TM, Folch A (2008) Biomolecular gradients in cell culture systems. Lab Chip 8(1):34–57PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kim SR, Teixeira AI, Nealey PF et al (2002) Fabrication of polymeric substrates with well-defined nanometer-scale topography and tailored surface chemistry. Adv Mater 14(20):1468–1472CrossRefGoogle Scholar
  55. Kim P, Jeong HE, Khademhosseini A et al (2006) Fabrication of non-biofouling polyethylene glycol micro-and nanochannels by ultraviolet-assisted irreversible sealing. Lab Chip 6(11):1432–1437PubMedCrossRefPubMedCentralGoogle Scholar
  56. Kim P, Kwon KW, Park MC et al (2008) Soft lithography for microfluidics: a review. Biochip J 2(1):1–11Google Scholar
  57. Kim S, Kim HJ, Jeon NL (2010) Biological applications of microfluidic gradient devices. Integr Biol 2(11–12):584–603CrossRefGoogle Scholar
  58. Kirby BJ (2010) Micro-and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge University Press, New York: Jul 26CrossRefGoogle Scholar
  59. Koch TM, Münster S, Bonakdar N et al (2012) 3D traction forces in cancer cell invasion. PLoS One 7(3):e33476PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kollmannsberger P, Mierke CT, Fabry B (2011) Nonlinear viscoelasticity of adherent cells is controlled by cytoskeletal tension. Soft Matter 7(7):3127–3132CrossRefGoogle Scholar
  61. Kramer N, Walzl A, Unger C et al (2013) In vitro cell migration and invasion assays. Mutat Res 752(1):10–24PubMedCrossRefGoogle Scholar
  62. Ladoux B (2009) Biophysics: cells guided on their journey. Nat Phys 5(6):377–378CrossRefGoogle Scholar
  63. Lange JR, Fabry B (2013) Cell and tissue mechanics in cell migration. Exp Cell Res 319(16):2418–2423PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84(3):359–369PubMedPubMedCentralCrossRefGoogle Scholar
  65. Le Roux-Goglin E, Varon C, Spuul P et al (2012) Helicobacter infection induces podosome assembly in primary hepatocytes in vitro. Eur J Cell Biol 91:161–170PubMedCrossRefPubMedCentralGoogle Scholar
  66. Lee J, Park NC, Whitesides GM (2003) Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices. Anal Chem 75(23):6544–6554PubMedCrossRefPubMedCentralGoogle Scholar
  67. Lee JH, Gu Y, Wang H et al (2012) Microfluidic 3D bone tissue model for high-throughput evaluation of wound-healing and infection-preventing biomaterials. Biomaterials 33(4):999–1006PubMedCrossRefPubMedCentralGoogle Scholar
  68. Leichlé T, Lin YL, Chiang PC et al (2012) Biosensor-compatible encapsulation for pre-functionalized nanofluidic channels using asymmetric plasma treatment. Sensors Actuators B Chem 161(1):805–810CrossRefGoogle Scholar
  69. Li J, Francis L (2011) Microfluidic devices for studying chemotaxis and electrotaxis. Trends Cell Biol 21(8):489–497PubMedCrossRefPubMedCentralGoogle Scholar
  70. Li L, Marchant RE, Dubnisheva A et al (2011) Anti-biofouling sulfobetaine polymer thin films on silicon and silicon nanopore membranes. J Biomater Sci Polym Ed 22(1–3):91–106PubMedCrossRefPubMedCentralGoogle Scholar
  71. Li J, Zhu L, Zhang M et al (2012) Microfluidic device for studying cell migration in single or co-existing chemical gradients and electric fields. Biomicrofluidics 6(2):024121PubMedCentralCrossRefGoogle Scholar
  72. Li R, Hebert JD, Lee TA et al (2017) Macrophage-secreted TNFα and TGFβ1 influence migration speed and persistence of cancer cells in 3D tissue culture via independent pathways. Cancer Res 77(2):279–290PubMedCrossRefPubMedCentralGoogle Scholar
  73. Liao KT, Chou CF (2012) Nanoscale molecular traps and dams for ultrafast protein enrichment in high-conductivity buffers. J Am Chem Soc 134(21):8742–8745PubMedCrossRefPubMedCentralGoogle Scholar
  74. Linder S (2007) The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol 17(3):107–117PubMedCrossRefPubMedCentralGoogle Scholar
  75. Linder S, Wiesner C (2015) Tools of the trade: podosomes as multipurpose organelles of monocytic cells. Cell Mol Life Sci 72:121–135PubMedCrossRefPubMedCentralGoogle Scholar
  76. Liu J, Zheng H, Poh PS et al (2015) Hydrogels for engineering of perfusable vascular networks. Int J Mol Sci 16(7):15997–16016PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lo CM, Wang HB, Dembo M et al (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152PubMedPubMedCentralCrossRefGoogle Scholar
  78. Luxenburg C, Geblinger D, Klein E et al (2007) The architecture of the adhesive apparatus of cultured osteo-clasts: from podosome formation to sealing zone assembly. PLoS One 2(1):e179PubMedPubMedCentralCrossRefGoogle Scholar
  79. Manz A, Graber N, Widmer HÁ (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors Actuators B Chem 1(1–6):244–248CrossRefGoogle Scholar
  80. Mark D, Haeberle S, Roth G et al (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Microfluidics based microsystems. Springer, Dordrecht, pp 305–376Google Scholar
  81. Martinez AW, Phillips ST, Whitesides GM et al (2009) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82(1):3–10CrossRefGoogle Scholar
  82. Masedunskas A, Milberg O, Porat-Shliom N et al (2012) Intravital microscopy: a practical guide on imaging intracellular structures in live animals. BioArchitecture 2(5):143–157PubMedPubMedCentralCrossRefGoogle Scholar
  83. McCaig CD, Rajnicek AM, Song B et al (2005) Controlling cell behavior electrically: current views and future potential. Physiol Rev 85(3):943–978PubMedCrossRefPubMedCentralGoogle Scholar
  84. McClelland R, Wauthier E, Uronis J et al (2008) Gradients in the liver’s extracellular matrix chemistry from periportal to pericentral zones: influence on human hepatic progenitors. Tissue Eng Part A 14(1):59–70PubMedCrossRefPubMedCentralGoogle Scholar
  85. McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35(7):491–499PubMedCrossRefPubMedCentralGoogle Scholar
  86. McUsic AC, Lamba DA, Reh TA (2012) Guiding the morphogenesis of dissociated newborn mouse retinal cells and hES cell-derived retinal cells by soft lithography-patterned microchannel PLGA scaffolds. Biomaterials 33(5):1396–1405PubMedCrossRefPubMedCentralGoogle Scholar
  87. Moreno-Arotzena O, Mendoza G, Cóndor M et al (2014) Inducing chemotactic and haptotactic cues in microfluidic devices for three-dimensional in vitro assays. Biomicrofluidics 8(6):064122PubMedPubMedCentralCrossRefGoogle Scholar
  88. Nemir S, West JL (2010) Synthetic materials in the study of cell response to substrate rigidity. Ann Biomed Eng 38(1):2–20PubMedCrossRefPubMedCentralGoogle Scholar
  89. Nge PN, Rogers CI, Woolley AT (2013) Advances in microfluidic materials, functions, integration, and applications. Chem Rev 113(4):2550–2583PubMedPubMedCentralCrossRefGoogle Scholar
  90. Palchesko RN, Zhang L, Sun Y et al (2012) Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS One 7(12):e51499PubMedPubMedCentralCrossRefGoogle Scholar
  91. Park J, Kim DH, Kim G et al (2010a) Simple haptotactic gradient generation within a triangular microfluidic channel. Lab Chip 10(16):2130–2138PubMedCrossRefPubMedCentralGoogle Scholar
  92. Park JY, Yoo SJ, Lee EJ et al (2010b) Increased poly (dimethylsiloxane) stiffness improves viability and morphology of mouse fibroblast cells. Biochip J 4(3):230–236CrossRefGoogle Scholar
  93. Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11(9):633PubMedPubMedCentralCrossRefGoogle Scholar
  94. Paterson EK, Courtneidge S (2018) Invadosomes are coming: new insights into function and disease relevance. FEBS J 285:8–27PubMedCrossRefPubMedCentralGoogle Scholar
  95. Pelham RJ Jr, Wang YL (1998) Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate. Biol Bull 194(3):348–350PubMedCrossRefPubMedCentralGoogle Scholar
  96. Peng Z, Soper SA, Pingle MR et al (2010) Ligase detection reaction generation of reverse molecular beacons for near real-time analysis of bacterial pathogens using single-pair fluorescence resonance energy transfer and a cyclic olefin copolymer microfluidic chip. Anal Chem 82(23):9727–9735PubMedPubMedCentralCrossRefGoogle Scholar
  97. Ren K et al (2011) Whole-Teflon microfluidic chips. Proc Natl Acad Sci 108(20):8162–8166PubMedCrossRefPubMedCentralGoogle Scholar
  98. Ridley AJ, Schwartz MA, Burridge K et al (2003) Cell migration: integrating signals from front to back. Science 302(5651):1704–1709PubMedPubMedCentralCrossRefGoogle Scholar
  99. Robinson KR, Kenneth R (1985) The responses of cells to electrical fields: a review. J Cell Biol 101(6):2023–2027PubMedCrossRefPubMedCentralGoogle Scholar
  100. Roca-Cusachs P, Sunyer R, Trepat X (2013) Mechanical guidance of cell migration: lessons from chemotaxis. Curr Opin Cell Biol 25(5):543–549PubMedCrossRefPubMedCentralGoogle Scholar
  101. Rogers CI, Pagaduan JV, Nordin GP et al (2011) Single-monomer formulation of polymerized polyethylene glycol diacrylate as a nonadsorptive material for microfluidics. Anal Chem 83(16):6418–6425PubMedPubMedCentralCrossRefGoogle Scholar
  102. Rottiers P, Saltel F, Daubon T et al (2009) TGFβ-induced endothelial podosomes mediate basement membrane collagen degradation in arterial vessels. J Cell Sci 122:4311–4318PubMedCrossRefPubMedCentralGoogle Scholar
  103. Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507(7491):181–189PubMedCrossRefPubMedCentralGoogle Scholar
  104. Salomon S, Leichlé T, Nicu L (2011) A dielectrophoretic continuous flow sorter using integrated microelectrodes coupled to a channel constriction. Electrophoresis 32(12):1508–1514PubMedCrossRefPubMedCentralGoogle Scholar
  105. Seano G, Primo L (2015) Podosomes and invadopodia: tools to breach vascular basement membrane. Cell Cycle 14(9):1370–1374PubMedPubMedCentralCrossRefGoogle Scholar
  106. Sherman MA, Kennedy JP, Ely DL et al (1999) Novel polyisobutylene/polydimethylsiloxane bicomponent networks: III. Tissue compatibility. J Biomater Sci Polym Ed 10(3):259–269PubMedCrossRefPubMedCentralGoogle Scholar
  107. Spuul P, Ciufici P, Veillat V et al (2014) Importance of RhoGTPases in formation, characteristics, and functions of invadosomes. Small GTPases 5:e28195PubMedCrossRefPubMedCentralGoogle Scholar
  108. Spuul P, Chi P-Y, Billottet C et al (2016a) Microfluidic devices for the study of actin cytoskeleton in constricted environments: Evidence for podosome formation in endothelial cells exposed to a confined slit. Methods 94:65–74PubMedCrossRefPubMedCentralGoogle Scholar
  109. Spuul P, Daubon T, Pitter B et al (2016b) VEGF-A/Notch-induced podosomes proteolyse basement membrane collagen-IV during retinal sprouting angiogenesis VEGF/Notch-induced podosomes mediate basement membrane collagen-IV proteolysis during sprouting angiogenesis in vivo. Cell Rep 17(2):484–500PubMedCrossRefPubMedCentralGoogle Scholar
  110. Sriram KK, Yeh JW, Lin YL et al (2014) Direct optical mapping of transcription factor binding sites on field-stretched λ-DNA in nanofluidic devices. Nucleic Acids Res 42:e85PubMedPubMedCentralCrossRefGoogle Scholar
  111. Sriram KK, Nayak S, Pengel S et al (2017) 10 nm deep, sub-nanoliter fluidic nanochannels on germanium for attenuated total reflection infrared (ATR-IR) spectroscopy. Analyst 142(2):273–278PubMedCrossRefPubMedCentralGoogle Scholar
  112. Stolz M, Raiteri R, Daniels AU et al (2004) Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys J 86(5):3269–3283PubMedPubMedCentralCrossRefGoogle Scholar
  113. Su YH, Chiang PC, Cheng LJ et al (2015) High aspect ratio nanoimprinted grooves of poly(lactic-co-glycolic acid) control the length and direction of retraction fibers during fibroblast cell division. Biointerphases 10(4):041008PubMedCrossRefPubMedCentralGoogle Scholar
  114. Swami N, Chou CF, Ramamurthy V et al (2009) Enhancing DNA hybridization kinetics through constriction-based dielectrophoresis. Lab Chip 9(22):3212–3220PubMedCrossRefPubMedCentralGoogle Scholar
  115. Tabeling P (2005) Introduction to microfluidics. Oxford University Press, OxfordGoogle Scholar
  116. Tambe DT, Hardin CC, Angelini TE et al (2011) Collective cell guidance by cooperative intercellular forces. Nat Mater 10(6):469PubMedPubMedCentralCrossRefGoogle Scholar
  117. Tan JL, Tien J, Pirone DM et al (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci 100(4):1484–1489PubMedCrossRefPubMedCentralGoogle Scholar
  118. Tan SH, Nguyen NT, Chua YC et al (2010) Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 4(3):032204PubMedCentralCrossRefGoogle Scholar
  119. Teerapanich P, Pugnière M, Henriquet C, Lin YL, Naillona A, Josepha P, Chou CF, Leichle T (2018) Nanofluidic fluorescence microscopy with integrated concentration gradient generation for one-shot parallel kinetic assays. Sensors Actuators B 274:338–342CrossRefGoogle Scholar
  120. Trepat X, Fredberg JJ (2011) Plithotaxis and emergent dynamics in collective cellular migration. Trends Cell Biol 21(11):638–646PubMedPubMedCentralCrossRefGoogle Scholar
  121. Trepat X, Wasserman MR, Angelini TE et al (2009) Physical forces during collective cell migration. Nat Phys 5(6):426–430CrossRefGoogle Scholar
  122. van den Dries K, van Helden SF, re Riet J et al (2012) Geometry sensing by dendritic cells dictates spatial organization and PGE(2)-induced dissolution of podosomes. Cell Mol Life Sci 69(11):1889–1901PubMedCrossRefPubMedCentralGoogle Scholar
  123. van den Dries K, Meddens MB, de Keijzer S et al (2013) Interplay between myosin IIA-mediated contractility and actin network integrity orchestrates podosome composition and oscillations. Nat Commun 4:1412PubMedPubMedCentralCrossRefGoogle Scholar
  124. Van Haastert PJ, Devreotes PN (2004) Chemotaxis: signalling the way forward. Nat Rev Mol Cell Biol 5(8):626PubMedCrossRefPubMedCentralGoogle Scholar
  125. Varon C, Tatin F, Moreau V et al (2006) Transforming growth factor beta induces rosettes of podosomes in primary aortic endothelial cells. Mol Cell Biol 26(9):3582–3594PubMedPubMedCentralCrossRefGoogle Scholar
  126. Veillat V, Spuul P, Daubon T, Egaña I, Kramer I et al (2015) Podosomes: multipurpose organelles? Int J Biochem Cell Biol Organelles Focus 65:52–60CrossRefGoogle Scholar
  127. Velve-Casquillas G, Le Berre M, Piel M et al (2010) Microfluidic tools for cell biological research. Nano Today 5(1):28–47PubMedPubMedCentralCrossRefGoogle Scholar
  128. Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7(4):265–275PubMedCrossRefPubMedCentralGoogle Scholar
  129. Wang N, Tolić-Nørrelykke IM, Chen J et al (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282(3):C606–C616PubMedCrossRefPubMedCentralGoogle Scholar
  130. Wang CC, Kao YC, Chi PY et al (2011) Asymmetric cancer-cell filopodium growth induced by electric-fields in a microfluidic culture chip. Lab Chip 11(4):695–699PubMedCrossRefPubMedCentralGoogle Scholar
  131. Wang S, Li E, Gao Y et al (2013) Study on invadopodia formation for lung carcinoma invasion with a microfluidic 3D culture device. PLoS One 8(2):e56448PubMedPubMedCentralCrossRefGoogle Scholar
  132. Wheeler AR, Throndset WR, Whelan RJ et al (2003) Microfluidic device for single-cell analysis. Anal Chem 75(14):3581–3586PubMedCrossRefPubMedCentralGoogle Scholar
  133. Wolf K, Te Lindert M, Krause M et al (2013) Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol 201(7):1069–1084PubMedPubMedCentralCrossRefGoogle Scholar
  134. Wu J, Wu X, Lin F (2013) Recent developments in microfluidics-based chemotaxis studies. Lab Chip 13(13):2484–2499PubMedCrossRefPubMedCentralGoogle Scholar
  135. Yeh JW, Taloni A, Chen YL et al (2012) Entropy-driven single molecule tug-of-war of DNA at micro-nanofluidic interfaces. Nano Lett 12(3):1597–1602PubMedCrossRefPubMedCentralGoogle Scholar
  136. Yeo LY, Chang HC, Chan PP et al (2011) Microfluidic devices for bioapplications. Small 7(1):12–48PubMedCrossRefPubMedCentralGoogle Scholar
  137. Yin H, Marshall D (2012) Microfluidics for single cell analysis. Curr Opin Biotechnol 23(1):110–119PubMedCrossRefPubMedCentralGoogle Scholar
  138. Yoshida A, Kanno H, Watabe D et al (2008) The role of heparin-binding EGF-like growth factor and amphiregulin in the epidermal proliferation of psoriasis in cooperation with TNFα. Arch Dermatol Res 300(1):37–45PubMedCrossRefPubMedCentralGoogle Scholar
  139. Young EW, Beebe DJ (2010) Fundamentals of microfluidic cell culture in controlled microenvironments. Chem Soc Rev 39(3):1036–1048PubMedPubMedCentralCrossRefGoogle Scholar
  140. Yu CH, Groves JT (2010) Engineering supported membranes for cell biology. Med Biol Eng Comput 48(10):955–963PubMedPubMedCentralCrossRefGoogle Scholar
  141. Yu CH, Rafig NB, Krishnasamy A et al (2013) Integrin-matrix clusters form podosome-like adhesions in the absence of traction forces. Cell Rep 5(5):1456–1468PubMedPubMedCentralCrossRefGoogle Scholar
  142. Zare RN, Kim S (2010) Microfluidic platforms for single-cell analysis. Annu Rev Biomed Eng 12:187–201PubMedCrossRefGoogle Scholar
  143. Zhang Y, He Y, Bharadwaj S et al (2009) Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials 30(23–24):4021–4028PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pei-Yin Chi
    • 1
    • 2
    • 3
  • Pirjo Spuul
    • 4
  • Fan-Gang Tseng
    • 1
    • 5
    • 6
  • Elisabeth Genot
    • 7
    Email author
  • Chia-Fu Chou
    • 3
    • 6
    • 8
    Email author
  • Alessandro Taloni
    • 9
  1. 1.Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchuRepublic of China
  2. 2.Nano Science and Technology Program, Taiwan International Graduate ProgramAcademia SinicaTaipeiRepublic of China
  3. 3.Institute of PhysicsAcademia SinicaTaipeiRepublic of China
  4. 4.Department of Chemistry and Biotechnology, Division of Gene TechnologyTallinn University of TechnologyTallinnEstonia
  5. 5.Frontier Research Center on Fundamental and Applied Sciences of MattersNational Tsing Hua UniversityHsinchuRepublic of China
  6. 6.Research Center for Applied SciencesAcademia SinicaTaipeiRepublic of China
  7. 7.Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045)Université de BordeauxBordeauxFrance
  8. 8.Genomics Research Center and Research Center for Applied SciencesAcademia SinicaTaipeiRepublic of China
  9. 9.Institute for Complex SystemsConsiglio Nazionale delle RicercheRomaItaly

Personalised recommendations