Skip to main content
Log in

Increased poly(dimethylsiloxane) stiffness improves viability and morphology of mouse fibroblast cells

  • Original Research
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

We monitored the viability and morphology of mouse fibroblast cells cultured on PDMS substrates with different degrees of polymer stiffness. The stiffness was controlled by varying the ratio between base and crosslinker agent during mixing. Although the standard PDMS mixing ratio is 10: 1 (base to crosslinker; Young’s modulus, E=580 kPa), we found that a PDMS substrate with a high stiffness (mixing ratio of 5: 1, E=1,000 kPa) was more favorable as a substrate for fibroblast cell growth. It is important to note that an extracellular matrix coating was not applied to the PDMS so that the effect of stiffness on cell growth could be studied in isolation. A stiffness reduction of 40% (from a mixing ratio of 5: 1 to 10: 1) produced a significant reduction in survival rate (viability was reduced by 15%), and viability worsened (was reduced by 45%) for a substrate stiffness of 280 kPa (a mixing ratio of 20: 1). The rate of spreading for the cells was measured to show that stiffer materials promoted more prolific fibroblast growth. These results provide PDMS stiffness guidelines for cell culture substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belanger, M.C. & Marois, Y. Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review. J. Biomed. Mater. Res. A 58, 467–477 (2001).

    Article  CAS  Google Scholar 

  2. El-Ali, J., Sorger, P.K. & Jensen, K.F. Cells on chips. Nature 442, 403–411 (2006).

    Article  CAS  Google Scholar 

  3. McDonald, J.C. & Whitesides, G.M. Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Account Chem. Res. 35, 491–499 (2002).

    Article  CAS  Google Scholar 

  4. Sherman, M.A., Kennedy, J.P., Ely, D.L. & Smith, D. Novel polyisobutylene/polydimethylsiloxane bicomponent networks: III. Tissue compatibility. J. Biomater. Sci.-Polym. Ed. 10, 259–269 (1999).

    Article  CAS  Google Scholar 

  5. Whitesides, G.M., Ostuni, E., Takayama, S., Jiang, X.Y. & Ingber, D.E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001).

    Article  CAS  Google Scholar 

  6. Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M. & Ingber, D.E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article  CAS  Google Scholar 

  7. Hung, P.J., Lee, P.J., Sabounchi, P., Lin, R. & Lee, L.P. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol. Bioeng. 89, 1–8 (2005).

    Article  CAS  Google Scholar 

  8. Takayama, S. et al. Laminar flows-Subcellular positioning of small molecules. Nature 411, 1016–1016 (2001).

    Article  CAS  Google Scholar 

  9. Wheeler, A.R. et al. Microfluidic device for singlecell analysis. Anal. Chem. 75, 3581–3586 (2003).

    Article  CAS  Google Scholar 

  10. Sato, K. et al. Microchip-based immunoassay system with branching multichannels for simultaneous determination of interferon-gamma. Electrophoresis 23, 734–739 (2002).

    Article  CAS  Google Scholar 

  11. Park, J.Y. et al. Differentiation of neural progenitor cells in a microfluidic chip-generated cytokine gradient. Stem Cells 27, 2646–2654 (2009).

    Article  CAS  Google Scholar 

  12. Mark, J.E. Polymer data handbook. Oxford University Press, 441–435 (2003).

  13. De Silva, M.N., Desai, R. & Odde, D.J. Micro-patterning of animal cells on PDMS substrates in the presence of serum without use of adhesion inhibitors. Biomed. Microdevices 6, 219–222 (2004).

    Article  Google Scholar 

  14. Lee, J.N., Jiang, X., Ryan, D. & Whitesides, G.M. Compatibility of mammalian cells on surfaces of poly (dimethylsiloxane). Langmuir 20, 11684–11691 (2004).

    Article  CAS  Google Scholar 

  15. Regehr, K.J. et al. Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 9, 2132–2139 (2009).

    Article  CAS  Google Scholar 

  16. Lee, J.H., Park, J.W. & Lee, H.B. Cell-adhesion and growth on polymer surfaces with hydroxyl-groups prepared by water-vapor plasma treatment. Biomaterials 12, 443–448 (1991).

    Article  CAS  Google Scholar 

  17. Park, J.Y., Hwang, C.M. & Lee, S.-H. Effective methods to improve the biocompatibility of poly (dimethylsiloxane). BioChip J. 2, 39–43 (2008).

    Google Scholar 

  18. Lee, J.N., Park, C. & Whitesides, G.M. Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75, 6544–6554 (2003).

    Article  CAS  Google Scholar 

  19. Levental, I., Georges, P.C. & Janmey, P.A. Soft biological materials and their impact on cell function. Soft Matter 3, 299–306 (2007).

    Article  CAS  Google Scholar 

  20. Wells, R.G. The role of matrix stiffness in regulating cell behavior. Hepatology 47, 1394–1400 (2008).

    Article  CAS  Google Scholar 

  21. Lo, C.M., Wang, H.B., Dembo, M. & Wang, Y.L. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000).

    Article  CAS  Google Scholar 

  22. Subramanian, A. & Lin, H.Y. Crosslinked chitosan: Its physical properties and the effects of matrix stiffness on chondrocyte cell morphology and proliferation. J. Biomed. Mater. Res. A 75A, 742–753 (2005).

    Article  CAS  Google Scholar 

  23. Flanagan, L.A., Ju, Y.E., Marg, B., Osterfield, M. & Janmey, P.A. Neurite branching on deformable substrates. Neuroreport 13, 2411–2415 (2002).

    Article  Google Scholar 

  24. Georges, P.C. & Janmey, P.A. Cell type-specific response to growth on soft materials. J. Appl. Physiol. 98, 1547–1553 (2005).

    Article  Google Scholar 

  25. Discher, D.E., Janmey, P. & Wang, Y.L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  CAS  Google Scholar 

  26. Hammouch, S.O., Beinert, G.J. & Herz, J.E. Contribution to a better knowledge of the crosslinking reaction of polydimethylsiloxane (PDMS) by end-linking: The formation of star-branched PDMS by the hydrosilylation reaction. Polymer 37, 3353–3360 (1996).

    Article  CAS  Google Scholar 

  27. Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265–275 (2006).

    Article  CAS  Google Scholar 

  28. Park, J.Y., Takyama, S. & Lee, S.-H. Regulating microenvironmental stimuli for stem cells and cancer cells using microsystems. Integrative Biology, Integr. Biol. 2, 229–240 (2010).

    Article  CAS  Google Scholar 

  29. Mata, A., Fleischman, A.J. & Roy, S. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdevices 7, 281–293 (2005).

    Article  CAS  Google Scholar 

  30. Wu, Y.Y. et al. Patterned hydrophobic-hydrophilic templates made from microwave-plasma enhanced chemical vapor deposited thin films. Thin Solid Films 515, 4203–4208 (2007).

    Article  CAS  Google Scholar 

  31. Bausch, G.G., Stasser, J.L., Tonge, J.S. & Owen, M.J. Behavior of plasma-treated elastomeric polydimethylsiloxane coatings in aqueous environment. Plasmas and Polymers 3, 23–34 (1998).

    Article  CAS  Google Scholar 

  32. Efimenko, K., Wallace, W.E. & Genzer, J. Surface modification of Sylgard-184 poly (dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J. Colloid. Interface. Sci. 254, 306–315 (2002).

    Article  CAS  Google Scholar 

  33. Armani, D., Liu, C. & Aluru, N. Re-configurable fluid circuits by PDMS elastomer micromachining. Proc 12th IEEE International Conference on Micro Electro Mechanical Systems. 222–227 (1999).

  34. Lotters, J.C., Olthuis, W., Veltink, P.H. & Bergveld, P. The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. and Microeng. 7, 145–147 (1997).

    Article  CAS  Google Scholar 

  35. Long, T.M., Prakash, S., Shannon, M.A. & Moore, J.S. Water-vapor plasma-based surface activation for trichlorosilane modification of PMMA. Langmuir 22, 4104–4109 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Hoon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.Y., Yoo, S.J., Lee, EJ. et al. Increased poly(dimethylsiloxane) stiffness improves viability and morphology of mouse fibroblast cells. BioChip J 4, 230–236 (2010). https://doi.org/10.1007/s13206-010-4311-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-010-4311-9

Keywords

Navigation