Skip to main content

Aberrant Epigenomic Regulatory Networks in Multiple Myeloma and Strategies for Their Targeted Reversal

  • Chapter
  • First Online:
The DNA, RNA, and Histone Methylomes

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Multiple Myeloma (MM), a subset of genetically complex paraproteinaemias, is characterized by abnormal clonal plasma cell expansion in the bone marrow, and accounts for about 13% of all patients with hematological malignancies. Primary genomic abnormalities include IgH translocations to MMSET/FGFR3 (4p16), CCND1 (11q13), MAF (16q23), or MAFB (20q12), as well as aneuploidy involving trisomies of several chromosomes, known as hyperdiploidy, and together are the hallmarks of the disease. Besides these structural abnormalities, recurrent mutations affecting key oncogenes and tumor suppressor genes are found, as well as aberrant modifications in epigenetic marks which deregulate key oncogenes in MM. Herein, we undertake to review the global epigenetic regulatory landscape of MM including DNA methylation, histone modifications, non-coding miRNA mechanisms or interactions from regulatory proteins such as CTCF and super-enhancers (SE), in conjunction with gene expression and function in MM molecular subgroups at different stages of disease progression. Additionally, we discuss new perspectives in designing CRISPR/TAL-based synthetic proteins or novel small molecular drugs to target aberrant epigenetic marks with locus-specific precision, which may be an option for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal P, Alzrigat M, Parraga AA et al (2016) Genome-wide profiling of histone H3 lysine 27 and lysine 4 trimethylation in multiple myeloma reveals the importance of Polycomb gene targeting and highlights EZH2 as a potential therapeutic target. Oncotarget 7:6809–6823

    PubMed  PubMed Central  Google Scholar 

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51:786–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amodio N, Leotta M, Bellizzi D et al (2012) DNA-demethylating and anti-tumor activity of synthetic miR-29b mimics in multiple myeloma. Oncotarget 3:1246–1258

    Article  PubMed  PubMed Central  Google Scholar 

  • Amodio N, Bellizzi D, Leotta M et al (2013) miR-29b induces SOCS-1 expression by promoter demethylation and negatively regulates migration of multiple myeloma and endothelial cells. Cell Cycle 12:3650–3662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amodio SMA, Gullà N et al (2016) Therapeutic targeting of miR-29b/HDAC4 epigenetic loop in multiple myeloma. Mol Cancer Ther 15:1364–1375

    Article  CAS  PubMed  Google Scholar 

  • Aoki Y, Nojima M, Suzuki H et al (2012) Genomic vulnerability to LINE-1 hypomethylation is a potential determinant of the clinicogenetic features of multiple myeloma. Genome Med 4:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avet-Loiseau H, Li C, Magrangeas F et al (2009) Prognostic significance of copy-number alterations in multiple myeloma. J Clin Oncol 27:4585–4590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasubramanyam K, Varier RA, Altaf M et al (2004) Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem 279:51163–51171

    Article  CAS  PubMed  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckedorff FC, Ayupe AC, Crocci-Souza R et al (2013) The intronic long noncoding RNA ANRASSF1 recruits PRC2 to the RASSF1A promoter, reducing the expression of RASSF1A and increasing cell proliferation. PLoS Genet 9:e1003705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamin M, Reddy S, Brawley OW (2003) Myeloma and race: a review of the literature. Cancer Metastasis Rev 22:87–93

    Article  CAS  PubMed  Google Scholar 

  • Bergsagel PL, Kuehl WM (2001) Chromosome translocations in multiple myeloma. Oncogene 20:5611–5622

    Article  CAS  PubMed  Google Scholar 

  • Bhutani N, Burns DM, Blau HM (2011) DNA demethylation dynamics. Cell 146:866–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bollati V, Fabris S, Pegoraro V et al (2009) Differential repetitive DNA methylation in multiple myeloma molecular subgroups. Carcinogenesis 30:1330–1335

    Article  CAS  PubMed  Google Scholar 

  • Boyd KD, Ross FM, Chiecchio L et al (2011) Gender disparities in the tumor genetics and clinical outcome of multiple myeloma. Cancer Epidemiol Biomarker Prev 20:1703–1707

    Article  Google Scholar 

  • Braggio E, Maiolino A, Gouveia ME et al (2010) Methylation status of nine tumor suppressor genes in multiple myeloma. Int J Hematol 91:87–96

    Article  CAS  PubMed  Google Scholar 

  • Branco MR, Ficz G, Reik W (2012) Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Revs Genet 13:7–13

    Article  CAS  Google Scholar 

  • Brueckner B, Boy RG, Siedlecki P et al (2005) Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 65:6305–6311

    Article  CAS  PubMed  Google Scholar 

  • Bueno MJ, de Castro IP, Cedrón d et al (2008) Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell 13:496–506

    Article  CAS  PubMed  Google Scholar 

  • Cea M, Cagnetta A, Adamia S et al (2015) Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells. Blood 127:1138–1150

    Article  PubMed  CAS  Google Scholar 

  • Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304

    Article  CAS  PubMed  Google Scholar 

  • Chang H, Qi C, Yi Q-L et al (2005) p53 gene deletion detected by fluorescence in situ hybridization is an adverse prognostic factor for patients with multiple myeloma following autologous stem cell transplantation. Blood 105:358–360

    Article  CAS  PubMed  Google Scholar 

  • Chapman MA, Lawrence MS, Keats JJ et al (2011) Initial genome sequencing and analysis of multiple myeloma. Nature 471:467–472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chase A, Cross NC (2011) Aberrations of EZH2 in cancer. Clin Cancer Res 17:2613–2618

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Wu Y, Zhu J et al (2002) Methylation of p16 and p15 genes in multiple myeloma. Chin Med Sci J 17:101–105

    CAS  PubMed  Google Scholar 

  • Chen G, Wang Y, Huang H et al (2009) Combination of DNA methylation inhibitor 5-azacytidine and arsenic trioxide has synergistic activity in myeloma. Eur J Haematol 82:176–183

    Article  CAS  PubMed  Google Scholar 

  • Cheng SH, Ng MH, Lau KM et al (2007) 4q loss is potentially an important genetic event in MM tumorigenesis: identification of a tumor suppressor gene regulated by promoter methylation at 4q13.3, platelet factor 4. Blood 109:2089–2099

    Article  CAS  PubMed  Google Scholar 

  • Chesi M, Nardini E, Lim RS et al (1998) The t (4; 14) translocation in myeloma dysregulates both FGFR3and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 92:3025–3034

    CAS  PubMed  Google Scholar 

  • Chim CS, Fung TK, Cheung WC et al (2004a) SOCS1 and SHP1 hypermethylation in multiple myeloma: implications for epigenetic activation of the Jak/STAT pathway. Blood 103:4630–4635

    Article  CAS  PubMed  Google Scholar 

  • Chim CS, Kwong YL, Fung TK et al (2004b) Methylation profiling in multiple myeloma. Leuk Res 28:379–385

    Article  CAS  PubMed  Google Scholar 

  • Chim CS, Pang R, Fung TK et al (2007) Epigenetic dysregulation of Wnt signaling pathway in multiple myeloma. Leukemia 21:2527–2536

    Article  CAS  PubMed  Google Scholar 

  • Chuang JC, Jones PA (2007) Epigenetics and microRNAs. Pediatr Res 61:24r–29r

    Article  CAS  PubMed  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conery AR, Centor RC, Neiss A et al (2016) Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma. elife 5:e10483

    Article  PubMed  PubMed Central  Google Scholar 

  • Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis AJ, Gelmon KA, Siu LL et al (2003) Phase I and pharmacologic study of the human DNA methyltransferase antisense oligodeoxynucleotide MG98 given as a 21-day continuous infusion every 4 weeks. Investig New Drugs 21:85–97

    Article  CAS  Google Scholar 

  • de Carvalho F, Colleoni GW, Almeida MS et al (2009) TGFbetaR2 aberrant methylation is a potential prognostic marker and therapeutic target in multiple myeloma. Intl J Cancer 125:1985–1991

    Article  CAS  Google Scholar 

  • di Luccio E (2015) Inhibition of nuclear receptor binding SET domain 2/multiple myeloma SET domain by LEM-06 implication for epigenetic cancer therapies. J Cancer Prevent 20:113–120

    Article  Google Scholar 

  • Di Martino MT, Leone E, Amodio N et al (2012) Synthetic miR-34a mimics as a novel therapeutic agent for multiple myeloma: in vitro and in vivo evidence. Clin Cancer Res 18:6260–6270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dib A, Gabrea A, Glebov OK et al (2008) Characterization of MYC translocations in multiple myeloma cell lines. J Natl Cancer Inst Monogr 2008:25–31

    Article  CAS  Google Scholar 

  • Dimopoulos K, Gimsing P, Grønbæk K (2014) The role of epigenetics in the biology of multiple myeloma. Blood Cancer J 4:e207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durie BG, Salmon SE (1975) A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer 36:842–854

    Article  CAS  PubMed  Google Scholar 

  • Eis PS, Tam W, Sun L et al (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A 102:3627–3632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esquela-Kerscher A, Slack FJ (2006) Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  CAS  PubMed  Google Scholar 

  • Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286–298

    Article  CAS  PubMed  Google Scholar 

  • Ezponda T, Dupéré-Richer D, Will CM et al (2017) UTX/KDM6A loss enhances the malignant phenotype of multiple myeloma and sensitizes cells to EZH2 inhibition. Cell Rep 21:628–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenfeld G (2014) A brief history of epigenetics. Cold Spring Harb Perspect Biol 6:a018200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Figueroa ME, Abdel-Wahab O, Lu C et al (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca R, Bergsagel PL, Drach J et al (2009) International myeloma working group molecular classification of multiple myeloma: spotlight review. Leukemia 23:2210–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraga MF, Ballestar E, Villar-Garea A et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400

    Article  CAS  PubMed  Google Scholar 

  • Fratta E, Montico B, Rizzo A et al (2016) Epimutational profile of hematologic malignancies as attractive target for new epigenetic therapies. Oncotarget 7:57327–57350

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuks F (2005) DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev 15:490–495

    Article  CAS  PubMed  Google Scholar 

  • Galm O, Wilop S, Reichelt J et al (2004) DNA methylation changes in multiple myeloma. Leukemia 18:1687–1692

    Article  CAS  PubMed  Google Scholar 

  • Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    Article  CAS  PubMed  Google Scholar 

  • Ghoshal A, Yugandhar D, Srivastava AK (2016) BET inhibitors in cancer therapeutics: a patent review. Expert Opin Ther Pat 26:505–522

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    Article  CAS  PubMed  Google Scholar 

  • Golombick T, Diamond TH, Manoharan A et al (2016) Addition of rice bran arabinoxylan to curcumin therapy may be of benefit to patients with early-stage B-cell lymphoid malignancies (monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, or stage 0/1 chronic lymphocytic leukemia): a preliminary clinical study. Integr Cancer Ther 15:183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gullà A, Hideshima T, Bianchi G et al (2018) Protein arginine methyltransferase 5 has prognostic relevance and is a druggable target in multiple myeloma. Leukemia 32:996–1002

    Article  PubMed  CAS  Google Scholar 

  • Harada T, Ohguchi H, Grondin Y et al (2017) HDAC3 regulates DNMT1 expression in multiple myeloma: therapeutic implications. Leukemia 31:2670–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatzimichael E, Dranitsaris G, Dasoula A et al (2009) Von Hippel-Lindau methylation status in patients with multiple myeloma: a potential predictive factor for the development of bone disease. Clin Lymphoma Myeloma 9:239–242

    Article  CAS  PubMed  Google Scholar 

  • He Y-F, Li B-Z, Li Z et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heller G, Schmidt WM, Ziegler B et al (2008) Genome-wide transcriptional response to 5-aza-2′-deoxycytidine and trichostatin a in multiple myeloma cells. Cancer Res 68:44–54

    Article  CAS  PubMed  Google Scholar 

  • Hernando H, Glato KA, Lesche R et al (2015) EZH2 inhibition blocks multiple myeloma cell growth through upregulation of epithelial tumor suppressor genes. Mol Cancer Ther 15:287–298

    Article  PubMed  CAS  Google Scholar 

  • Heuck C, Johann D, Walker BA et al (2014) Characterization of the mutational landscape of multiple myeloma using comprehensive genomic profiling. Blood 124:3418–3418

    Google Scholar 

  • Hodge DR, Peng B, Cherry JC et al (2005) Interleukin 6 supports the maintenance of p53 tumor suppressor gene promoter methylation. Cancer Res 65:4673–4682

    Article  CAS  PubMed  Google Scholar 

  • Ikeda S, Kitadate A, Abe F et al (2018) Hypoxia-inducible KDM3A addiction in multiple myeloma. Blood Adv 2:323–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    Article  CAS  PubMed  Google Scholar 

  • Issaeva I, Zonis Y, Rozovskaia T et al (2007) Knockdown of ALR (MLL2) reveals ALR target genes and leads to alterations in cell adhesion and growth. Mol Cel Biol 27:1889–1903

    Article  CAS  Google Scholar 

  • Ito S, Shen L, Dai Q et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffe JD, Wang Y, Chan HM et al (2013) Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia. Nat Genet 45:1386–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin B, Robertson KD (2013) DNA methyltransferases, DNA damage repair, and cancer. In: Karpf AR (ed) Epigenetic alterations in oncogenesis. Springer, New York, pp 3–29

    Chapter  Google Scholar 

  • Jin Q, Yu L-R, Wang L et al (2011) Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J 30:249–262

    Article  CAS  PubMed  Google Scholar 

  • Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492

    Article  CAS  PubMed  Google Scholar 

  • Jung S, Kim S, Gale M et al (2012) DNA methylation in multiple myeloma is weakly associated with gene transcription. PLoS One 7:e52626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaas GA, Zhong C, Eason DE et al (2013) TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron 79:1086–1093

    Article  CAS  PubMed  Google Scholar 

  • Kaidi A, Weinert BT, Choudhary C et al (2010) Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 329:1348–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser MF, Johnson DC, Wu P et al (2013) Global methylation analysis identifies prognostically important epigenetically inactivated tumor suppressor genes in multiple myeloma. Blood 122:219–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi Y, Kovacs JJ, McLaurin A et al (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115:727–738

    Article  CAS  PubMed  Google Scholar 

  • Keats JJ, Reiman T, Maxwell CA et al (2003) In multiple myeloma, t (4; 14)(p16; q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 101:1520–1529

    Article  CAS  PubMed  Google Scholar 

  • Kernytsky A, Wang F, Hansen E et al (2015) IDH2 mutation-induced histone and DNA hypermethylation is progressively reversed by small-molecule inhibition. Blood 125:296–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi J, Koyama D, Wada T et al (2015a) Phosphorylation-mediated EZH2 inactivation promotes drug resistance in multiple myeloma. J Clin Invest 125:4375–4390

    Article  PubMed  PubMed Central  Google Scholar 

  • Kikuchi S, Suzuki R, Ohguchi H et al (2015b) Class IIa HDAC inhibition enhances ER stress-mediated cell death in multiple myeloma. Leukemia 29:1918–1927

    Article  CAS  PubMed  Google Scholar 

  • Kim H-J, Bae S-C (2011) Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res 3:166–179

    CAS  PubMed  Google Scholar 

  • Kim VN, Nam J-W (2006) Genomics of microRNA. Trends Genet 22:165–173

    Article  CAS  PubMed  Google Scholar 

  • Kiziltepe T, Hideshima T, Catley L et al (2007) 5-Azacytidine, a DNA methyltransferase inhibitor, induces ATR-mediated DNA double-strand break responses, apoptosis, and synergistic cytotoxicity with doxorubicin and bortezomib against multiple myeloma cells. Mol Cancer Ther 6:1718–1727

    Article  CAS  PubMed  Google Scholar 

  • Kondo Y, Shen L, Suzuki S et al (2007) Alterations of DNA methylation and histone modifications contribute to gene silencing in hepatocellular carcinomas. Hepatol Res 37:974–983

    Article  CAS  PubMed  Google Scholar 

  • Korde N, Kristinsson SY, Landgren O (2011) Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM): novel biological insights and development of early treatment strategies. Blood 117:5573–5581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kryukov F, Dementyeva E, Kubiczkova L et al (2013) Cell cycle genes co-expression in multiple myeloma and plasma cell leukemia. Genomics 102:243–249

    Article  CAS  PubMed  Google Scholar 

  • Kulis M, Esteller M (2010) DNA methylation and cancer. Advs Genet 70:27–56

    Article  Google Scholar 

  • Kulis M, Merkel A, Heath S et al (2015) Whole-genome fingerprint of the DNA methylome during human B cell differentiation. Nat Genet 47:746–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo Alex J, Cheung P, Chen K et al (2011) NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol Cell 44:609–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Jeon K, Lee JT et al (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C, Ahn K-S, Jung WJ et al (2014) CKD-581, a novel histone deacetylase inhibitor, synergistically enhances bortezomib cytotoxicity in multiple myeloma cells. Cancer Res 74:1695

    Google Scholar 

  • Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719

    Article  CAS  PubMed  Google Scholar 

  • Lovén J, Hoke HA, Lin CY et al (2013) Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153:320–334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469:343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Garcia E, Popovic R, Min D-J et al (2010) The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t (4; 14) multiple myeloma cells. Blood 117:211–220

    Article  PubMed  CAS  Google Scholar 

  • Medina PP, Sanchez-Cespedes M (2008) Involvement of the chromatin-remodeling factor BRG1/SMARCA4 in human cancer. Epigenetics 3:64–68

    Article  PubMed  Google Scholar 

  • Meltzer PS (2005) Cancer genomics: small RNAs with big impacts. Nature 435:745–746

    Article  CAS  PubMed  Google Scholar 

  • Michishita E, McCord RA, Berber E et al (2008) SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452:492–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min D, Ezponda T, Kim MK et al (2013) MMSET stimulates myeloma cell growth through microRNA-mediated modulation of c-MYC. Leukemia 27:686–694

    Article  CAS  PubMed  Google Scholar 

  • Minami J, Suzuki R, Mazitschek R et al (2014) Histone deacetylase 3 as a novel therapeutic target in multiple myeloma. Leukemia 28:680–689

    Article  CAS  PubMed  Google Scholar 

  • Mirabella F, Wu P, Wardell CP et al (2013) MMSET is the key molecular target in t(4;14) myeloma. Blood Cancer J 3:e114–e114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Momparler RL (2005) Pharmacology of 5-Aza-2′-deoxycytidine (decitabine). Semin Hemtol 2005:S9–S16

    Article  Google Scholar 

  • Morgan HD, Santos F, Green K et al (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14:R47–R58

    Article  CAS  PubMed  Google Scholar 

  • Mulero-Navarro S, Esteller M (2008) Chromatin remodeling factor CHD5 is silenced by promoter CpG island hypermethylation in human cancer. Epigenetics 3:210–215

    Article  PubMed  Google Scholar 

  • Ohguchi H, Hideshima T, Bhasin MK et al (2016) The KDM3A–KLF2–IRF4 axis maintains myeloma cell survival. Nat Commun 7:10258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohguchi H, Harada T, Sagawa M et al (2017) KDM6B modulates MAPK pathway mediating multiple myeloma cell growth and survival. Leukemia 31:2661–2669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohguchi H, Hideshima T, Anderson KC (2018) The biological significance of histone modifiers in multiple myeloma: clinical applications. Blood Cancer J 8:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Okano M, Bell DW, Haber DA et al (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  PubMed  Google Scholar 

  • Olcinia MM, O’Dell S, Hammond EM (2015) Targeting chromatin to improve radiation response. Br J Radiol 88:20140649

    Article  Google Scholar 

  • Oswald J, Engemann S, Lane N et al (2000) Active demethylation of the paternal genome in the mouse zygote. Curr Biol 10:475–478

    Article  CAS  PubMed  Google Scholar 

  • Palumbo A, Anderson K (2011) Multiple myeloma. New Eng J Med 364:1046–1060

    Article  CAS  PubMed  Google Scholar 

  • Parry L, Clarke AR (2011) The roles of the methyl-CpG binding proteins in cancer. Genes Cancer 2:618–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlyn C, Kaiser M, Heuck C et al (2016) The spectrum and clinical impact of epigenetic modifier mutations in myeloma. Clin Cancer Res 22:5783–5794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlyn C, Bright MD, Buros AF et al (2017) Overexpression of EZH2 in multiple myeloma is associated with poor prognosis and dysregulation of cell cycle control. Blood Cancer J 7:e549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng B, Hurt EM, Hodge DR et al (2006) DNA hypermethylation and partial gene silencing of human thymine-DNA glycosylase in multiple myeloma cell lines. Epigenetics 1:138–145

    Article  PubMed  Google Scholar 

  • Piras G, Monne M, Palmas AD et al (2014) Methylation analysis of the phosphates and tensin homologue on chromosome 10 gene (PTEN) in multiple myeloma. Clin Epigenetics 6:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Popovic R, Martyinez-Garcia E, Giannopoulou EG et al (2014) Histone methyltransferase MMSET/NSD2 alters EZH2 binding and reprograms the myeloma epigenome through global and focal changes in H3K36 and H3K27 methylation. PLoS Genet 10:e1004566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raimondi L, De Luca A, Morelli E et al (2016) MicroRNAs: novel crossroads between myeloma cells and the bone marrow microenvironment. Biomed Res Int 2016:6504593

    PubMed  PubMed Central  Google Scholar 

  • Rajkumar SV, Dimopoulos MA, Palumbo A et al (2014) International myeloma working group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 15:e538–e548

    Article  PubMed  Google Scholar 

  • Ramadoss S, Chen X, Wang C-Y (2012) Histone demethylase KDM6B promotes epithelial-mesenchymal transition. J Biol Chem 287:44508–44517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen T, Kuehl M, Lodahl M et al (2005) Possible roles for activating RAS mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition in some plasma cell tumors. Blood 105:317–323

    Article  CAS  PubMed  Google Scholar 

  • Rastgoo N, Pourabdollah M, Abdi J et al (2018) Dysregulation of EZH2/miR-138 axis contributes to drug resistance in multiple myeloma by downregulating RBPMS. Leukemia 32:2471–2482. https://doi.org/10.1038/s41375-018-0140-y. [Epub ahead of print]

    Article  CAS  PubMed  Google Scholar 

  • Richardson PG, Mitsiades CS, Laubach JP et al (2011) Inhibition of heat shock protein 90 (HSP90) as a therapeutic strategy for the treatment of myeloma and other cancers. Br J Haematol 152:367–379

    Article  CAS  PubMed  Google Scholar 

  • Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610

    Article  CAS  PubMed  Google Scholar 

  • Rossi M, Amodio N, Teresa Di Martino M et al (2014) MicroRNA and multiple myeloma: from laboratory findings to translational therapeutic approaches. Curr Pharml Biotechnol 15:459–467

    Article  CAS  Google Scholar 

  • Saito Y, Liang G, Egger G et al (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9:435–443

    Article  CAS  PubMed  Google Scholar 

  • Salhia B, Baker A, Ahmann G et al (2010) DNA methylation analysis determines the high frequency of genic hypomethylation and low frequency of hypermethylation events in plasma cell tumors. Cancer Res 70:6934–6944

    Article  CAS  PubMed  Google Scholar 

  • Santer FR, Höschele PPS, Oh SJ et al (2011) Inhibition of the acetyltransferases p300 and CBP reveals a targetable function for p300 in the survival and invasion pathways of prostate cancer cell lines. Mol Cancer Thera 10:1644–1655

    Article  CAS  Google Scholar 

  • Santi DV, Norment A, Garrett CE (1984) Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci U S A 81:6993–6997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santra M, Zhan F, Tian E et al (2003) A subset of multiple myeloma harboring the t (4; 14)(p16; q32) translocation lacks FGFR3 expression but maintains anIGH/MMSET fusion transcript. Blood 101:2374–2376

    Article  CAS  PubMed  Google Scholar 

  • Sasaki H, Matsui Y (2008) Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet 9:129–140

    Article  CAS  PubMed  Google Scholar 

  • Sawan C, Herceg Z (2010) Histone modifications and cancer. Adv Genet 70:57–85

    Article  CAS  PubMed  Google Scholar 

  • Scott GK, Mattie MD, Berger CE et al (2006) Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66:1277–1281

    Article  CAS  PubMed  Google Scholar 

  • Sebastián C, Zwaans BMM, Silberman DM et al (2012) The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151:1185–1199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma A, Heuck CJ, Fazzari MJ et al (2010) DNA methylation alterations in multiple myeloma as a model for epigenetic changes in cancer. Wiley Interdiscip Rev Syst Biol Med 2:654–669

    Article  CAS  PubMed  Google Scholar 

  • Si M, Zhu S, Wu H et al (2007) miR-21-mediated tumor growth. Oncogene 26:2799–2803

    Article  CAS  PubMed  Google Scholar 

  • Sonaglio V, de Carvalho AC, Toledo SRC et al (2013) Aberrant DNA methylation of ESR1 and p14ARF genes could be useful as prognostic indicators in osteosarcoma. Oncotarget Ther 6:713–723

    CAS  Google Scholar 

  • Stamato MA, Juli G, Romeo E et al (2017) Inhibition of EZH2 triggers the tumor suppressive miR-29b network in multiple myeloma. Oncotarget 8:106527–106537

    Article  PubMed  PubMed Central  Google Scholar 

  • Stein EM, DiNardo CD, Pollyea DA et al (2017) Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 130:722–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stopa N, Krebs JE, Shechter D (2015) The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell Mol Life Sci 72:2041–2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Cui KQ, Li ZP et al (2017) Suberoylanilide hydroxamic acid, a novel histone deacetylase inhibitor, improves the development and acetylation level of miniature porcine handmade cloning embryos. Reprod Domest Anim 52:763–774

    Article  CAS  PubMed  Google Scholar 

  • Tagliaferri P, Rossi M, DiMartino M et al (2012) Promises and challenges of MicroRNA-based treatment of multiple myeloma. Curr Cancer Drug Targets 12:838–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tam W, Dahlberg JE (2006) miR-155/BIC as an oncogenic microRNA. Genes Chromosomes Cancer 45:211–212

    Article  CAS  PubMed  Google Scholar 

  • Tan M, Luo H, Lee S et al (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian E, Zhan F, Walker R et al (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. New Eng J Med 349:2483–2494

    Article  CAS  PubMed  Google Scholar 

  • Tsukada Y, Fang J, Erdjument-Bromage H et al (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816

    Article  CAS  PubMed  Google Scholar 

  • Turner BM (2007) Defining an epigenetic code. Nat Cell Biology 9:2–8

    Article  CAS  PubMed  Google Scholar 

  • Vallabhapurapu SD, Noothi SK, Pullum DA et al (2015) Transcriptional repression by the HDAC4–RelB–p52 complex regulates multiple myeloma survival and growth. Nat Commun 6:8428

    Article  CAS  PubMed  Google Scholar 

  • van Haaften G, Dalgliesh GL, Davies H et al (2009) Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 41:521–523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voorhoeve PM, Le Sage C, Schrier M et al (2006) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124:1169–1181

    Article  CAS  PubMed  Google Scholar 

  • Walker BA, Leone PE, Jenner MW et al (2006) Integration of global SNP-based mapping and expression arrays reveals key regions, mechanisms, and genes important in the pathogenesis of multiple myeloma. Blood 108:1733–1743

    Article  CAS  PubMed  Google Scholar 

  • Walker BA, Leone PE, Chiecchio L et al (2010a) A compendium of myeloma associated chromosomal copy number abnormalities and their prognostic value. Blood 116:e56–e65

    Article  CAS  PubMed  Google Scholar 

  • Walker BA, Wardell CP, Chiecchio L et al (2010b) Aberrant global methylation patterns affect the molecular pathogenesis and prognosis of multiple myeloma. Blood 117:553–562

    Article  PubMed  CAS  Google Scholar 

  • Walker BA, Mavrommatis K, Wardell CP et al (2018) Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood 132:587–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitehall VL, Dumenil TD, McKeone DM et al (2014) Isocitrate dehydrogenase 1 R132C mutation occurs exclusively in microsatellite stable colorectal cancers with the CpG island methylator phenotype. Epigenetics 9:1454–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winquist E, Knox J, Ayoub J-P et al (2006) Phase II trial of DNA methyltransferase 1 inhibition with the antisense oligonucleotide MG98 in patients with metastatic renal carcinoma: a National Cancer Institute of Canada clinical trials group investigational new drug study. Investig New Drugs 24:159–167

    Article  CAS  Google Scholar 

  • Wong KY, Yim RLH, So CC et al (2011) Epigenetic inactivation of the MIR34B/C in multiple myeloma. Blood 118:5901–5904

    Article  CAS  PubMed  Google Scholar 

  • Wutz A, Smrzka OW, Schweifer N et al (1997) Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389:745–749

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Chng WJ (2014) MMSET: role and therapeutic opportunities in multiple myeloma. Biomed Res Int 2014:636514

    PubMed  PubMed Central  Google Scholar 

  • Xie Z, Bi C, Chooi J et al (2015) MMSET regulates expression of IRF4 in t (4; 14) myeloma and its silencing potentiates the effect of bortezomib. Leukemia 29:2347–2354

    Article  CAS  PubMed  Google Scholar 

  • Yang SM, Kim BJ, Norwood Toro L et al (2013) H1 linker histone promotes epigenetic silencing by regulating both DNA methylation and histone H3 methylation. Proc Natl Acad Sci 110:1708–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Han H, De Carvalho DD et al (2014) Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 26:577–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yee AJ, Bensinger WI, Supko JG et al (2016) Ricolinostat plus lenalidomide, and dexamethasone in relapsed or refractory multiple myeloma: a multicentre phase 1b trial. Lancet Oncol 17:1569–1578

    Article  CAS  PubMed  Google Scholar 

  • Yuregir OO, Yurtcu E, Kizilkilic E et al (2010) Detecting methylation patterns of p16, MGMT, DAPK and E-cadherin genes in multiple myeloma patients. Int J Laboratory Hematol 32:142–149

    Article  Google Scholar 

  • Zhan F, Huang Y, Colla S et al (2006) The molecular classification of multiple myeloma. Blood 108:2020–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Wang LQ, Wong KY et al (2015) Infrequent DNA methylation of miR-9-1 and miR-9-3 in multiple myeloma. J Clin Pathol 68:557–561

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Chen L, Barlogie B et al (2010) High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2. Proc Natl Acad Sci 107:7904–7909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YX, Kortuem KM, Stewart AK (2013) Molecular mechanism of action of immune-modulatory drugs thalidomide, lenalidomide and pomalidomide in multiple myeloma. Leuk Lymphoma 54:683–687

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Zhang Y, Chen J et al (2017) IDH1 R132H mutation enhances cell migration by activating AKT-mTOR signaling pathway, but sensitizes cells to 5-FU treatment as NADPH and GSH are reduced. PLoS One 12:e0169038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian A. Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy Choudhury, S., Walker, B.A. (2019). Aberrant Epigenomic Regulatory Networks in Multiple Myeloma and Strategies for Their Targeted Reversal. In: Jurga, S., Barciszewski, J. (eds) The DNA, RNA, and Histone Methylomes. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-14792-1_22

Download citation

Publish with us

Policies and ethics