Skip to main content
Log in

Methylation status of nine tumor suppressor genes in multiple myeloma

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Aberrant methylation in promoter-associated CpG islands has been recognized as a major mechanism for tumor suppressor gene silencing in several malignancies. We determined the methylation status of nine tumor suppressor genes in 68 newly diagnosed MM patients by methylation-specific PCR. The frequency of promoter hypermethylation for individual genes was: CDH1, 50%; p16 INK4a, 42.8%; p15 INK4b, 16.2%; SHP1, 14.7%; ER and BNIP3, 13.2%; RARβ, 11.8%; DAPK 5.9%; and MGMT 0%. Overall, 79% of patients presented at least one hypermethylated gene. By univariate analysis, hypermethylation of DAPK (P < 0.001) and RARβ (P = 0.01) genes were identified as adverse prognostic features. Median OS of patients with hypermethylation in DAPK (4 months) and RARβ (34 months) was significantly lower than in patients without hypermethylation (median survival not reached), with values of P < 0.001 and P = 0.01, respectively. Our data suggest that DAPK and RARβ hypermethylation are adverse prognostic factors in MM. The relevance of these findings as poor prognosis indicators requires confirmation in a larger sample with longer follow-ups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kyle RA, Rajkumar SV. Multiple myeloma. N Engl J Med. 2004;351:1860–73.

    Article  CAS  PubMed  Google Scholar 

  2. Ries LAG, Eisner MP, Kosary CL. SEER cancer statistics review 1975-2001. National Cancer Institute; 2004.

  3. Smadja NV, Fruchart C, Isnard F, Louvet C, Dutel JL, Cheron N, et al. Chromosomal analysis in multiple myeloma: cytogenetic evidence of two different diseases. Leukemia. 1998;12:960–9.

    Article  CAS  PubMed  Google Scholar 

  4. Debes-Marun C, Dewald G, Bryant S, Picken E, Santana-Dávila R, González-Paz N, et al. Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma. Leukemia. 2003;17:427–36.

    Article  CAS  PubMed  Google Scholar 

  5. Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel PL, Chesi M, et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res. 2004;64:1546–58.

    Article  CAS  PubMed  Google Scholar 

  6. Fonseca R, Debes-Marun CS, Picken EB, Dewald GW, Bryant SC, Winkler JM, et al. The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma. Blood. 2003;102:2562–7.

    Article  CAS  PubMed  Google Scholar 

  7. Smadja NV, Leroux D, Soulier J, Dumont S, Arnould C, Taviaux S, et al. Further cytogenetic characterization of multiple myeloma confirms that 14q32 translocations are a very rare event in hyperdiploid cases. Gene Chromosome Cancer. 2003;38:234–9.

    Article  Google Scholar 

  8. Bergsagel P, Kuehl M. Critical roles for immunoglobulin translocations and cyclin D dysregulation in multiple myeloma. Immunol Rev. 2003;194:96–104.

    Article  CAS  PubMed  Google Scholar 

  9. Bergsagel PL, Kuehl M, Zhan F, Sawyer J, Barlogie B, Shaughnessy J. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood. 2005;106:296–303.

    Article  CAS  PubMed  Google Scholar 

  10. Laird P, Jaenisch R. DNA methylation and cancer. Hum Mol Genet. 1994;3:1487–95.

    CAS  PubMed  Google Scholar 

  11. Jones P, Baylin S. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–28.

    Article  CAS  PubMed  Google Scholar 

  12. Ng M, To W, Lo KW, Chan S, Tsang KS, Cheng SH, et al. Frequent death-associated protein kinase promoter hypermethylation in multiple myeloma. Clin Cancer Res. 2001;7:1724–9.

    CAS  PubMed  Google Scholar 

  13. Mateos M, García-Sanz R, López-Pérez R, Moro M, Ocio E, Hernández J, et al. Methylation is an inactivating mechanism of the p16 gene in multiple myeloma associated with high plasma cell proliferation and short survival. Br J Haematol. 2002;118:1034–40.

    Article  CAS  PubMed  Google Scholar 

  14. Guillerm G, Depil S, Wolowiec D, Quesnel B. Different prognostic values of p15INK4b and p16INK4a in multiple myeloma. Haematologica. 2003;88:476–8.

    PubMed  Google Scholar 

  15. Chim CS, Kwong YL, Fung TK, Liang R. Methylation profiling in multiple myeloma. Leuk Res. 2004;28:379–85.

    Article  CAS  PubMed  Google Scholar 

  16. Chim C, Fung T, Cheung W, Liang R, Kwong Y. SOCS1 and SHP1 hypermethylation in multiple myeloma: implications for epigenetic activation of the Jak/STAT pathway. Blood. 2004;103:4630–5.

    Article  CAS  PubMed  Google Scholar 

  17. Galm O, Wilop S, Reichelt J, Jost E, Gehbauer G, Herman J, et al. DNA methylation changes in multiple myeloma. Leukemia. 2004;18:1687–92.

    Article  CAS  PubMed  Google Scholar 

  18. Rossi D, Capello D, Gloghini A, Franceschetti S, Paulli M, Bhatia K, et al. Aberrant promoter methylation of multiple genes throughout the clinico-pathologic spectrum of B-cell neoplasia. Haematologica. 2004;89:154–64.

    CAS  PubMed  Google Scholar 

  19. Seidl S, Ackermann J, Kaufmann H, Keck A, Nösslinger T, Zielinski C, et al. DNA-methylation analysis identifies the E-cadherin gene as a potential marker of disease progression in patients with monoclonal gammopathies. Cancer. 2004;100:2598–606.

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalez-Paz N, Chng W, McClure R, Blood E, Oken M, Van Ness B, et al. Tumor suppressor p16 methylation in multiple myeloma: biological and clinical implications. Blood. 2007;109:1228–32.

    Article  CAS  PubMed  Google Scholar 

  21. Durie B, Salmon S. A clinical staging sytem for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer. 1975;36:842–54.

    Article  CAS  PubMed  Google Scholar 

  22. The International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol. 2003;121:749–57.

    Article  Google Scholar 

  23. Herman J, Graff J, Myohanen S, Nelkin B, Baylin S. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA. 1996;93:9821–6.

    Article  CAS  PubMed  Google Scholar 

  24. Graff J, Herman J, Myohanen S, Baylin S, Vertino P. Mapping patterns of CpG island methylation in normal and neoplastic cells implicates both upstream and downstream regions in de novo methylation. J Biol Chem. 1997;272:22322–9.

    Article  CAS  PubMed  Google Scholar 

  25. Lapidus R, Nass S, Butash K, Parl F, Weitzman S, Graff J, et al. Mapping of ER gene CpG island methylation-specific polymerase chain reaction. Cancer Res. 1998;58:2515–9.

    CAS  PubMed  Google Scholar 

  26. Katzenellenbogen R, Baylin S, Herman J. Hypermethylation of the DAPKinase CpG islands is a common alteration in B cell malignancies. Blood. 1999;93:4347–53.

    CAS  PubMed  Google Scholar 

  27. Oka T, Ouchida M, Koyama M. Gene silencing of the tyrosine phosphatase SHP1 gene by aberrant methylation in leukemias/lymphomas. Cancer Res. 2002;62:6390–4.

    CAS  PubMed  Google Scholar 

  28. Esteller M, Garcia-Foncillas J, Andion E, Goodman S, Hidalgo O, Vanaclocha V, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343:1350–4.

    Article  CAS  PubMed  Google Scholar 

  29. Esteller M, Gaidano G, Goodman S, Zagonel V, Capello D, Botto B, et al. Hypermethylation of the DNA repair gene O(6)-methylguanine DNA methyltransferase and survival of patients with diffuse large B-cell lymphoma. J Natl Cancer Inst. 2002;94:26–32.

    CAS  PubMed  Google Scholar 

  30. Takahashi T, Shivapurkar N, Reddy J, Shigematsu H, Miyajima K, Suzuki M, et al. DNA methylation profiles of lymphoid and hematopoietic malignancies. Clin Cancer Res. 2004;10:2928–35.

    Article  CAS  PubMed  Google Scholar 

  31. Murai M, Toyota M, Satoh A, Suzuki H, Akino K, Mita H, et al. Aberrant DNA methylation associated with silencing BNIP3 gene expression in haematopoietic tumours. Br J Cancer. 2005;92:1165–72.

    Article  CAS  PubMed  Google Scholar 

  32. Jones P, Laird P. Cancer epigenetics comes of age. Nat Genet. 1999;21:163–7.

    Article  CAS  PubMed  Google Scholar 

  33. Baylin S, Herman J. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 2000;16:168–74.

    Article  CAS  PubMed  Google Scholar 

  34. Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res. 2001;61:3225–9.

    CAS  PubMed  Google Scholar 

  35. Deiss L, Feinstein E, Berissi H, Cohen O, Kimchi A. Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev. 1995;9:15–30.

    Article  CAS  PubMed  Google Scholar 

  36. Sanchez-Beato M, Sanchez-Aguilera A, Piris MA. Cell cycle deregulation in B-cell lymphomas. Blood. 2003;101:1220–35.

    Article  CAS  PubMed  Google Scholar 

  37. Cote S, Momparler R. Activation of the retinoic acid receptor beta gene by 5-aza-2’-deoxycytidine in human DLD-1 colon carcinoma cells. Anticancer Drugs. 1997;8:56–61.

    Article  CAS  PubMed  Google Scholar 

  38. Virmani A, Rathi A, Zochbauer-Muller S, Sacchi N, Fukuyama Y, Bryant D, et al. Promoter methylation and silencing of the retinoic acid receptor-beta gene in lung carcinomas. J Natl Cancer Inst. 2000;92:1303–7.

    Article  CAS  PubMed  Google Scholar 

  39. Silverman LR, Holland JF, Weinberg RS, Alter BP, Davis RB, Ellison RR, et al. Effects of treatment with 5-azacytidine on the in vivo and in vitro hematopoiesis in patients with myelodysplastic syndromes. Leukemia. 1993;7(Suppl 1):21–9.

    PubMed  Google Scholar 

  40. Silverman L, Demakos E, Peterson B, Kornblith AB, Holland JC, Odchimar-Reissig R, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 2002;20:2429–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Héctor N Seuánez (INCa - UFRJ, Brazil) for critical review of this manuscript. We thank Dr. Ladetto, Alberto Rocci (University of Torino, Italy) and Dr. Introna (Mario Negri Institute, Milan, Italy) for providing the cell lines. We thank the Instituto Nacional de Câncer (INCa), Fundação Ary Frauzino (FAF), and SwissBridge Foundation for their financial support. The work was supported in part by the Conselho Nacional de Pesquisas - CNPq - Brazil and Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP - Brazil.

Conflict of interest statement

The authors have no interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilana Zalcberg Renault.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 233 kb)

About this article

Cite this article

Braggio, E., Maiolino, A., Gouveia, M.E. et al. Methylation status of nine tumor suppressor genes in multiple myeloma. Int J Hematol 91, 87–96 (2010). https://doi.org/10.1007/s12185-009-0459-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-009-0459-2

Keywords

Navigation