Advertisement

Pericytes in the Placenta: Role in Placental Development and Homeostasis

  • Rodrigo S. N. Barreto
  • Patricia Romagnolli
  • Andressa Daronco Cereta
  • Leda M. C. Coimbra-Campos
  • Alexander Birbrair
  • Maria Angelica MiglinoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1122)

Abstract

The placenta is the most variable organ, in terms of structure, among the species. Besides it, all placental types have the same function: production of viable offspring, independent of pregnancy length, litter number, or invasion level. The angiogenesis is a central mechanism for placental functionality, due to proper maternal-fetal communication and exchanges. Much is known about the vasculature structure, but little is known about vasculature development and cellular interactions. Pericytes are perivascular cells that were described to control vasculature stability and permeability. Nowadays there are several new functions discovered, such as lymphocyte modulation and activation, macrophage-like phagocytic properties, tissue regenerative and repair processes, and also the ability to modulate stem cells, majorly the hematopoietic. In parallel, placental tissues are known to be a particularly immune microenvironment and a rich stem cell niche. The pericyte function plethora could be similar in the placental microenvironment and could have a central role in placental development and homeostasis.

Keywords

Capillary system Maternal-fetal communication Placental vascularization Placentation Perivascular cell 

Notes

Acknowledgments

Alexander Birbrair is supported by a grant from Instituto Serrapilheira/Serra-1708-15285, a grant from Pró-reitoria de Pesquisa/Universidade Federal de Minas Gerais (PRPq/UFMG) (Edital 05/2016), a grant from the National Institute of Science and Technology in Theranostics and Nanobiotechnology (CNPq/CAPES/FAPEMIG, Process No. 465669/2014-0), a grant from FAPEMIG [Rede Mineira de Engenharia de Tecidos e Terapia Celular (REMETTEC, RED-00570-16)], and a grant from FAPEMIG [Rede De Pesquisa Em Doenças Infecciosas Humanas E Animais Do Estado De Minas Gerais (RED-00313-16)].

References

  1. (1955) The normal anatomy of the uterine artery. Acta Radiol. 43:21–36. doi: 10.3109/00016925509170755, http://dx.doi.org/10.3109/00016925509170755
  2. Abrahamsohn PA, Zorn TMT (1993) Implantation and decidualization in rodents. J Exp Zool 266:603–628. https://doi.org/10.1002/jez.1402660610CrossRefPubMedGoogle Scholar
  3. Adamson SL, Lu Y, Whiteley KJ, Holmyard D, Hemberger M, Pfarrer C, Cross JC (2002) Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta. Dev Biol 250:358–373CrossRefGoogle Scholar
  4. Al Ahmad A, Taboada CB, Gassmann M, Ogunshola OO (2011) Astrocytes and Pericytes differentially modulate blood—brain barrier characteristics during development and hypoxic insult. J Cereb Blood Flow Metab 31:693–705. https://doi.org/10.1038/jcbfm.2010.148CrossRefPubMedGoogle Scholar
  5. Aluvihare VR, Kallikourdis M, Betz AG (2004) Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol 5:266–271. https://doi.org/10.1038/ni1037CrossRefPubMedGoogle Scholar
  6. Antoniadou E, David AL (2016) Placental stem cells. Best Pract Res Clin Obstet Gynaecol 31:13–29. https://doi.org/10.1016/J.BPOBGYN.2015.08.014CrossRefPubMedGoogle Scholar
  7. Arck PC, Hecher K (2013) Fetomaternal immune cross-talk and its consequences for maternal and offspring’s health. Nat Med 19:548–556. https://doi.org/10.1038/nm.3160CrossRefPubMedGoogle Scholar
  8. Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood–brain barrier. Nature 468:557–561. https://doi.org/10.1038/nature09522CrossRefGoogle Scholar
  9. Armulik A, Genové G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215. https://doi.org/10.1016/j.devcel.2011.07.001CrossRefPubMedGoogle Scholar
  10. Aronoff DM, Correa H, Rogers LM, Arav-Boger R, Alcendor DJ (2017) Placental pericytes and cytomegalovirus infectivity: implications for HCMV placental pathology and congenital disease. Am J Reprod Immunol 78. https://doi.org/10.1111/aji.12728
  11. Arts NF (1961) Investigations on the vascular system of the placenta. I. General introduction and the fetal vascular system. Am J Obstet Gynecol 82:147–158CrossRefGoogle Scholar
  12. Balabanov R, Washington R, Wagnerova J, Dore-Duffy P (1996) CNS microvascular pericytes express macrophage-like function, cell surface integrin alpha M, and macrophage marker ED-2. Microvasc Res 52:127–142. https://doi.org/10.1006/mvre.1996.0049CrossRefPubMedGoogle Scholar
  13. Balabanov R, Beaumont T, Dore-Duffy P (1999) Role of central nervous system microvascular pericytes in activation of antigen-primed splenic T-lymphocytes. J Neurosci Res 55:578–587. https://doi.org/10.1002/(SICI)1097-4547(19990301)55:5<578::AID-JNR5>3.0.CO;2-ECrossRefPubMedGoogle Scholar
  14. Bandeira DS, Casamitjana J, Crisan M (2017) Pharmacology & Therapeutics Pericytes , integral components of adult hematopoietic stem cell niches. Pharmacol Ther 171:104–113. https://doi.org/10.1016/j.pharmthera.2016.11.006CrossRefGoogle Scholar
  15. Barreto RSN, Bressan FF, Oliveira LJ, Pereira FTV, Perecin F, Ambrósio CE, Meirelles FV, Miglino MA (2011) Gene expression in placentation of farm animals: an overview of gene function during development. Theriogenology 76:589–597. https://doi.org/10.1016/j.theriogenology.2011.03.001CrossRefPubMedGoogle Scholar
  16. Baur R (1977) Morphometry of the placental exchange area. Adv Anat Embryol Cell Biol 53:3–65PubMedGoogle Scholar
  17. Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68:409–427. https://doi.org/10.1016/j.neuron.2010.09.043CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology 7:452–464. https://doi.org/10.1215/S1152851705000232CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bjarnegard M (2004) Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities. Development 131:1847–1857. https://doi.org/10.1242/dev.01080CrossRefPubMedGoogle Scholar
  20. Bouchard BA, Shatos MA, Tracy PB (1997) Human brain pericytes differentially regulate expression of procoagulant enzyme complexes comprising the extrinsic pathway of blood coagulation. Arterioscler Thromb Vasc Biol 17:1–9CrossRefGoogle Scholar
  21. Burton GJ, Charnock-Jones DS, Jauniaux E (2009) Regulation of vascular growth and function in the human placenta. Reproduction 138:895–902. https://doi.org/10.1530/REP-09-0092CrossRefPubMedGoogle Scholar
  22. Carter AM, Mess A (2007) Evolution of the placenta in eutherian mammals. Placenta 28:259–262. https://doi.org/10.1016/j.placenta.2006.04.010CrossRefPubMedGoogle Scholar
  23. Castejón OJ (2011) Ultrastructural pathology of cortical capillary pericytes in human traumatic brain oedema. Folia Neuropathol 49:162–173PubMedGoogle Scholar
  24. Caumartin J, Favier B, Daouya M, Guillard C, Moreau P, Carosella ED, LeMaoult J (2007) Trogocytosis-based generation of suppressive NK cells. EMBO J 26:1423–1433. https://doi.org/10.1038/sj.emboj.7601570CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cecati M, Giannubilo SR, Emanuelli M, Tranquilli AL, Saccucci F (2011) HLA-G and pregnancy adverse outcomes. Med Hypotheses 76:782–784. https://doi.org/10.1016/j.mehy.2011.02.017CrossRefPubMedGoogle Scholar
  26. Challier JC, Kacemi A, Galtier M, Boucher M, Tangapregassom MJ, Vervelle C, Bintein T, Espié MJ, Olive G (1997) Phenotype of cultured fetal perivascular cells from human placenta studied by scanning electron microscopy. Anat Embryol (Berl) 195:79–86. https://doi.org/10.1007/s004290050027CrossRefGoogle Scholar
  27. Challier JC, Galtier M, Kacemi A, Guillaumin D (1999) Pericytes of term human foeto-placental microvessels: ultrastructure and visualization. Cell Mol Biol (Noisy-le-Grand) 45:89–100Google Scholar
  28. Chen S, Lechleider RJ (2004) Transforming growth factor—induced differentiation of smooth muscle from a neural crest stem cell line. Circ Res 94:1195–1202. https://doi.org/10.1161/01.RES.0000126897.41658.81CrossRefPubMedGoogle Scholar
  29. Chen C-W, Okada M, Proto JD, Gao X, Sekiya N, Beckman SA, Corselli M, Crisan M, Saparov A, Tobita K, Péault B, Huard J (2013) Human pericytes for ischemic heart repair. Stem Cells 31:305–316. https://doi.org/10.1002/stem.1285CrossRefPubMedPubMedCentralGoogle Scholar
  30. Chen WCW, Baily JE, Corselli M, Díaz ME, Sun B, Xiang G, Gray GA, Huard J, Péault B (2015) Human myocardial pericytes: multipotent mesodermal precursors exhibiting cardiac specificity. Stem Cells 33:557–573. https://doi.org/10.1002/stem.1868CrossRefPubMedPubMedCentralGoogle Scholar
  31. Corselli M, Chin CJ, Parekh C, Sahaghian A, Wang W, Ge S, Evseenko D, Wang X, Montelatici E, Lazzari L, Crooks GM, Péault B (2013) Perivascular support of human hematopoietic stem/progenitor cells. Blood 121:2891–2901. https://doi.org/10.1182/blood-2012-08-451864CrossRefPubMedPubMedCentralGoogle Scholar
  32. Crisan M, Yap S, Casteilla L, Chen C, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng P, Traas J, Schugar R, Deasy BM, Badylak S, Lazzari L, Huard J, Pe B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313. https://doi.org/10.1016/j.stem.2008.07.003CrossRefPubMedGoogle Scholar
  33. Croy BA, Yamada AT, DeMayo FJ, Adamson SL (2015) The guide to investigation of mouse pregnancy. Elsevier, San Diego, CAGoogle Scholar
  34. Cuevas P, Gutierrez-Diaz JA, Reimers D, Dujovny M, Diaz FG, Ausman JI (1984) Pericyte endothelial gap junctions in human cerebral capillaries. Anat Embryol (Berl) 170:155–159CrossRefGoogle Scholar
  35. Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–566. https://doi.org/10.1038/nature09513CrossRefPubMedPubMedCentralGoogle Scholar
  36. Dantzer V (2002) Endometrium of epitheliochorial and endotheliochorial placentae. In: Glasser SR, Aplin JD, Giudice LC, Tabibzadeh S (eds) The endometrium. Taylor & Francis, New York, pp 352–368Google Scholar
  37. Dellavalle A, Maroli G, Covarello D, Azzoni E, Innocenzi A, Perani L, Antonini S, Sambasivan R, Brunelli S, Tajbakhsh S, Cossu G (2011) Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2:499. https://doi.org/10.1038/ncomms1508CrossRefPubMedGoogle Scholar
  38. Demir R, Kaufmann P, Castelluce M, Erbeng T, Kotowsk A (1989) Fetal vasculogenesis and angiogenesis in human placental villi. Cells Tissues Organs 136:190–203. https://doi.org/10.1159/000146886CrossRefGoogle Scholar
  39. Deveci E, Soker S, Turgut A, Aktas A, Ayaz E, Sak S, Seker U (2013) The immunohistochemical and ultrastructural evaluation of pericytes in human full term placentas of gestasyonal diabetes mellitus. Acta Medica Mediterr 29:697–700Google Scholar
  40. Ding R, Darland DC, Parmacek MS, D’amore PA (2004) Endothelial–mesenchymal interactions in vitro reveal molecular mechanisms of smooth muscle/Pericyte differentiation. Stem Cells Dev 13:509–520. https://doi.org/10.1089/scd.2004.13.509CrossRefPubMedGoogle Scholar
  41. Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481:457–462. https://doi.org/10.1038/nature10783CrossRefPubMedPubMedCentralGoogle Scholar
  42. Djurisic S, Teiblum S, Tolstrup CK, Christiansen OB, Hviid TVF (2014) Allelic imbalance modulates surface expression of the tolerance-inducing HLA-G molecule on primary trophoblast cells. Mol Hum Reprod 21:281–295. https://doi.org/10.1093/molehr/gau108CrossRefPubMedGoogle Scholar
  43. Domev H, Milkov I, Itskovitz-Eldor J, Dar A (2014) Immunoevasive Pericytes from human pluripotent stem cells preferentially modulate induction of allogeneic regulatory T cells. Stem Cells Transl Med 3:1169–1181. https://doi.org/10.5966/sctm.2014-0097CrossRefPubMedPubMedCentralGoogle Scholar
  44. Dubova EA, Buranova FB, Fyodorova TA, Shchyogolev AI, Sukhikh GT (2013) Morphological characteristics of the terminal villi in placental failure. Bull Exp Biol Med 155:507–511CrossRefGoogle Scholar
  45. Duffield JS, Lupher M, Thannickal VJ, Wynn TA (2013) Host responses in tissue repair and fibrosis. Annu Rev Pathol 8:241–276. https://doi.org/10.1146/annurev-pathol-020712-163930CrossRefPubMedGoogle Scholar
  46. Dulauroy S, Di Carlo SE, Langa F, Eberl G, Peduto L (2012) Lineage tracing and genetic ablation of ADAM12+ perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat Med 18:1262–1270. https://doi.org/10.1038/nm.2848CrossRefPubMedGoogle Scholar
  47. Dzierzak E, Robin C (2010) Placenta as a source of hematopoietic stem cells. Trends Mol Med 16:361–367. https://doi.org/10.1016/j.molmed.2010.05.005CrossRefPubMedPubMedCentralGoogle Scholar
  48. Enders AC, Blankenship TN, Lantz KC, Enders SS (1998) Morphological variation in the interhemal areas of chorioallantoic placentae: a review. Placenta 19:1–19. https://doi.org/10.1016/S0143-4004(98)80030-1CrossRefGoogle Scholar
  49. Enge M, Bjarnegård M, Gerhardt H, Gustafsson E, Kalén M, Asker N, Hammes H-P, Shani M, Fässler R, Betsholtz C (2002) Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J 21:4307–4316CrossRefGoogle Scholar
  50. Fabry Z, Fitzsimmons KM, Herlein JA, Moninger TO, Dobbs MB, Hart MN (1993) Production of the cytokines interleukin 1 and 6 by murine brain microvessel endothelium and smooth muscle pericytes. J Neuroimmunol 47:23–34CrossRefGoogle Scholar
  51. Farrington-Rock C, Crofts NJ, Doherty MJ, Ashton BA, Griffin-Jones C, Canfield AE (2004) Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110:2226–2232. https://doi.org/10.1161/01.CIR.0000144457.55518.E5CrossRefPubMedGoogle Scholar
  52. Favaron PO, Miglino MA (2017) Fetal membranes-derived stem cells microenvironment. Adv Exp Med Biol 1041:235–244CrossRefGoogle Scholar
  53. Feng J, Mantesso A, De Bari C, Nishiyama A, Sharpe PT (2011) Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc Natl Acad Sci U S A 108:6503–6508. https://doi.org/10.1073/pnas.1015449108CrossRefPubMedPubMedCentralGoogle Scholar
  54. Firth JA, Leach L (1996) Not trophoblast alone: a review of the contribution of the fetal microvasculature to transplacental exchange. Placenta 17:89–96. https://www.ncbi.nlm.nih.gov/pubmed/8730878
  55. Fisher M (2009) Pericyte Signaling in the neurovascular unit. Stroke 40:S13–S15. https://doi.org/10.1161/STROKEAHA.108.533117CrossRefPubMedGoogle Scholar
  56. Furuya M, Ishida J, Inaba S, Kasuya Y, Kimura S, Nemori R, Fukamizu A (2008) Impaired placental neovascularization in mice with pregnancy-associated hypertension. Lab Investig 88:416–429. https://doi.org/10.1038/labinvest.2008.7CrossRefPubMedGoogle Scholar
  57. Gekas C, Rhodes KE, Vanhandel B, Chhabra A, Ueno M, Mikkola HKA (2010) Hematopoietic stem cell development in the placenta. Int J Dev Biol 54:1089–1098. https://doi.org/10.1387/ijdb.103070cgCrossRefPubMedPubMedCentralGoogle Scholar
  58. Golub R, Cumano A (2013) Embryonic hematopoiesis. Blood Cells Mol Dis 51:226–231. https://doi.org/10.1016/j.bcmd.2013.08.004CrossRefPubMedGoogle Scholar
  59. Guerin LR, Prins JR, Robertson SA (2009) Regulatory T-cells and immune tolerance in pregnancy: a new target for infertility treatment? Hum Reprod Update 15:517–535. https://doi.org/10.1093/humupd/dmp004CrossRefPubMedPubMedCentralGoogle Scholar
  60. Hasan M, Glees P (1990) The fine structure of human cerebral perivascular pericytes and juxtavascular phagocytes: their possible role in hydrocephalic edema resolution. J Hirnforsch 31:237–249PubMedGoogle Scholar
  61. He N, van Iperen L, de Jong D, Szuhai K, Helmerhorst FM, van der Westerlaken LAJ, Chuva de Sousa Lopes SM (2017) Human extravillous trophoblasts penetrate decidual veins and lymphatics before remodeling spiral arteries during early pregnancy. PLoS One 12:e0169849. https://doi.org/10.1371/journal.pone.0169849CrossRefPubMedPubMedCentralGoogle Scholar
  62. Heinrich D, Aoki A, Metz J (1988) Fetal capillary organization in different types of placenta. Trophobl Res 3:149–162. https://doi.org/10.1007/978-1-4615-8109-3_11CrossRefGoogle Scholar
  63. Helige C, Ahammer H, Hammer A, Huppertz B, Frank H-G, Dohr G (2008) Trophoblastic invasion in vitro and in vivo: similarities and differences. Hum Reprod 23:2282–2291. https://doi.org/10.1093/humrep/den198CrossRefPubMedGoogle Scholar
  64. Hellerbrand C (2013) Hepatic stellate cells—the pericytes in the liver. Pflügers Arch Eur J Physiol 465:775–778. https://doi.org/10.1007/s00424-012-1209-5CrossRefGoogle Scholar
  65. Hellström M, Gerhardt H, Kalén M, Li X, Eriksson U, Wolburg H, Betsholtz C (2001) Lack of Pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153:543–553CrossRefGoogle Scholar
  66. Herrmann M, Bara JJ, Sprecher CM, Menzel U, Jalowiec JM, Osinga R, Scherberich A, Alini M, Verrier S (2016) Pericyte plasticity—comparative investigation of the angiogenic and multilineage potential of pericytes from different human tissues. Eur Cells Mater 31:236–249. https://doi.org/10.22203/eCM.v031a16CrossRefGoogle Scholar
  67. Holmgren L, Glaser A, Pfeifer-Ohlsson S, Ohlsson R (1991) Angiogenesis during human extraembryonic development involves the spatiotemporal control of PDGF ligand and receptor gene expression. Development 113:749–754PubMedGoogle Scholar
  68. Holmgren L, Claesson-welsh L, Heldin C-H, Ohlsson R (1992) The expression of PDGF α- and β-receptors in subpopulations of PDGF-producing cells implicates autocrine stimulatory loops in the control of proliferation in Cytotrophoblasts that have invaded the maternal endometrium. Growth Factors 6:219–231. https://doi.org/10.3109/08977199209026929CrossRefPubMedGoogle Scholar
  69. Hurtado-Alvarado G, Cabañas-Morales AM, Gómez-Gónzalez B (2014) Pericytes: brain-immune interface modulators. Front Integr Neurosci 7:80. https://doi.org/10.3389/fnint.2013.00080CrossRefPubMedPubMedCentralGoogle Scholar
  70. James AW, Zara JN, Zhang X, Askarinam A, Goyal R, Chiang M, Yuan W, Chang L, Corselli M, Shen J, Pang S, Stoker D, Wu B, Ting K, Péault B, Soo C (2012) Perivascular stem cells: a prospectively purified mesenchymal stem cell population for bone tissue engineering. Stem Cells Transl Med 1:510–519. https://doi.org/10.5966/sctm.2012-0002CrossRefPubMedPubMedCentralGoogle Scholar
  71. Jeynes B (1985) Reactions of granular pericytes in a rabbit cerebrovascular ischemia model. Stroke 16:121–125CrossRefGoogle Scholar
  72. Jiang F, Zhao H, Wang L, Guo X, Wang X, Yin G, Hu Y, Li Y, Yao Y (2015) Role of HLA-G1 in trophoblast cell proliferation, adhesion and invasion. Biochem Biophys Res Commun 458:154–160. https://doi.org/10.1016/j.bbrc.2015.01.085CrossRefPubMedGoogle Scholar
  73. Jones CJP, Desoye G (2011) A new possible function for placental pericytes. Cells Tissues Organs 194:76–84. https://doi.org/10.1159/000322394CrossRefPubMedGoogle Scholar
  74. Kamouchi M, Ago T, Kitazono T (2011) Brain Pericytes: emerging concepts and functional roles in brain homeostasis. Cell Mol Neurobiol 31(2):175–193. https://doi.org/10.1007/s10571-010-9605-xCrossRefPubMedGoogle Scholar
  75. Katare R, Riu F, Mitchell K, Gubernator M, Campagnolo P, Cui Y, Fortunato O, Avolio E, Cesselli D, Beltrami AP, Angelini G, Emanueli C, Madeddu P (2011) Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circ Res 109:894–906. https://doi.org/10.1161/CIRCRESAHA.111.251546CrossRefPubMedPubMedCentralGoogle Scholar
  76. Kaufmann P, Luckhardt M, Leiser R (1988) Three-dimensional representation of the Fetal vessel system in the human placenta. Trophobl Res 3:113–137. https://doi.org/10.1007/978-1-4615-8109-3_9CrossRefGoogle Scholar
  77. Kaufmann P, Mayhew TM, Charnock-Jones DS (2004) Aspects of human Fetoplacental Vasculogenesis and angiogenesis. II. Changes during Normal pregnancy. Placenta 25:114–126. https://doi.org/10.1016/j.placenta.2003.10.009CrossRefPubMedGoogle Scholar
  78. Khodadi E, Shahrabi S, Shahjahani M, Azandeh S, Saki N (2016) Role of stem cell factor in the placental niche. Cell Tissue Res 366:523–531. https://doi.org/10.1007/s00441-016-2429-3CrossRefPubMedGoogle Scholar
  79. Kim JA, Tran ND, Li Z, Yang F, Zhou W, Fisher MJ (2006) Brain endothelial Hemostasis regulation by Pericytes. J Cereb Blood Flow Metab 26:209–217. https://doi.org/10.1038/sj.jcbfm.9600181CrossRefPubMedGoogle Scholar
  80. Kim KR, Sung CO, Kwon TJ, Lee JB, Robboy SJ (2015) Defective pericyte recruitment of villous stromal vessels as the possible etiologic cause of hydropic change in complete hydatidiform mole. PLoS One 10:1–13. https://doi.org/10.1371/journal.pone.0122266CrossRefGoogle Scholar
  81. Knox K, Baker JC (2008) Genomic evolution of the placenta using co-option and duplication and divergence. Genome Res 18:695–705. https://doi.org/10.1101/gr.071407.107CrossRefPubMedPubMedCentralGoogle Scholar
  82. Krautler NJ, Kana V, Kranich J, Tian Y, Perera D, Lemm D, Schwarz P, Armulik A, Browning JL, Tallquist M, Buch T, Oliveira-Martins JB, Zhu C, Hermann M, Wagner U, Brink R, Heikenwalder M, Aguzzi A (2012) Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 150:194–206. https://doi.org/10.1016/j.cell.2012.05.032CrossRefPubMedPubMedCentralGoogle Scholar
  83. Krueger M, Bechmann I (2010) CNS pericytes: concepts, misconceptions, and a way out. Glia 58:1–10. https://doi.org/10.1002/glia.20898CrossRefPubMedGoogle Scholar
  84. Kučera T, Vyletěl I, Moravcová M, Krejčí V, Žižka Z, Jirkovská M (2010) Pericyte coverage of fetoplacental vessels in pregnancies complicated by type 1 diabetes mellitus. Placenta 31:1120–1122. https://doi.org/10.1016/j.placenta.2010.09.014CrossRefPubMedGoogle Scholar
  85. Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K, Mar JC, Bergman A, Frenette PS (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502:637–643. https://doi.org/10.1038/nature12612CrossRefPubMedPubMedCentralGoogle Scholar
  86. Lachenmayer L (1971a) Adrenergic innervation of the umbilical vessels. Light- and fluorescence microscopic studies. Z Zellforsch Mikrosk Anat 120:120–136CrossRefGoogle Scholar
  87. Lachenmayer L (1971b) Adrenergic innervation of the umbilical vessels. Zeitschrift für Zellforsch und Mikroskopische Anat 120:120–136. https://doi.org/10.1007/BF00331246CrossRefGoogle Scholar
  88. Lash GE, Otun HA, Innes BA, Percival K, Searle RF, Robson SC, Bulmer JN (2010) Regulation of extravillous trophoblast invasion by uterine natural killer cells is dependent on gestational age. Hum Reprod 25:1137–1145. https://doi.org/10.1093/humrep/deq050CrossRefPubMedGoogle Scholar
  89. Lee LK, Ueno M, Van Handel B, Mikkola HK (2010) Placenta as a newly identified source of hematopoietic stem cells. Curr Opin Hematol 17:313–318. https://doi.org/10.1097/MOH.0b013e328339f295CrossRefPubMedPubMedCentralGoogle Scholar
  90. Leiser R, Kaufmann P (1994) Placental structure: in a comparative aspect. Exp Clin Endocrinol 102:122–134CrossRefGoogle Scholar
  91. Leiser R, Kohler T (1983) The blood vessels of the cat girdle placenta. Observations on corrosion casts, scanning electron microscopical and histological studies—I. Maternal vasculature. Anat Embryol (Berl) 167:85–93. https://doi.org/10.1007/BF00304602CrossRefGoogle Scholar
  92. Leiser R, Kohler T (1984) The blood vessels of the cat girdle placenta. Observations on corrosion casts, scanning electron microscopical and histological studies—II. Fetal vasculature. Anat Embryol (Berl) 170:209–216. https://doi.org/10.1007/BF00319006CrossRefGoogle Scholar
  93. Leiser R, Krebs C, Ebert B, Dantzer V (1997a) Placental vascular corrosion cast studies: a comparison between ruminants and humans. Microsc Res Tech 38:76–87. https://doi.org/10.1002/(SICI)1097-0029(19970701/15)38:1/2<76::AID-JEMT9>3.0.CO;2-SCrossRefPubMedGoogle Scholar
  94. Leiser R, Krebs C, Klisch K, Ebert B, Dantzer V, Schuler G, Hoffmann B (1997b) Fetal villosity and microvasculature of the bovine placentome in the second half of gestation. J Anat 191:517–527. https://doi.org/10.1017/S0021878297002690CrossRefPubMedPubMedCentralGoogle Scholar
  95. Leiser R, Pfarrer C, Abd-Elnaeim M, Dantzer V (1998) Feto-maternal anchorage in epitheliochorial and endotheliochorial placental types studied by histology and microvascular corrosion casts. Placenta 19:21–39. https://doi.org/10.1016/S0143-4004(98)80031-3CrossRefGoogle Scholar
  96. Leno-Durán E, Hatta K, Bianco J, Yamada ÁT, Ruiz-Ruiz C, Olivares EG, Croy BA (2010) Fetal-placental hypoxia does not result from failure of spiral arterial modification in mice. Placenta 31:731–737. https://doi.org/10.1016/j.placenta.2010.06.002CrossRefPubMedGoogle Scholar
  97. Leonard S, Murrant C, Tayade C, Vandenheuvel M, Watering R, Croy B (2006) Mechanisms regulating immune cell contributions to spiral artery modification—facts and hypotheses—a review. Placenta 27:40–46. https://doi.org/10.1016/j.placenta.2005.11.007CrossRefGoogle Scholar
  98. Levéen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8:1875–1887CrossRefGoogle Scholar
  99. Li C, Houser BL, Nicotra ML, Strominger JL (2009) HLA-G homodimer-induced cytokine secretion through HLA-G receptors on human decidual macrophages and natural killer cells. Proc Natl Acad Sci U S A 106:5767–5772. https://doi.org/10.1073/pnas.0901173106CrossRefPubMedPubMedCentralGoogle Scholar
  100. Lindahl P, Johansson BR, Levéen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245CrossRefGoogle Scholar
  101. Lobo SE, Leonel LCPC, Miranda CMFC, Coelho TM, Ferreira GAS, Mess A, Abrão MS, Miglino MA (2016) The placenta as an organ and a source of stem cells and extracellular matrix: a review. Cells Tissues Organs 201:239–252. https://doi.org/10.1159/000443636CrossRefPubMedGoogle Scholar
  102. Looman C, Sun T, Yu Y, Zieba A, Ahgren A, Feinstein R, Forsberg H, Hellberg C, Heldin CH, Zhang XQ, Forsberg-Nilsson K, Khoo N, Fundele R, Heuchel R (2007) An activating mutation in the PDGF receptor-beta causes abnormal morphology in the mouse placenta. Int J Dev Biol 51:361–370. https://doi.org/10.1387/ijdb.072301clCrossRefPubMedGoogle Scholar
  103. Macara L, Kingdom JC, Kaufmann P, Kohnen G, Hair J, More IA, Lyall F, Greer IA (1996) Structural analysis of placental terminal villi from growth-restricted pregnancies with abnormal umbilical artery Doppler waveforms. Placenta 17:37–48CrossRefGoogle Scholar
  104. Maier CL, Pober JS (2011) Human placental pericytes poorly stimulate and actively regulate allogeneic CD4 T cell responses. Arterioscler Thromb Vasc Biol 31:183–189. https://doi.org/10.1161/ATVBAHA.110.217117CrossRefPubMedGoogle Scholar
  105. Maier CL, Shepherd BR, Yi T, Pober JS (2010) Explant outgrowth, propagation and characterization of human pericytes. Microcirculation 17:367–380. https://doi.org/10.1111/j.1549-8719.2010.00038.xCrossRefPubMedPubMedCentralGoogle Scholar
  106. Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, MacArthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834. https://doi.org/10.1038/nature09262CrossRefPubMedPubMedCentralGoogle Scholar
  107. Mess A, Carter AM (2007) Evolution of the placenta during the early radiation of placental mammals. Comp Biochem Physiol A Mol Integr Physiol 148(4):769–779CrossRefGoogle Scholar
  108. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185:3190–3198. https://doi.org/10.4049/jimmunol.0903670CrossRefPubMedPubMedCentralGoogle Scholar
  109. Moffett A, Loke C (2006) Immunology of placentation in eutherian mammals. Nat Rev Immunol 6:584–594. https://doi.org/10.1038/nri1897CrossRefPubMedGoogle Scholar
  110. Mónica Brauer M, Smith PG (2015) Estrogen and female reproductive tract innervation: cellular and molecular mechanisms of autonomic neuroplasticity. Auton Neurosci 187:1–17CrossRefGoogle Scholar
  111. Moreau JLM, Artap ST, Shi H, Chapman G, Leone G, Sparrow DB, Dunwoodie SL (2014) Cited2 is required in trophoblasts for correct placental capillary patterning. Dev Biol 392:62–79. https://doi.org/10.1016/j.ydbio.2014.04.023CrossRefPubMedGoogle Scholar
  112. Moser G, Weiss G, Sundl M, Gauster M, Siwetz M, Lang-Olip I, Huppertz B (2017) Extravillous trophoblasts invade more than uterine arteries: evidence for the invasion of uterine veins. Histochem Cell Biol 147:353–366. https://doi.org/10.1007/s00418-016-1509-5CrossRefPubMedGoogle Scholar
  113. Mossman HW (1987) Vertebrate fetal membranes. Rutgers University Press, New BrunswiskCrossRefGoogle Scholar
  114. Muñoz-Fernández R, de la Mata C, Prados A, Perea A, Ruiz-Magaña MJ, Llorca T, Fernández-Rubio P, Blanco O, Abadía-Molina AC, Olivares EG (2018) Human predecidual stromal cells have distinctive characteristics of pericytes: cell contractility, chemotactic activity, and expression of pericyte markers and angiogenic factors. Placenta 61:39–47. https://doi.org/10.1016/j.placenta.2017.11.010CrossRefPubMedGoogle Scholar
  115. Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O’Brien SJ (2001) Molecular phylogenetics and the origins of placental mammals. Nature 409:614–618. https://doi.org/10.1038/35054550CrossRefPubMedGoogle Scholar
  116. Murrant CL (2014) Intravital imaging of Vasoactivity in the uterine arterial vasculature tree during pregnancy. In: Croy BA, Yamada A, DeMayo F, Lee Adamson S (eds) The guide to investigation of mouse pregnancy. Elseiver, San Diego, CAGoogle Scholar
  117. Myatt L (1992) Control of vascular resistance in the human placenta. Placenta 13:329–341. https://doi.org/10.1016/0143-4004(92)90057-ZCrossRefPubMedGoogle Scholar
  118. Nadeau V, Charron J (2014) Essential role of the ERK/MAPK pathway in blood-placental barrier formation. Development 141:2825–2837. https://doi.org/10.1242/dev.107409CrossRefPubMedGoogle Scholar
  119. Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R, Kataoka Y, Niwa M (2007) Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 27:687–694. https://doi.org/10.1007/s10571-007-9195-4CrossRefPubMedGoogle Scholar
  120. Nakamura K, Kamouchi M, Kitazono T, Kuroda J, Matsuo R, Hagiwara N, Ishikawa E, Ooboshi H, Ibayashi S, Iida M (2008) Role of NHE1 in calcium signaling and cell proliferation in human CNS pericytes. AJP Hear Circ Physiol 294:H1700–H1707. https://doi.org/10.1152/ajpheart.01203.2007CrossRefGoogle Scholar
  121. Nees S, Weiss DR, Juchem G (2013) Focus on cardiac pericytes. Pflügers Arch - Eur J Physiol 465:779–787. https://doi.org/10.1007/s00424-013-1240-1CrossRefGoogle Scholar
  122. Nikolov SD, Schiebler TH (1973) Über das fetale Gefäßsystem der reifen menschlichen Placenta. Zeitschrift für Zellforsch und Mikroskopische Anat 139:333–350. https://doi.org/10.1007/BF00306590CrossRefGoogle Scholar
  123. Nomura M, Yamagishi SI, Harada SI, Hayashi Y, Yamashima T, Yamashita J, Yamamoto H (1995) Possible participation of autocrine and paracrine vascular endothelial growth factors in hypoxia-induced proliferation of endothelial cells and pericytes. J Biol Chem 270:28316–28324. https://doi.org/10.1074/jbc.270.47.28316CrossRefPubMedGoogle Scholar
  124. Ogino S, Redline RW (2000) Villous capillary lesions of the placenta: distinctions between chorangioma, chorangiomatosis, and chorangiosis. Hum Pathol 31:945–954. https://doi.org/10.1053/hupa.2000.9036CrossRefPubMedGoogle Scholar
  125. Ohlsson R, Falck P, Hellstrom M, Lindahl P, Bostrom H, Franklin G, Ährlund-Richter L, Pollard J, Soriano P, Betsholtz C (1999) PDGFB regulates the development of the labyrinthine layer of the mouse fetal placenta. Dev Biol 212:124–136. https://doi.org/10.1006/dbio.1999.9306CrossRefPubMedGoogle Scholar
  126. Oliveira MS, Barreto-Filho JB (2015) Placental-derived stem cells: culture, differentiation and challenges. World J Stem Cells 7:769–775. https://doi.org/10.4252/wjsc.v7.i4.769CrossRefPubMedPubMedCentralGoogle Scholar
  127. Ottersbach K, Dzierzak E (2010) The placenta as a haematopoietic organ. Int J Dev Biol 54:1099–1106. https://doi.org/10.1387/ijdb.093057koCrossRefPubMedGoogle Scholar
  128. Pallone TL, Silldorff EP (2001) Pericyte regulation of renal medullary blood flow. Exp Nephrol 9:165–170. doi: 52608CrossRefGoogle Scholar
  129. Pallone TL, Silldorff EP, Turner MR (1998) Intrarenal blood flow: microvascular anatomy and the regulation of medullary perfusion. Clin Exp Pharmacol Physiol 25:383–392CrossRefGoogle Scholar
  130. Pallone TL, Zhang Z, Rhinehart K (2003) Physiology of the renal medullary microcirculation. Am J Physiol Ren Physiol 284:F253–F266. https://doi.org/10.1152/ajprenal.00304.2002CrossRefGoogle Scholar
  131. Pan S-Y, Chang Y-T, Lin S-L (2014) Microvascular pericytes in healthy and diseased kidneys. Int J Nephrol Renovasc Dis 7:39–48. https://doi.org/10.2147/IJNRD.S37892CrossRefPubMedPubMedCentralGoogle Scholar
  132. Pereira FTV, Oliveira LJ, Barreto RSN, Mess A, Perecin F, Bressan FF, Mesquita LG, Miglino MA, Pimentel JR, Neto PF, Meirelles FV (2013) Fetal-maternal interactions in the Synepitheliochorial placenta using the eGFP cloned cattle model. PLoS One 8:e64399. https://doi.org/10.1371/journal.pone.0064399CrossRefPubMedPubMedCentralGoogle Scholar
  133. Persson E, Rodriguez-Martinez H (1997) Immunocytochemical localization of growth factors and intermediate filaments during the establishment of the porcine placenta. Microsc Res Tech 38:165–175. https://doi.org/10.1002/(SICI)1097-0029(19970701/15)38:1/2<165::AID-JEMT17>3.0.CO;2-NCrossRefPubMedGoogle Scholar
  134. Pfister F, Przybyt E, Harmsen MC, Hammes H-P (2013) Pericytes in the eye. Pflügers Arch Eur J Physiol 465:789–796. https://doi.org/10.1007/s00424-013-1272-6CrossRefGoogle Scholar
  135. Prazeres PHDM, Sena IFG, IDT B, de Azevedo PO, Andreotti JP, de Paiva AE, de Almeida VM, de Paula Guerra DA, Pinheiro Dos Santos GS, Mintz A, Delbono O, Birbrair A (2017) Pericytes are heterogeneous in their origin within the same tissue. Dev Biol 427:6–11. https://doi.org/10.1016/j.ydbio.2017.05.001CrossRefPubMedCentralGoogle Scholar
  136. Ramsey EM, Martin CB, Donner MW (1967) Fetal and maternal placental circulations. Simultaneous visualization in monkeys by radiography. Am J Obstet Gynecol 98:419–423CrossRefGoogle Scholar
  137. Resta L, Capobianco C, Marzullo A, Piscitelli D, Sanguedolce F, Schena FP, Gesualdo L (2006) Confocal laser scanning microscope study of terminal villi vessels in Normal term and pre-eclamptic placentas. Placenta 27:735–739. https://doi.org/10.1016/j.placenta.2005.07.006CrossRefPubMedGoogle Scholar
  138. Rhodin J (1968) Ultrastructure of mammalian venous capillaries, venules, and small collecting veins. J Ultrastruct Res 25:452–500. https://doi.org/10.1016/S0022-5320(68)80098-XCrossRefPubMedGoogle Scholar
  139. Rizzo R, Lo Monte G, Bortolotti D, Graziano A, Gentili V, Di Luca D, Marci R (2015) Impact of soluble HLA-G levels and endometrial NK cells in uterine flushing samples from primary and secondary unexplained infertile women. Int J Mol Sci 16:5510–5516. https://doi.org/10.3390/ijms16035510CrossRefPubMedPubMedCentralGoogle Scholar
  140. Robin C, Bollerot K, Mendes S, Haak E, Crisan M, Cerisoli F, Lauw I, Kaimakis P, Jorna R, Vermeulen M, Kayser M, van der Linden R, Imanirad P, Verstegen M, Nawaz-Yousaf H, Papazian N, Steegers E, Cupedo T, Dzierzak E (2009) Human placenta is a potent hematopoietic niche containing hematopoietic stem and progenitor cells throughout development. Cell Stem Cell 5(4):385–395. https://doi.org/10.1016/j.stem.2009.08.020CrossRefPubMedPubMedCentralGoogle Scholar
  141. Rodriguez-Martinez H, Persson E, Hurst M, Stanchev P (1992) Immunohistochemical localization of platelet-derived growth factor receptors in the porcine uterus during the oestrous cycle and pregnancy. J Vet Med Ser A 39:1–10. https://doi.org/10.1111/j.1439-0442.1992.tb00151.xCrossRefGoogle Scholar
  142. Rouget C-MB (1873) Mémoire sur le développement, la structure et les proprietés physiologiques des capillaires sanguins et lymphatiques. Arch Psys 5:603–610Google Scholar
  143. Rucker HK, Wynder HJ, Thomas WE (2000) Cellular mechanisms of CNS pericytes. Brain Res Bull 51:363–369CrossRefGoogle Scholar
  144. Sato K, Yamashita N, Baba M, Matsuyama T (2003) Modified myeloid dendritic cells act as regulatory dendritic cells to induce anergic and regulatory T cells. Blood 101:3581–3589. https://doi.org/10.1182/blood-2002-09-2712CrossRefPubMedGoogle Scholar
  145. Shimizu F, Sano Y, Maeda T, Abe M, Nakayama H, Takahashi R, Ueda M, Ohtsuki S, Terasaki T, Obinata M, Kanda T (2008) Peripheral nerve pericytes originating from the blood-nerve barrier expresses tight junctional molecules and transporters as barrier-forming cells. J Cell Physiol 217:367–380. https://doi.org/10.1002/jcp.21508CrossRefGoogle Scholar
  146. Sims DE (2000) Diversity within Pericytes. Clin Exp Pharmacol Physiol 27:842–846. https://doi.org/10.1046/j.1440-1681.2000.03343.xCrossRefPubMedGoogle Scholar
  147. Soriano P (1994) Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev 8:1888–1896CrossRefGoogle Scholar
  148. Stark K, Eckart A, Haidari S, Tirniceriu A, Lorenz M, Von Brühl ML, Gärtner F, Khandoga AG, Legate KR, Pless R, Hepper I, Lauber K, Walzog B, Massberg S (2013) Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and “instruct” them with pattern-recognition and motility programs. Nat Immunol 14(1):41–51. https://doi.org/10.1038/ni.2477CrossRefPubMedGoogle Scholar
  149. Talwadekar MD, Kale VP, Limaye LS (2015) Placenta-derived mesenchymal stem cells possess better immunoregulatory properties compared to their cord-derived counterparts–a paired sample study. Sci Rep 5:15784. https://doi.org/10.1038/srep15784CrossRefPubMedPubMedCentralGoogle Scholar
  150. Thanabalasundaram G, Schneidewind J, Pieper C, Galla H-J (2011) The impact of pericytes on the blood-brain barrier integrity depends critically on the pericyte differentiation stage. Int J Biochem Cell Biol 43(9):1284–1293. https://doi.org/10.1016/j.biocel.2011.05.002CrossRefPubMedGoogle Scholar
  151. Thomas WE (1999) Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Brain Res Rev 31:42–57CrossRefGoogle Scholar
  152. Thornburg KL, Bagby SP, Giraud GD (2006) Maternal adaptation to pregnancy. In: Neill JD (ed) Knobil and Neill’s physiology of reproduction. Elseiver, AmsterdamGoogle Scholar
  153. Tilburgs T, Crespo ÂC, van der Zwan A, Rybalov B, Raj T, Stranger B, Gardner L, Moffett A, Strominger JL (2015) Human HLA-G+ extravillous trophoblasts: immune-activating cells that interact with decidual leukocytes. Proc Natl Acad Sci 112:7219–7224. https://doi.org/10.1073/pnas.1507977112CrossRefPubMedGoogle Scholar
  154. Tu Z, Li Y, Smith DS, Sheibani N, Huang S, Kern T, Lin F (2011) Retinal pericytes inhibit activated T cell proliferation. Invest Ophthalmol Vis Sci 52:9005–9010. https://doi.org/10.1167/iovs.11-8008CrossRefPubMedPubMedCentralGoogle Scholar
  155. Ueno H, Weissman IL (2010) The origin and fate of yolk sac hematopoiesis: application of chimera analyses to developmental studies. Int J Dev Biol 54:1019–1031. https://doi.org/10.1387/ijdb.093039huCrossRefPubMedGoogle Scholar
  156. van der Heijden GW, Dieker JW, Derijck AAHA, Muller S, Berden JHM, Braat DDM, van der Vlag J, de Boer P (2005) Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 122:1008–1022. https://doi.org/10.1016/j.mod.2005.04.009CrossRefPubMedGoogle Scholar
  157. Verbeek MM, Westphal JR, Ruiter DJ, de Waal RM (1995) T lymphocyte adhesion to human brain pericytes is mediated via very late antigen-4/vascular cell adhesion molecule-1 interactions. J Immunol 154:5876–5884PubMedGoogle Scholar
  158. Vogel P (2005) The current molecular phylogeny of eutherian mammals challenges previous interpretations of placental evolution. Placenta 26:591–596. https://doi.org/10.1016/j.placenta.2004.11.005CrossRefPubMedGoogle Scholar
  159. Wehrenberg WB, Chaichareon DP, Dierschke DJ, Rankin JH, Ginther OJ (1977) Vascular dynamics of the reproductive tract in the female rhesus monkey: relative contributions of ovarian and uterine arteries. Biol Reprod 17:148–153CrossRefGoogle Scholar
  160. Wooding FBP, Burton GJ (2008a) Comparative placentation: structures, functions and evolution. Springer, New YorkCrossRefGoogle Scholar
  161. Wooding P, Burton GJ (2008b) Haemochorial placentation: mouse, rabbit, man, apes, monkeys. In: Comparative placentation. Springer, Berlin, pp 185–230CrossRefGoogle Scholar
  162. Wooding FBP, Flint APF (1994) Placentation. In: Lamming GE (ed) Marshall’s physiology of reproduction, 4th edn. Springer-Science, London, pp 233–429CrossRefGoogle Scholar
  163. Wynn RM (1974) Ultrastructural development of the human decidua. Am J Obstet Gynecol 118(5):652–670. https://doi.org/10.1016/S0002-9378(16)33740-1CrossRefPubMedGoogle Scholar
  164. Yamada AT, Bianco JR, Lippe EMO, Degaki KY, Dalmorin AF, Edwards AK, Lima PDA, Paffaro VA (2014) Unique features of endometrial dynamics during pregnancy. In: Anne Croy B, Yamada A, DeMayo F, Lee Adamson S (eds) The guide to investigation of mouse pregnancy. Elseiver, San Diego, CAGoogle Scholar
  165. Yamagishi S, Kawakamia T, Fujimoria H, Yonekura H, Tanaka N, Yamamoto Y, Urayama H, Watanabe Y, Yamamoto H (1999a) Insulin stimulates the growth and tube formation of human microvascular endothelial cells through autocrine vascular endothelial growth factor. Microvasc Res 57:329–339CrossRefGoogle Scholar
  166. Yamagishi S, Yonekura H, Yamamoto Y, Fujimori H, Sakurai S, Tanaka N, Yamamoto H (1999b) Vascular endothelial growth factor acts as a pericyte mitogen under hypoxic conditions. Lab Investig 79(4):501–509PubMedGoogle Scholar
  167. Yonekura H, Sakurai S, Liu X, Migita H, Wang H, Yamagishi S, Nomura M, Abedin MJ, Unoki H, Yamamoto Y, Yamamoto H (1999) Placenta growth factor and vascular endothelial growth factor B and C expression in microvascular endothelial cells and Pericytes. J Biol Chem 274:35172–35178CrossRefGoogle Scholar
  168. Zebardast N, Lickorish D, Davies JE (2010) Human umbilical cord perivascular cells (HUCPVC): a mesenchymal cell source for dermal wound healing. Organogenesis 6:197–203. https://doi.org/10.4161/org.6.4.12393CrossRefPubMedPubMedCentralGoogle Scholar
  169. Zhang EG, Burton GJ, Smith SK, Charnock-Jones DS (2002) Placental vessel adaptation during gestation and to high altitude: changes in diameter and perivascular cell coverage. Placenta 23(10):751–762. https://doi.org/10.1016/S0143-4004(02)90856-8CrossRefPubMedGoogle Scholar
  170. Zhao H, Feng J, Seidel K, Shi S, Klein O, Sharpe P, Chai Y (2014) Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell 14:160–173. https://doi.org/10.1016/j.stem.2013.12.013CrossRefPubMedPubMedCentralGoogle Scholar
  171. Zhu Y, Yang Y, Zhang Y, Hao G, Liu T, Wang L, Yang T, Wang Q, Zhang G, Wei J, Li Y (2014) Placental mesenchymal stem cells of fetal and maternal origins demonstrate different therapeutic potentials. Stem Cell Res Ther 5:48. https://doi.org/10.1186/scrt436CrossRefPubMedPubMedCentralGoogle Scholar
  172. Zygmunt M, Herr F, Münstedt K, Lang U, Liang OD (2003) Angiogenesis and vasculogenesis in pregnancy. Eur J Obstet Gynecol Reprod Biol 110(Suppl 1):S10–S18CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rodrigo S. N. Barreto
    • 1
  • Patricia Romagnolli
    • 1
  • Andressa Daronco Cereta
    • 1
  • Leda M. C. Coimbra-Campos
    • 2
  • Alexander Birbrair
    • 3
    • 4
  • Maria Angelica Miglino
    • 1
    Email author
  1. 1.School of Veterinary Medicine and Animal SciencesUniversity of São PauloButantãBrazil
  2. 2.Department of PathologyFederal University of Minas GeraisPampulhaBrazil
  3. 3.Department of RadiologyColumbia University Medical CenterNew YorkUSA
  4. 4.Department of PathologyFederal University of Minas GeraisPampulhaBrazil

Personalised recommendations