Advertisement

Phytoremediation and Fungi: An Underexplored Binomial

  • Adriana Otero-Blanca
  • Jorge Luis Folch-Mallol
  • Verónica Lira-Ruan
  • María del Rayo Sánchez Carbente
  • Ramón Alberto Batista-García
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

As physical and chemical remediation of xenobiotics is costly and most of the time inefficient, bioremediation has attracted attention in recent years. Bioremediation is the treatment of xenobiotic wastes with living organisms or their parts. Bioremediation with plants has been applied mainly to alleviate pollution by heavy metals, but it has also proven useful with other kinds of xenobiotics, such as polycyclic aromatic hydrocarbons, pesticides, dyes, etc. Plants use several mechanisms for bioremediation of different compounds: phytovolatilization, phytostabilization, phytodegradation, and rhizodegradation. Fungi are ideal for phytoremediation since they can coremove both organic and inorganic pollutants. Additional effort is necessary in the investigation of fungi-based phytoremediation of soil cocontaminated with heavy metals and organic compounds since studies on this are scarce and poli-polluted environments are more frequently found. Mycophytoremediation is a potentially effective strategy for the remediation of soils and waters polluted with xenobiotics. It is an emerging low-cost technology that still has to be explored, but which has already proven to be efficient, since very high percentages of persistent organic pollutants or heavy metals were shown to have been removed.

Keywords

Bioremediation Fungi Mycophytoremediation Phytoremediation Xenobiotics 

References

  1. Abbas S, Ismail I, Mostafa T, Abbas S (2014) Biosorption of heavy metals: review. J Chem Sci Technol 3:74–102Google Scholar
  2. Alarcón A, Delgadillo-Martínez J, Franco-Ramírez A, Davies FT, Ferrera-Cerrato R (2006) Influence of two polycyclic aromatic hydrocarbons on spore germination, and phytoremediation potential of Gigaspora margarita-Echynochloa polystachya symbiosis in benzo[a]pyrene-polluted substrate. Rev Int Contam Ambient 22:39–47Google Scholar
  3. Alegbeleye OO, Opeolu BO, Jackson VA (2017) Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation. Environ Manag 60:758–783CrossRefGoogle Scholar
  4. Amir H, Lagrange A, Hassaïne N, Cavaloc Y (2013) Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species. Mycorrhiza 23:585–595CrossRefGoogle Scholar
  5. Arslan M, Imran A, Khan QM, Afzal M (2017) Plant–bacteria partnerships for the remediation of persistent organic pollutants. Environ Sci Pollut Res 24:4322–4336CrossRefGoogle Scholar
  6. Audet P, Charest C (2006) Effects of AM colonization on “wild tobacco” plants grown in zinc-contaminated soil. Mycorrhiza 16:277–283CrossRefGoogle Scholar
  7. Balcázar-López E, Méndez-Lorenzo LH, Batista-García RA, Esquivel-Naranjo U, Ayala M, Kumar VV, Savary O, Cabana H, Herrera-Estrella A, Folch-Mallol JL (2016) Xenobiotic compounds degradation by heterologous expression of a Trametes sanguineus laccase in Trichoderma atroviride. PLoS One 11:e0147997CrossRefGoogle Scholar
  8. Baldrian P (2008) Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1:4–12CrossRefGoogle Scholar
  9. Brotman Y, Landau U, Cuadros-Inostroza Á, Takayuki T, Fernie AR, Chet I, Viterbo A, Willmitzer L (2013) Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog 9 http://doi.org/101371/journalppat1003221
  10. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304CrossRefGoogle Scholar
  11. Chen B, Ma Q, Tan C, Lim TT, Huang L, Zhang H (2015a) Carbon-based sorbents with three-dimensional architectures for water remediation. Small 11:3319–3336CrossRefGoogle Scholar
  12. Chen M, Xu P, Zeng G, Yang C, Huang D, Zhang J (2015b) Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol Adv 33:745–755CrossRefGoogle Scholar
  13. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRefGoogle Scholar
  14. de Gonzalo G, Colpa DI, Habib MHM, Fraaije MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119CrossRefGoogle Scholar
  15. De los Ríos A, Echavarri-Erasun B, Lacorte S, Sánchez-Ávila J, De Jonge M, Blust R, Orbea A, Juanes JA, Cajaraville MP (2016) Relationships between lines of evidence of pollution in estuarine areas: linking contaminant levels with biomarker responses in mussels and with structure of macroinvertebrate benthic communities. Mar Environ Res 121:49–63CrossRefGoogle Scholar
  16. Deng Z, Cao L (2017) Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere 168:1100–1106CrossRefGoogle Scholar
  17. Dildey ODF, Broetto L, Rissato BB, Gonçalves-Trevisoli EDV, Coltro-Roncato S, Dal’Maso EG, Webler TFB (2016) Trichoderma-bean interaction: defense enzymes activity and endophytism. Afr J Agric Res 11(43):4286–4292CrossRefGoogle Scholar
  18. Dixit R, Wasiullah Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212CrossRefGoogle Scholar
  19. Gao DW, Wen ZD (2016) Phthalate esters in the environment: a critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Sci Total Environ 541:986–1001CrossRefGoogle Scholar
  20. Godheja J, Shekhar SK, Siddiqui SA, Modi DR (2016) Xenobiotic compounds present in soil and water: a review on remediation strategies. J Environ Anal Toxicol 6:5CrossRefGoogle Scholar
  21. Gomes HI, Dias-Ferreira C, Ribeiro AB (2012) Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies. Chemosphere 87:1077–1090CrossRefGoogle Scholar
  22. Gomes HI, Dias-Ferreira C, Ribeiro AB (2013) Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Sci Total Environ 445–446:237–260CrossRefGoogle Scholar
  23. Gong Y, Tang J, Zhao D (2016) Application of iron sulfide particles for groundwater and soil remediation: a review. Water Res 89:309–320CrossRefGoogle Scholar
  24. Goodin JD, Webber MD (1995) Persistence and fate of anthracene and benzo(a)pyrene in municipal sludge treated soil. J Environ Qual 24:271–278CrossRefGoogle Scholar
  25. Grosser R, Warshawsky D, Vestal R (1995) Mineralization of polycyclic and N-heterocyclic aromatic compounds in hydrocarbon-contaminated soils. Environ Toxicol Chem 14:375–382CrossRefGoogle Scholar
  26. Günther T, Dornberger U, Fritsche W (1996) Effects of ryegrass on biodegradation of hydrocarbons in soil. Chemosphere 33(2):203–215CrossRefGoogle Scholar
  27. Hernández-Eligio A, Andrade Á, Soto L, Morett E, Juárez K (2017) The unphosphorylated form of the PilR two-component system regulates pilA gene expression in Geobacter sulfurreducens. Environ Sci Pollut Res 24:25693–25701CrossRefGoogle Scholar
  28. Hernández-Ortega HA, Alarcón A, Ferrera-Cerrato R, Zavaleta-Mancera HA, López-Delgado HA, Mendoza-López MR (2012) Arbuscular mycorrhizal fungi on growth, nutrient status, and total antioxidant activity of Melilotus albus during phytoremediation of a diesel-contaminated substrate. J Environ Manag 95:S319–S324CrossRefGoogle Scholar
  29. Hlihor RM, Gavrilescu M, Tavares T, Fvier L, Olivieri G (2017) Editorial bioremediation: an overview on current practices, advances, and new perspectives in environmental pollution treatment Hindawi. Biomed Res Int 2:3–5Google Scholar
  30. Hong Y, Liao D, Chen J, Khan S, Su J, Li H (2015) A comprehensive study of the impact of polycyclic aromatic hydrocarbons (PAHs) contamination on salt marsh plants Spartina alterniflora: implication for plant-microbe interactions in phytoremediation. Environ Sci Pollut Res 22:7071–7081CrossRefGoogle Scholar
  31. Joanna Ż, Pi A, Marchlewicz A, Hupert-kocurek K, Wojcieszy D (2018) Organic micropollutants paracetamol and ibuprofen – toxicity, biodegradation, and genetic background of their utilization by bacteria. Environ Sci Pollut Res Int 25:21498–21524CrossRefGoogle Scholar
  32. Joner E, Leyval C (2003) Phytoremediation of organic pollutants using mycorrhizal plants: a new aspect of rhizosphere interactions. Agronomie EDP Sci 23(5-6):495–502Google Scholar
  33. Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C (2017) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor 182:247–268CrossRefGoogle Scholar
  34. Khan AG (2006) Mycorrhizoremediation – an enhanced form of phytoremediation. J Zhejiang Univ Sci B 7:503–514CrossRefGoogle Scholar
  35. Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manag 71:95–122CrossRefGoogle Scholar
  36. Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu N, Baldé AB, Bertollini R, Bose-O’Reilly S, Boufford JI, Breysse PN, Chiles T, Mahidol C, Coll-Seck AM, Cropper ML, Fobil J, Fuster V, Greenstone M, Haines A, Hanrahan D, Hunter D, Khare M, Krupnick A, Lanphear B, Lohani B, Martin K, Mathiasen KV, McTeer MA, Murray CJL, Ndahimananjara JD, Perera F, Potočnik J, Preker AS, Ramesh J, Rockström J, Salinas C, Samson LD, Sandilya K, Sly PD, Smith KR, Steiner A, Stewart RB, Suk WA, van Schayck OCP, Yadama GN, Yumkella K, Zhong M (2017) The lancet commission on pollution and health. Lancet 391(3–9):462–512Google Scholar
  37. Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojta-Wasilewska M, Cho N-S, Hofrichter M, Rogalski J, Wasilewska W (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27:175–185CrossRefGoogle Scholar
  38. Li H, Li X, Xiang L, Zhao HM, Li YW, Cai QY, Zhu L, Mo CH, Wong MH (2018) Phytoremediation of soil co-contaminated with Cd and BDE-209 using hyperaccumulator enhanced by AM fungi and surfactant. Sci Total Environ 613–614:447–455CrossRefGoogle Scholar
  39. Lim MW, Von Lau E, Poh PE (2016) A comprehensive guide of remediation technologies for oil contaminated soil – present works and future directions. Mar Pollut Bull 109:14–45CrossRefGoogle Scholar
  40. Lin CH, Lerch RN, Garrett HE, George MF (2005) Incorporating forage grasses in riparian buffers for bioremediation of atrazine, isoxaflutole and nitrate in Missouri. Agrofor Syst 63:91–99CrossRefGoogle Scholar
  41. Liu H, Yuan M, Tan S, Yang X, Lan Z, Jiang Q, Ye Z, Jing Y (2015) Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Appl Soil Ecol 89:44–49CrossRefGoogle Scholar
  42. Madariaga-Navarrete A, Rodríguez-Pastrana BR, Villagómez-Ibarra JR, Acevedo-Sandoval OA, Perry G, Islas-Pelcastre M (2017) Bioremediation model for atrazine contaminated agricultural soils using phytoremediation (using Phaseolus vulgaris L) and a locally adapted microbial consortium. J Environ Sci Heal B Pestic Food Contam Agric Wastes 52:367–375CrossRefGoogle Scholar
  43. Mena E, Villaseñor J, Rodrigo MA, Cañizares P (2016) Electrokinetic remediation of soil polluted with insoluble organics using biological permeable reactive barriers: effect of periodic polarity reversal and voltage gradient. Chem Eng J 299:30–36CrossRefGoogle Scholar
  44. Mohsenzadeh F, Nasseri S, Mesdaghinia A, Nabizadeh R, Zafari D, Khodakaramian G, Chehregani A (2010) Phytoremediation of petroleum-polluted soils: application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils. Ecotoxicol Environ Saf 73:613–619CrossRefGoogle Scholar
  45. Ortiz-Hernández ML, Sánchez-Salinas E, Olvera-Velona A, Folch-Mallo JL (2011) Pesticides in the environment: impacts and their biodegradation as a strategy for residues treatment. In: Pesticides, Intech Open, p 22Google Scholar
  46. Pelagio-Flores R, Esparza-Reynoso S, Garnica-Vergara A, López-Bucio J, Herrera-Estrella A (2017) Trichoderma-induced acidification is an early trigger for changes in Arabidopsis root growth and determines fungal phytostimulation. Front Plant Sci 8:1–13CrossRefGoogle Scholar
  47. Prasad R (2017) Mycoremediation and environmental sustainability, vol 1. Springer International Publishing, Cham, Switzerland https://doi.org/10.1007/978-3-319-68957-9
  48. Prasad R (2018) Mycoremediation and environmental sustainability, vol 2. Springer International Publishing, Cham, Switzerland https://www.springer.com/us/book/9783319773858
  49. Punamiya P, Datta R, Sarkar D, Barber S, Patel M, Das P (2010) Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L)]. J Hazard Mater 177:465–474CrossRefGoogle Scholar
  50. Rajtor M, Piotrowska-Seget Z (2016) Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants. Chemosphere 162:105–116CrossRefGoogle Scholar
  51. Rasmussen G, Olsen RA (2004) Sorption and biological removal of creosote-contaminants from groundwater in soil/sand vegetated with orchard grass (Dactylis glomerata). Adv Environ Res 8:313–327CrossRefGoogle Scholar
  52. Reddy KR (2008) Physical and chemical groundwater remediation technologies. In: Overexploitation contam shar groundw resour. Springer, Dordrecht, pp 257–274CrossRefGoogle Scholar
  53. Rillig MC, Ramsey PW, Morris S, Paul EA (2003) Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Plant Soil 253:293–299CrossRefGoogle Scholar
  54. Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226CrossRefGoogle Scholar
  55. Salami AO, Opadiran AE, Idowu OO (2017) Bioremediation potentials of Trichoderma harzianum and Glomus mosseae on the growth of Capsicum annum L grown on soil irrigated with water from mining site. Int J Biosci Agric Technol 8(9):64–72Google Scholar
  56. Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131:15–26CrossRefGoogle Scholar
  57. Sánchez-Avila JI, Kretzschmar T (2017) Simultaneous determination of polycyclic aromatic hydrocarbons, alkylphenols, phthalate esters and polychlorinated biphenyls in environmental waters based on headspace–solid phase microextraction followed by gas chromatography–tandem mass spectrometry. J Environ Anal Chem 4:11Google Scholar
  58. Sánchez-Avila J, Tauler R, Lacorte S (2012) Organic micropollutants in coastal waters from NW Mediterranean Sea: sources distribution and potential risk. Environ Int 46:50–62CrossRefGoogle Scholar
  59. Sharma S, Prasad R, Varma A, Sharma AK (2017) Glycoprotein associated with Funneliformis coronatum, Gigaspora margarita and Acaulospora scrobiculata suppress the plant pathogens in vitro. Asian Journal of Plant Pathology https://doi.org/10.3923/ajppaj.2017
  60. Siddiquee S, Rovina K, Al AS, Naher L, Suryani S, Chaikaew P (2015) Microbial & biochemical technology heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. Microbiol Biochem Technol 7:384–393CrossRefGoogle Scholar
  61. Simon L, Bousquet J, Levesque RC, Lalonde M (1993) ©19 9 3 Nature Publishing Group Nature 363:67–69Google Scholar
  62. Singh P, Jain R, Srivastava N, Borthakur A, Pal DB, Singh R, Madhav S, Srivastava P, Tiwary D, Mishra PK (2017) Current and emerging trends in bioremediation of petrochemical waste: a review. Crit Rev Environ Sci Technol 47:155–201CrossRefGoogle Scholar
  63. Soleimani M, Afyuni M, Hajabbasi MA, Nourbakhsh F, Sabzalian MR, Christensen JH (2010) Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere 81:1084–1090CrossRefGoogle Scholar
  64. Thiruvenkatachari R, Vigneswaran S, Naidu R (2008) Permeable reactive barrier for groundwater remediation. J Ind Eng Chem 14:145–156CrossRefGoogle Scholar
  65. Tripathi V, Edrisi SA, O’Donovan A, Gupta VK, Abhilash PC (2016) Bioremediation for fueling the biobased economy. Trends Biotechnol 34:775–777CrossRefGoogle Scholar
  66. Valderrama B, Oliver P, Medrano-Soto A, Vazquez-Duhalt R (2003) Evolutionary and structural diversity of fungal laccases. Antonie Van Leeuwenhoek 84:289–299CrossRefGoogle Scholar
  67. Van Bloois E, Torres Pazmiño DE, Winter RT, Fraaije MW (2010) A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl Microbiol Biotechnol 86:1419–1430CrossRefGoogle Scholar
  68. Williams PA, Murray K (1974) Metabolism of benzoate and the methylbenzoates by mt-2: evidence for the existence of a TOL plasmid metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J Bacteriol 120:416–423Google Scholar
  69. Wong CC, Wu SC, Kuek C, Khan AG, Wong MH (2007) The role of mycorrhizae associated with vetiver grown in Pb-/ Zn-contaminated soils: greenhouse study. Restor Ecol 15:60–67CrossRefGoogle Scholar
  70. Worsey MJ, Williams PA (1975) Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. J Bacteriol 124:7–13Google Scholar
  71. Xiao X, Luo S, Zeng G, Wei W, Wan Y, Chen L, Guo H, Cao Z, Yang L, Chen J, Xi Q (2010) Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresour Technol 101:1668–1674CrossRefGoogle Scholar
  72. Xun F, Xie B, Liu S, Guo C (2015) Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut Res 22:598–608CrossRefGoogle Scholar
  73. Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Adriana Otero-Blanca
    • 1
  • Jorge Luis Folch-Mallol
    • 2
  • Verónica Lira-Ruan
    • 1
  • María del Rayo Sánchez Carbente
    • 2
  • Ramón Alberto Batista-García
    • 1
  1. 1.Centro de Investigación en Dinámica Celular-IICBAUniversidad Autónoma del Estado de MorelosCuernavacaMexico
  2. 2.Centro de Investigación en BiotecnologíaUniversidad Autónoma del Estado de MorelosCuernavacaMexico

Personalised recommendations