Skip to main content

Biosensors Based on Sol–Gel Nanoparticle Matrices

  • Chapter
  • First Online:
NanoBiosensing

Abstract

In recent years, many researchers have been engaged in the development of ­biosensors for environmental and biomedical monitoring. A biosensor is an analytical­ device composed of a biological sensing element such as a protein, antigen, antibody, DNA, or RNA in intimate contact with a physical, optical, mass, or ­electrochemical transducers, which can generate a measurable signal relating to the concentration of an analyte. Many review articles have discussed the development of this field [1–5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Byfield, M.P., Abuknesha, R.A.: Biochemical aspects of biosensors. Biosens. Bioelectron. 9, 373–400 (1994)

    Article  CAS  Google Scholar 

  2. Xu, Z., Chen, X., Dong, S.J.: Electrochemical biosensors based on advanced bioimmobilization matrices. Trac Trend. Anal. Chem. 25, 899–908 (2006)

    Article  CAS  Google Scholar 

  3. Wu, Y.H., Hu, S.S.: Biosensors based on direct electron transfer in redox proteins. Microchim. Acta 159, 1–17 (2007)

    Article  CAS  Google Scholar 

  4. Suri, C.R., Raje, M., Varshney, G.C.: Immunosensors for pesticide analysis: antibody production and sensor development. Crit. Rev. Biotechnol. 22, 15–32 (2002)

    Article  CAS  Google Scholar 

  5. Prieto-Simon, B., Campas, M., Marty, J.L.: Biomolecule immobilization in biosensor development: tailored strategies based on affinity interactions. Protein Pept. Lett. 15, 757–763 (2008)

    Article  CAS  Google Scholar 

  6. Kim, J., Grate, J.W., Wang, P.: Nanostructures for enzyme stabilization. Chem. Eng. Sci. 61, 1017–1026 (2006)

    Article  CAS  Google Scholar 

  7. Tripathi, V.S., Kandimalla, V.B., Ju, H.X.: Preparation of ormosil and its applications in the immobilizing biomolecules. Sens. Actuat. B Chem. 114, 1071–1082 (2006)

    Article  CAS  Google Scholar 

  8. Cosnier, S.: Biosensors based on electropolymerized films: new trends. Anal. Bioanal. Chem. 377, 507–520 (2003)

    Article  CAS  Google Scholar 

  9. Pierre, A.C.: The sol-gel encapsulation of enzymes. Biocatal. Biotransform. 22, 145–170 (2004)

    Article  CAS  Google Scholar 

  10. Wang, S.X., Li, G.: Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: review and outlook. IEEE Trans. Magn. 44, 1687–1702 (2008)

    Article  Google Scholar 

  11. Bagwe, R.P., Zhao, X.J., Tan, W.H.: Bioconjugated luminescent nanoparticles for biological applications. J. Dispersion Sci. Technol. 24, 453–464 (2003)

    Article  CAS  Google Scholar 

  12. Salgueirino-Maceira, V., Caruso, F., Liz-Marzan, L.M.: Coated colloids with tailored optical properties. J. Phys. Chem. B 107, 10990–10994 (2003)

    Article  CAS  Google Scholar 

  13. Qhobosheane, M., Santra, S., Zhang, P., et al.: Biochemically functionalized silica nanoparticles. Analyst 126, 1274–1278 (2001)

    Article  CAS  Google Scholar 

  14. Glynou, K., Ioannou, P.C., Christopoulos, T.K., et al.: Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. Anal. Chem. 75, 4155–4160 (2003)

    Article  CAS  Google Scholar 

  15. Wu, S., Liu, Y.Y., Wu, H., et al.: Prussian blue nanoparticles doped nanocage for controllable immobilization and selective biosensing of enzyme. Electrochem. Commun. 10, 397–401 (2008)

    Article  CAS  Google Scholar 

  16. Dong, H.F., Yan, F., Ji, H.X., et al.: Quantum-dot-functionalized poly(styrene-co-acrylic acid) microbeads: step-wise self-assembly, characterization, and applications for sub-femtomolar electrochemical detection of DNA hybridization. Adv. Funct. Mater. 20, 1173–1179 (2010)

    Article  CAS  Google Scholar 

  17. Castelvetro, V., De Vita, C.: Nanostructured hybrid materials from aqueous polymer dispersions. Adv. Colloid Interface Sci. 108, 167–185 (2004)

    Article  CAS  Google Scholar 

  18. Khomane, R.B., Sharma, B.K., Saha, S., et al.: Reverse microemulsion mediated sol-gel synthesis of lithium silicate nanoparticles under ambient conditions: scope for CO2 sequestration. Chem. Eng. Sci. 61, 3415–3418 (2006)

    Article  CAS  Google Scholar 

  19. Mackenzie, J.D., Bescher, E.P.: Chemical routes in the synthesis of nanomaterials using the sol-gel process. Acc. Chem. Res. 40, 810–818 (2007)

    Article  CAS  Google Scholar 

  20. Laurent, S., Bridot, J.L., Elst, L.V., et al.: Magnetic iron oxide nanoparticles for biomedical applications. Future Med. Chem. 2, 427–449 (2010)

    Article  CAS  Google Scholar 

  21. Caruso, R.A., Antonietti, M.: Sol-gel nanocoating: an approach to the preparation of structured materials. Chem. Mater. 13, 3272–3282 (2001)

    Article  CAS  Google Scholar 

  22. Mukherjee, B., Karthik, C., Ravishankar, N.: Hybrid sol-gel combustion synthesis of nanoporous anatase. J. Phys. Chem. C 113, 18204–18211 (2009)

    Article  CAS  Google Scholar 

  23. Du, T.B., Song, H.W., Ilegbusi, O.J.: Sol-gel derived zno/pvp nanocomposite thin film for superoxide radical sensor. Mater. Sci. Eng. C Biomimetic Supramol. Syst. 27, 414–420 (2007)

    Article  CAS  Google Scholar 

  24. Kang, X.H., Mai, Z.B., et al.: Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol-gel chitosan/silica hybrid. Talanta 74, 879–886 (2008)

    Article  CAS  Google Scholar 

  25. Pingarron, J.M., Yanez-Sedeno, P., Gonzalez-Cortes, A.: Gold nanoparticle-based electrochemical biosensors. Electrochim. Acta 53, 5848–5866 (2008)

    Article  CAS  Google Scholar 

  26. Hench, L.L., West, J.K.: The sol-gel process. Chem. Rev. 90, 33–72 (1990)

    Article  CAS  Google Scholar 

  27. Agrawal, A., Cronin, J.P., Zhang, R.: Review of solid-state electrochromic coatings produced using sol-gel techniques. Sol. Energy Mater. Sol. Cells 31, 9–21 (1993)

    Article  CAS  Google Scholar 

  28. Ward, D.A., Ho, E.I.: Preparing catalytic materials by the sol-gel method. Ind. Eng. Chem. Res. 34, 421–433 (1995)

    Article  CAS  Google Scholar 

  29. Alber, K.S., Cox, J.A.: Electrochemistry in solids prepared by sol-gel processes. Microchim. Acta 127, 131–147 (1997)

    Article  CAS  Google Scholar 

  30. Komarneni, S., Abothu, I.R., Rao, A.V.P.: Sol-gel processing of some electroceramic powders. J. Sol-Gel Sci. Technol. 15, 263–270 (1999)

    Article  CAS  Google Scholar 

  31. Maruszewski, K., Strek, W., Jasiorski, M., et al.: Technology and applications of sol-gel ­materials. Radiat. Eff. Defects Solids 158, 439–450 (2003)

    Article  CAS  Google Scholar 

  32. Airoldi, C., de Farias, R.F.: Alkoxide as precursors in the synthesis of new materials through the sol-gel process. Quim. Nova 27, 84–88 (2004)

    Article  CAS  Google Scholar 

  33. Cushing, B.L., Kolesnichenko, V.L., O’Connor, C.J.: Recent advances in the liquid-phase ­syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893–3946 (2004)

    Article  CAS  Google Scholar 

  34. Dave, B.C., Dunn, B., Valentine, J.S., et al.: Sol-gel encapsulation methods for biosensors. Anal. Chem. 66, A1120–A1127 (1994)

    Article  Google Scholar 

  35. Kirkbir, F., Murata, H., Meyers, D., et al.: Drying and sintering of sol-gel derived large sio2 monoliths. J. Sol-Gel. Sci. Technol. 6, 203–217 (1996)

    Article  CAS  Google Scholar 

  36. Gupta, R., Kumar, A.: Bioactive materials for biomedical applications using sol-gel technology. Biomed. Mater. 3, 1–15 (2008)

    Article  CAS  Google Scholar 

  37. Stober, W., Fink, A., Bohn, E.: Controlled growth of monodisperse silica spheres in micron size range. J. Colloid Interface Sci. 26, 62–69 (1968)

    Article  Google Scholar 

  38. Aegerter, M.A., Puetz, J., Gasparro, G., et al.: Versatile wet deposition techniques for functional oxide coatings. Opt. Mater. 26, 155–162 (2004)

    Article  CAS  Google Scholar 

  39. Gonzalez-McQuire, R., Tsetsekou, A.: Hydroxyapatite-biomolecule coatings onto titanium surfaces. Surf. Coat. Technol. 203, 186–190 (2008)

    Article  CAS  Google Scholar 

  40. Okuyama, K., Lenggoro, I.W.: Preparation of nanoparticles via spray route. Chem. Eng. Sci. 58, 537–547 (2003)

    Article  CAS  Google Scholar 

  41. Wu, Y.F., Chen, C.L., Liu, S.Q.: Enzyme-functionalized silica nanoparticies as sensitive labels in biosensing. Anal. Chem. 81, 1600–1607 (2009)

    Article  CAS  Google Scholar 

  42. Hong, Z.K., Liu, A.X., Chen, L., et al.: Preparation of bioactive glass ceramic nanoparticles by combination of sol-gel and coprecipitation method. J. Non Cryst. Solids 355, 368–372 (2009)

    Article  CAS  Google Scholar 

  43. Singh, R., Khardekar, R.K., Kohli, D.K., et al.: Synthesis of platinum nanoparticles on carbon aerogel by ambient pressure drying method. Mater. Lett. 64, 843–845 (2010)

    Article  CAS  Google Scholar 

  44. Braun, S., Rappoport, S., Zusman, R., et al.: Biochemically active sol-gel glasses – the trapping of enzymes. Mater. Lett. 10, 1–5 (1990)

    Article  CAS  Google Scholar 

  45. Sarma, A.K., Vatsyayan, P., Goswami, P., et al.: Recent advances in material science for developing enzyme electrodes. Biosens. Bioelectron. 24, 2313–2322 (2009)

    Article  CAS  Google Scholar 

  46. Walcarius, A.: Analytical applications of silica-modified electrodes – a comprehensive review. Electroanalysis 10, 1217–1235 (1998)

    Article  CAS  Google Scholar 

  47. Avnir, D., Braun, S., Lev, O., et al.: Enzymes and other proteins entrapped in sol-gel materials. Chem. Mater. 6, 1605–1614 (1994)

    Article  CAS  Google Scholar 

  48. Zhang, Y., Chen, N.Y., Zhu, L.G.: Progress in immobilization of biological materials by ­sol-gel method. Chem. J. Chin. Univ. Chin. 21, 675–680 (2000)

    CAS  Google Scholar 

  49. Walcarius, A.: Electrochemical applications of silica-based organic-inorganic hybrid ­materials. Chem. Mater. 13, 3351–3372 (2001)

    Article  CAS  Google Scholar 

  50. Kandimalla, V.B., Tripathi, V.S., Ju, H.X.: Immobilization of biomolecules in sol-gels: ­biological and analytical applications. Crit. Rev. Anal. Chem. 36, 73–106 (2006)

    Article  CAS  Google Scholar 

  51. Jeronimo, P.C.A., Araujo, A.N., Montenegro, M.: Optical sensors and biosensors based on sol-gel films. Talanta 72, 13–27 (2007)

    Article  CAS  Google Scholar 

  52. Walcarius, A., Collinson, M.M.: Analytical chemistry with silica sol-gels: traditional routes to new materials for chemical analysis. Annu. Rev. Anal. Chem. 2, 121–143 (2009)

    Article  CAS  Google Scholar 

  53. Pellegri, N., Trbojevich, R., DeSanctis, O., et al.: Fabrication of PBS nanoparticles embedded in silica gel by reverse micelles and sol-gel routes. J. Sol-Gel Sci. Technol. 8, 1023–1028 (1997)

    CAS  Google Scholar 

  54. Knopp, D., Tang, D.P., Niessner, R.: Bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles. Anal. Chim. Acta 647, 14–30 (2009)

    Article  CAS  Google Scholar 

  55. He, P.L., Hu, N.F., Rusling, J.F.: Driving forces for layer-by-layer self-assembly of films of SiO2 nanoparticles and heme proteins. Langmuir 20, 722–729 (2004)

    Article  CAS  Google Scholar 

  56. Luckarift, H.R., Balasubramanian, S., Paliwal, S., et al.: Enzyme-encapsulated silica monolayers for rapid functionalization of a gold surface. Colloids Surf. B Biointerfaces 58, 28–33 (2007)

    Article  CAS  Google Scholar 

  57. Grant, S.A., Weilbaecher, C., Lichlyter, D.: Development of a protease biosensor utilizing silica nanobeads. Sens. Actuat. B Chem. 121, 482–489 (2007)

    Article  CAS  Google Scholar 

  58. Tang, F.Q., Meng, X.W., Chen, D., et al.: Glucose biosensor enhanced by nanoparticles. Sci. China Ser. B Chem. 43, 268–274 (2000)

    Article  CAS  Google Scholar 

  59. Tsagkogeorgas, F., Ochsenkuhn-Petropoulou, M., Niessner, R., et al.: Encapsulation of biomolecules for bioanalytical purposes: preparation of diclofenac antibody-doped nanometer-sized silica particles by reverse micelle and sol-gel processing. Anal. Chim. Acta 573, 133–137 (2006)

    Article  CAS  Google Scholar 

  60. Wu, H., Huo, Q.S., Varnum, S., et al.: Dye-doped silica nanoparticle labels/protein microarray for detection of protein biomarkers. Analyst 133, 1550–1555 (2008)

    Article  CAS  Google Scholar 

  61. Bagwe, R.P., Hilliard, L.R., Tan, W.H.: Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22, 4357–4362 (2006)

    Article  CAS  Google Scholar 

  62. Tapec, R., Zhao, X.J.J., Tan, W.H.: Development of organic dye-doped silica nanoparticles for bioanalysis and biosensors. J. Nanosci. Nanotechnol. 2, 405–409 (2002)

    Article  CAS  Google Scholar 

  63. Zhang, F.F., Wan, Q., Wang, X.L., et al.: Amperometric sensor based on ferrocene-doped silica nanoparticles as an electron transfer mediator for the determination of glucose in rat brain coupled to in vivo microdialysis. J. Electroanal. Chem. 571, 133–138 (2004)

    Article  CAS  Google Scholar 

  64. He, X.X., Wang, K.M., Tan, W.H., et al.: Photostable luminescent nanoparticles as biological label for cell recognition of system lupus erythematosus patients. J. Nanosci. Nanotechnol. 2, 317–320 (2002)

    Article  CAS  Google Scholar 

  65. Zhang, L.L., Zheng, X.W.: A novel electrogenerated chemiluminescence sensor for pyrogallol with core-shell luminol-doped silica nanoparticles modified electrode by the self-assembled technique. Anal. Chim. Acta 570, 207–213 (2006)

    Article  CAS  Google Scholar 

  66. Qin, D.L., He, X.X., Wang, K.M., et al.: Fluorescent nanoparticle-based indirect immunofluorescence microscopy for detection of Mycobacterium tuberculosis. J. Biomed. Biotechnol. 7, 89364 (2007)

    Google Scholar 

  67. Liu, S., Zhang, H.L., Liu, T.C., et al.: Optimization of the methods for introduction of amine groups onto the silica nanoparticle surface. J. Biomed. Mater. Res. A 80A, 752–757 (2007)

    Article  CAS  Google Scholar 

  68. Holmes, P.F., Currie, E.P.K., Thies, J.C., et al.: Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating: suppression of protein adsorption and bacterial adhesion. J. Biomed. Mater. Res. A 91A, 824–833 (2009)

    Article  CAS  Google Scholar 

  69. Qian, J., Li, X., Wei, M., et al.: Bio-molecule-conjugated fluorescent organically modified silica nanoparticles as optical probes for cancer cell imaging. Opt. Express 16, 19568–19578 (2008)

    Article  CAS  Google Scholar 

  70. Endo, T., Kerman, K., Nagatani, N., et al.: Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor. Anal. Chem. 77, 6976–6984 (2005)

    Article  CAS  Google Scholar 

  71. Slowing, I.I., Trewyn, B.G., Giri, S., et al.: Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. 17, 1225–1236 (2007)

    Article  CAS  Google Scholar 

  72. Won, Y.H., Jang, H.S., Kim, S.M., et al.: Biomagnetic glasses: preparation, characterization, and biosensor applications. Langmuir 26, 4320–4326 (2010)

    Article  CAS  Google Scholar 

  73. Zhou, X.C., Zhou, J.Z.: Improving the signal sensitivity and photostability of DNA hybridizations on microarrays by using dye-doped core-shell silica nanoparticles. Anal. Chem. 76, 5302–5312 (2004)

    Article  CAS  Google Scholar 

  74. Borchers, K., Weber, A., Brunner, H., et al.: Microstructured layers of spherical biofunctional core-shell nanoparticles provide enlarged reactive surfaces for protein microarrays. Anal. Bioanal. Chem. 383, 738–746 (2005)

    Article  CAS  Google Scholar 

  75. Aslan, K., Wu, M., Lakowicz, J.R., et al.: Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J. Am. Chem. Soc. 129, 1524–1525 (2007)

    Article  CAS  Google Scholar 

  76. Zhang, L.H., Liu, B.F., Dong, S.J.: Bifunctional nanostructure of magnetic core luminescent shell and its application as solid-state electrochemiluminescence sensor material. J. Phys. Chem. B 111, 10448–10452 (2007)

    Article  CAS  Google Scholar 

  77. Wang, Y.Y., Chen, X.J., Zhu, J.J.: Fabrication of a novel hydrogen peroxide biosensor based on the AuNPs-c@SiO2 composite. Electrochem. Commun. 11, 323–326 (2009)

    Article  CAS  Google Scholar 

  78. Gupta, R., Chaudhury, N.K.: Entrapment of biomolecules in sol-gel matrix for applications in biosensors: problems and future prospects. Biosens. Bioelectron. 22, 2387–2399 (2007)

    Article  CAS  Google Scholar 

  79. Topoglidis, E., Lutz, T., Willis, R.L., et al.: Protein adsorption on nanoporous TiO2 films: a novel approach to studying photoinduced protein/electrode transfer reactions. Faraday Discuss. 116, 35–46 (2000)

    Article  CAS  Google Scholar 

  80. Topoglidis, E., Campbell, C.J., Cass, A.E.G., et al.: Factors that affect protein adsorption on nanostructured titania films. A novel spectroelectrochemical application to sensing. Langmuir 17, 7899–7906 (2001)

    Article  CAS  Google Scholar 

  81. Zhang, Y., He, P.L., Hu, N.F.: Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis. Electrochim. Acta 49, 1981–1988 (2004)

    Article  CAS  Google Scholar 

  82. Yu, J.J., Zhao, T., Zeng, B.Z.: Mesoporous MnO2 as enzyme immobilization host for amperometric glucose biosensor construction. Electrochem. Commun. 10, 1318–1321 (2008)

    Article  CAS  Google Scholar 

  83. Liu, B.H., Cao, Y., Chen, D.D., et al.: Amperometric biosensor based on a nanoporous ZrO2 matrix. Anal. Chim. Acta 478, 59–66 (2003)

    Article  CAS  Google Scholar 

  84. Kim, H.J., Yoon, S.H., Choi, H.N., et al.: Amperometric glucose biosensor based on sol-gel-derived zirconia/nafion composite film as encapsulation matrix. Bull. Korean Chem. Soc. 27, 65–70 (2006)

    Article  CAS  Google Scholar 

  85. Ansari, A.A., Solanki, P.R., Malhotra, B.D.: Sol-gel derived nanostructured tin oxide film for glucose sensor. Sens. Lett. 7, 64–71 (2009)

    Article  CAS  Google Scholar 

  86. Komarneni, S.: Nanocomposites. J. Mater. Chem. 2, 1219–1230 (1992)

    Article  CAS  Google Scholar 

  87. Li, Y.Y., Schluesener, H.J., Xu, S.Q.: Gold nanoparticle-based biosensors. Gold Bull. 43, 29–41 (2010)

    Article  Google Scholar 

  88. Livage, J.: Sol-gel synthesis of hybrid materials. Bull. Mater. Sci. 22, 201–205 (1999)

    Article  CAS  Google Scholar 

  89. Ogoshi, T., Chujo, Y.: Organic-inorganic polymer hybrids prepared by the sol-gel method. Compos. Interfaces 11, 539–566 (2005)

    Article  CAS  Google Scholar 

  90. Liang, R.P., Qiu, H.D., Cai, P.X.: A novel amperometric immunosensor based on three-dimensional sol-gel network and nanoparticle self-assemble technique. Anal. Chim. Acta 534, 223–229 (2005)

    Article  CAS  Google Scholar 

  91. Bharathi, S., Lev, O.: Sol-gel-derived nanocrystalline gold-silicate composite biosensor. Anal. Commun. 35, 29–31 (1998)

    Article  CAS  Google Scholar 

  92. Gavalas, V.G., Law, S.A., Ball, J.C., et al.: Carbon nanotube aqueous sol-gel composites: enzyme-friendly platforms for the development of stable biosensors. Anal. Biochem. 329, 247–252 (2004)

    Article  CAS  Google Scholar 

  93. Tan, X.C., Ll, M.J., Cai, P.X., et al.: An amperometric cholesterol biosensor based on multiwalled carbon nanotubes and organically modified sol-gel/chitosan hybrid composite film. Anal. Biochem. 337, 111–120 (2005)

    Article  CAS  Google Scholar 

  94. Zhao, S., Zhang, K., Sun, Y.Y., et al.: Hemoglobin/colloidal silver nanoparticles immobilized in titania sol-gel film on glassy carbon electrode: direct electrochemistry and electrocatalysis. Bioelectrochemistry 69, 10–15 (2006)

    Article  CAS  Google Scholar 

  95. Du, D., Chen, S., Cai, J., et al.: Immobilization of acetylcholinesterase on gold nanoparticles embedded in sol-gel film for amperometric detection of organophosphorous insecticide. Biosens. Bioelectron. 23, 130–134 (2007)

    Article  CAS  Google Scholar 

  96. Zuo, S.H., Teng, Y.J., Yuan, H.H., et al.: Development of a novel silver nanoparticles-enhanced screen-printed amperometric glucose biosensor. Anal. Lett. 41, 1158–1172 (2008)

    Article  CAS  Google Scholar 

  97. Zhong, Z.Y., Male, K.B., Luong, J.H.T.: More recent progress in the preparation of Au nanostructures, properties, and applications. Anal. Lett. 36, 3097–3118 (2003)

    Article  CAS  Google Scholar 

  98. Liu, J.W., Lu, Y.: Colorimetric biosensors based on dnazyme-assembled gold nanoparticles. J. Fluoresc. 14, 343–354 (2004)

    Article  CAS  Google Scholar 

  99. Zhou, J.F., Ralston, J., Sedev, R., et al.: Functionalized gold nanoparticles: synthesis, structure and colloid stability. J. Colloid Interface Sci. 331, 251–262 (2009)

    Article  CAS  Google Scholar 

  100. Cai, H., Wang, Y.Q., He, P.G., et al.: Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Anal. Chim. Acta 469, 165–172 (2002)

    Article  CAS  Google Scholar 

  101. Maxwell, D.J., Taylor, J.R., Nie, S.M.: Self-assembled nanoparticle probes for recognition and detection of biomolecules. J. Am. Chem. Soc. 124, 9606–9612 (2002)

    Article  CAS  Google Scholar 

  102. West, J.L., Halas, N.J.: Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu. Rev. Biomed. Eng. 5, 285–292 (2003)

    Article  CAS  Google Scholar 

  103. Sato, K., Hosokawa, K., Maeda, M.: Colorimetric biosensors based on DNA-nanoparticle conjugates. Anal. Sci. 23, 17–20 (2007)

    Article  Google Scholar 

  104. Zhang, X.Q., Guo, Q., Cui, D.X.: Recent advances in nanotechnology applied to biosensors. Sensors 9, 1033–1053 (2009)

    Article  CAS  Google Scholar 

  105. Jia, J.B., Wang, B.Q., Wu, A.G., et al.: A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel ­network. Anal. Chem. 74, 2217–2223 (2002)

    Article  CAS  Google Scholar 

  106. Wang, L., Wang, E.K.: Direct electron transfer between cytochrome c and a gold nanoparticles modified electrode. Electrochem. Commun. 6, 49–54 (2004)

    Article  CAS  Google Scholar 

  107. Wu, Z.S., Li, J.S., Luo, M.H., et al.: A novel capacitive immunosensor based on gold colloid monolayers associated with a sol-gel matrix. Anal. Chim. Acta 528, 235–242 (2005)

    Article  CAS  Google Scholar 

  108. Fu, Y.Z., Yuan, R., Xu, L., et al.: Indicator free DNA hybridization detection via eis based on self-assembled gold nanoparticles and bilayer two-dimensional 3-mercaptopropyltrimethoxysilane onto a gold substrate. Biochem. Eng. J. 23, 37–44 (2005)

    Article  CAS  Google Scholar 

  109. Chen, X.H., Wilson, G.S.: Electrochemical and spectroscopic characterization of surface ­sol-gel processes. Langmuir 20, 8762–8767 (2004)

    Article  CAS  Google Scholar 

  110. Lei, C.X., Long, L.P., Can, Z.L.: An H2O2 biosensor based on immobilization of horseradish peroxidase labeled nano-Au in silica sol-gel/alginate composite film. Anal. Lett. 38, 1721–1734 (2005)

    Article  CAS  Google Scholar 

  111. Du, D., Chen, S.Z., Cai, J., et al.: Electrochemical pesticide sensitivity test using acetylcholinesterase biosensor based on colloidal gold nanoparticle modified sol-gel interface. Talanta 74, 766–772 (2008)

    Article  CAS  Google Scholar 

  112. Du, D., Chen, S.Z., Cai, J., et al.: Comparison of drug sensitivity using acetylcholinesterase biosensor based on nanoparticles-chitosan sol-gel composite. J. Electroanal. Chem. 611, 60–66 (2007)

    Article  CAS  Google Scholar 

  113. Li, W.J., Yuan, R., Chai, Y.Q., et al.: Immobilization of horseradish peroxidase on chitosan/silica sol-gel hybrid membranes for the preparation of hydrogen peroxide biosensor. J. Biochem. Biophys. Meth. 70, 830–837 (2008)

    Article  CAS  Google Scholar 

  114. Di, J.W., Shen, C.P., Peng, S.H., et al.: A one-step method to construct a third-generation biosensor based on horseradish peroxidase and gold nanoparticles embedded in silica sol-gel network on gold modified electrode. Anal. Chim. Acta 553, 196–200 (2005)

    Article  CAS  Google Scholar 

  115. Di, J.W., Peng, S.H., Shen, C.P., et al.: One-step method embedding superoxide dismutase and gold nanoparticles in silica sol-gel network in the presence of cysteine for construction of third-generation biosensor. Biosens. Bioelectron. 23, 88–94 (2007)

    Article  CAS  Google Scholar 

  116. Lan, D., Li, B.X., Zhang, Z.J.: Chemiluminescence flow biosensor for glucose based on gold nano particle-enhanced activities of glucose oxidase and horseradish peroxidase. Biosens. Bioelectron. 24, 934–938 (2008)

    Article  CAS  Google Scholar 

  117. Wallace, J.M., Stroud, R.M., Pietron, J.J., et al.: The effect of particle size and protein content on nanoparticle-gold-nucleated cytochrome c superstructures encapsulated in silica nanoarchitectures. J. Non Cryst. Solids 350, 31–38 (2004)

    Article  CAS  Google Scholar 

  118. Lu, H.Y., Yang, J., Rusling, J.F., et al.: Vapor-surface sol-gel deposition of titania alternated with protein adsorption for assembly of electroactive, enzyme-active films. Electroanalysis 18, 379–390 (2006)

    Article  CAS  Google Scholar 

  119. Deng, L., Zhang, L.H., Shang, L., et al.: Electrochemiluminescence detection of NADH and ethanol based on partial sulfonation of sol-gel network with gold nanoparticles. Biosens. Bioelectron. 24, 2273–2276 (2009)

    Article  CAS  Google Scholar 

  120. Liu, X.Q., Niu, W.X., Li, H.J., et al.: Glucose biosensor based on gold nanoparticle-catalyzed luminol electrochemiluminescence on a three-dimensional sol-gel network. Electrochem. Commun. 10, 1250–1253 (2008)

    Article  CAS  Google Scholar 

  121. Buso, D., Post, M., Cantalini, C., et al.: Gold nanoparticle-doped tio2 semiconductor thin films: gas sensing properties. Adv. Funct. Mater. 18, 3843–3849 (2008)

    Article  CAS  Google Scholar 

  122. Volkan, M., Stokes, D.L., Vo-Dinh, T.: A new surface-enhanced raman scattering substrate based on silver nanoparticles in sol-gel. J. Raman Spectrosc. 30, 1057–1065 (1999)

    Article  CAS  Google Scholar 

  123. Guo, H.Q., Tao, S.Q.: Silver nanoparticles doped silica nanocomposites coated on an optical fiber for ammonia sensing. Sens. Actuat. B Chem. 123, 578–582 (2007)

    Article  CAS  Google Scholar 

  124. Xu, J.Z., Zhang, Y., Li, G.X., et al.: An electrochemical biosensor constructed by nanosized silver particles doped sol-gel film. Mater. Sci. Eng. C Biomimetic Supramol. Syst. 24, 833–836 (2004)

    Article  CAS  Google Scholar 

  125. Fu, Y.Z., Yuan, R., Xu, L., et al.: Electrochemical impedance behavior of DNA biosensor based on colloidal Ag and bilayer two-dimensional sol-gel as matrices. J. Biochem. Biophys. Methods 62, 163–174 (2005)

    Article  CAS  Google Scholar 

  126. Cioffi, N., Traversa, L., Ditaranto, N., et al.: Core-shell Pd nanoparticles embedded in SnOx films. Synthesis, analytical characterisation and perspective application in chemiresistor-type sensing devices. Microelectron. J. 37, 1620–1628 (2006)

    Article  CAS  Google Scholar 

  127. Cheng, J.J., Di, J.W., Hong, J.H., et al.: The promotion effect of titania nanoparticles on the direct electrochemistry of lactate dehydrogenase sol-gel modified gold electrode. Talanta 76, 1065–1069 (2008)

    Article  CAS  Google Scholar 

  128. Gong, K.P., Yan, Y.M., Zhang, M.N., et al.: Electrochemistry and electroanalytical applications of carbon nanotubes: a review. Anal. Sci. 21, 1383–1393 (2005)

    Article  CAS  Google Scholar 

  129. He, P.A., Xu, Y., Fang, Y.Z.: Applications of carbon nanotubes in electrochemical DNA ­biosensors. Microchim. Acta 152, 175–186 (2006)

    Article  CAS  Google Scholar 

  130. Wang, J., Pamidi, P.V.A., Park, D.S.: Screen-printable sol-gel enzyme-containing carbon inks. Anal. Chem. 68, 2705–2708 (1996)

    Article  CAS  Google Scholar 

  131. Abbaspour, A., Ghaffarinejad, A.: Preparation of a sol-gel-derived carbon nanotube ceramic electrode by microwave irradiation and its application for the determination of adenine and guanine. Electrochim. Acta 55, 1090–1096 (2010)

    Article  CAS  Google Scholar 

  132. Zhu, L.D., Tian, C.Y., Zhai, J.L., et al.: Sol-gel derived carbon nanotubes ceramic composite electrodes for electrochemical sensing. Sens. Actuat. B Chem. 125, 254–261 (2007)

    Article  CAS  Google Scholar 

  133. Gong, K.P., Zhang, M.N., Yan, Y.M., et al.: Sol-gel-derived ceramic-carbon nanotube nanocomposite electrodes: tunable electrode dimension and potential electrochemical applications. Anal. Chem. 76, 6500–6505 (2004)

    Article  CAS  Google Scholar 

  134. Salimi, A., Compton, R.G., Hallaj, R.: Glucose biosensor prepared by glucose oxidase encapsulated sol-gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode. Anal. Biochem. 333, 49–56 (2004)

    Article  CAS  Google Scholar 

  135. Choi, H.N., Lee, J.Y., Lyu, Y.K., et al.: Tris(2,2′-bipyridyl)ruthenium(ii) electrogenerated chemiluminescence sensor based on carbon nantube dispersed in sol-gel-derived titania-nafion composite films. Anal. Chim. Acta 565, 48–55 (2006)

    Article  CAS  Google Scholar 

  136. Wang, J.W., Gu, M., Di, J.W., et al.: A carbon nanotube/silica sol-gel architecture for immobilization of horseradish peroxidase for electrochemical biosensor. Bioprocess Biosyst. Eng. 30, 289–296 (2007)

    Article  CAS  Google Scholar 

  137. Chen, H.J., Dong, S.J.: Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol-gel-derived ceramic-carbon nanotube nanocomposite film. Biosens. Bioelectron. 22, 1811–1815 (2007)

    Article  CAS  Google Scholar 

  138. Lim, J., Cirigliano, N., Wang, J., et al.: Direct electron transfer in nanostructured sol-gel electrodes containing bilirubin oxidase. Phys. Chem. Chem. Phys. 9, 1809–1814 (2007)

    Article  CAS  Google Scholar 

  139. Liu, C.Y., Hu, J.M.: Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on silver nanoparticles doped carbon nanotubes film. Biosens. Bioelectron. 24, 2149–2154 (2009)

    Article  CAS  Google Scholar 

  140. Guo, S.J., Dong, S.J., Wang, E.: Gold/platinum hybrid nanoparticles supported on multiwalled carbon nanotube/silica coaxial nanocables: preparation and application as electrocatalysts for oxygen reduction. J. Phys. Chem. C 112, 2389–2393 (2008)

    Article  CAS  Google Scholar 

  141. Huang, J., Li, J., Yang, Y., et al.: Development of an amperometric L-lactate biosensor based on L-lactate oxidase immobilized through silica sol-gel film on multi-walled carbon nanotubes/platinum nanoparticle modified glassy carbon electrode. Mater. Sci. Eng. C Biomimetic Supramol. Syst. 28, 1070–1075 (2008)

    Article  CAS  Google Scholar 

  142. Yang, M.H., Yang, Y.H., Liu, Y.L., et al.: Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens. Bioelectron. 21, 1125–1131 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huangxian Ju .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ju, H., Zhang, X., Wang, J. (2011). Biosensors Based on Sol–Gel Nanoparticle Matrices. In: NanoBiosensing. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9622-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9622-0_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9621-3

  • Online ISBN: 978-1-4419-9622-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics