Skip to main content
Log in

A carbon nanotube/silica sol–gel architecture for immobilization of horseradish peroxidase for electrochemical biosensor

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A novel third-generation biosensor for hydrogen peroxide (H2O2) has been constructed based on horseradish peroxidase (HRP) immobilized by the sol–gel (SG) technology on carbon nanotube (CNT)-modified electrode. CNT has good promotion effects on the direct electron transfer between HRP and the electrode surface and the SG network provides a biocompatible microenvironment for enzyme. The immobilized HRP retained its bioelectrocatalytic activity for the reduction of hydrogen peroxide and can respond to the change of concentration of H2O2 rapidly. The heterogeneous electron transfer rate constant was evaluated to be 2.8 ± 0.4 s−1. The amperometric response to H2O2 shows a linear relation in the range from 0.5 to 300 μmol l−1 and a detection limit of 0.1 μmol l−1 (S/N = 3). The K appM value of HRP immobilized on the electrode surface was found to be 1.35 mmol l−1. The biosensor exhibited high sensitivity, rapid response and excellent long-term stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Davis JJ, Coleman KS, Azamian BR, Bagshaw CB, Green MLH (2003) Chemical and biochemical sensing with modified single walled carbon nanotubes. Chem Eur J 9:3732–3739

    Article  CAS  Google Scholar 

  3. Hamada N, Sawada S, Oshiyama A (1992) New one-dimensional conductors: graphitic microtubules. Phys Rev Lett 68:1579–1581

    Article  CAS  Google Scholar 

  4. Davis JJ, Coles RJ, Allen H, Hill O (1997) Protein electrochemistry at carbon nanotube electrodes. J Electroanal Chem 440:279–282

    Article  CAS  Google Scholar 

  5. Qi H, Zhang C (2005) Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes. Electroanalysis 17:832–838

    Article  CAS  Google Scholar 

  6. Britto PJ, Santhanam KSV, Rubio A, Alonso JA, Ajayan PM (1999) Improved charge transfer at carbon nanotube electrodes. Adv Mater 11:154–157

    Article  CAS  Google Scholar 

  7. Wang JX, Li MX, Shi ZJ, Li NQ, Gu ZN (2002) Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal Chem 74:1993–1997

    Article  CAS  Google Scholar 

  8. Zhao GC, Zhang L, Wei XW, Yang ZS (2003) Myoglobin on multi-walled carbon nanotubes modified electrode: direct electrochemistry and electrocatalysis. Electrochem Commun 5:825–829

    Article  CAS  Google Scholar 

  9. Wang L, Wang JX, Zhou FM (2004) Direct electrochemistry of catalase at a gold electrode modified with single-wall carbon nanotubes. Electroanalysis 16:627–632

    Article  CAS  Google Scholar 

  10. Zhao YD, Bi YH, Zhang WD, Luo QM (2005) The interface behavior of hemoglobin at carbon nanotube and the detection for H2O2. Talanta 65:489–494

    Article  CAS  Google Scholar 

  11. Dai YQ, Shiu KK (2004) Glucose biosensor based on multi-walled carbon nanotube modified glassy carbon electrode. Electroanalysis 16:1697–1703

    Article  CAS  Google Scholar 

  12. Cai CX, Chen J (2004) Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal Biochem 332:75–83

    Article  CAS  Google Scholar 

  13. Xu JZ, Zhu JJ, Wu Q, Hu Z, Chen HY (2003) An amperometric biosensor based on the co-immobilization of horseradish peroxidase and methylene blue on a carbon nanotubes modified electrode. Electroanalysis 15:219–224

    Article  CAS  Google Scholar 

  14. Yu X, Chattopadhyay D, Galeska I, Papadimitrakopoulos F, Rusling JF (2003) Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochem Commun 5:408–411

    Article  CAS  Google Scholar 

  15. Luo XL, Killard AJ, Morrin A, Smyth MR (2006) Enhancement of a conducting polymer-based biosensor using carbon nanotube-doped polyaniline. Anal Chim Acta 575:39–44

    Article  CAS  Google Scholar 

  16. Tripathi VS, Kandimalla VB, Ju HX (2006) Amperometric biosensor for hydrogen peroxide based on ferrocene-bovine serum albumin and multiwall carbon nanotube modified ormosil composite. Biosens Bioelectron 21:1529–1535

    Article  CAS  Google Scholar 

  17. Zhao YD, Zhang WD, Chen H, Luo QM, Li SFY (2002) Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode. Sens Actuators B Chem 87:168–172

    Article  Google Scholar 

  18. Cai CX, Chen J (2004) Direct electrochemistry of horseradish peroxidase at a carbon nanotube electrode. Acta Chimi Sin 62:335–340

    CAS  Google Scholar 

  19. Qian L, Yang XR (2006) Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor. Talanta 68:721–727

    Article  CAS  Google Scholar 

  20. Ferapontova EE (2004) Direct peroxidase bioelectrocatalysis on a variety of electrode materials. Electroanalysis 16:1101–1111

    Article  CAS  Google Scholar 

  21. Gooding JJ (2005) Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing. Electrochim Acta 50:3049–3060

    Article  CAS  Google Scholar 

  22. Wang J (2005) Carbon-nanotube based electrochemical biosensor: a review. Eelectroanalysis 17:7–14

    Article  CAS  Google Scholar 

  23. Di JW, Shen CP, Peng SH, Tu YF, Li SJ (2005) A one-step method to construct a therd-generation biosensor based on horseradish peroxidase and gold nanoparticles embedded in silica sol–gel net work on gold modified electrode. Anal Chim Acta 533:196–200

    Article  CAS  Google Scholar 

  24. Luo X, Killard AJ, Morrin A, Smyth MR (2006) Enhancement of a conducting polymer-based biosensor usingcarbon nanotube-doped polyaniline. Anal Chim Acta 575:39–44

    Article  CAS  Google Scholar 

  25. Song YH, Wang L, Ren CB, Zhu GY, Li Z (2006) A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized in DNA films on a gold electrode. Sens Actuators B Chem 114:1001–1006

    Article  CAS  Google Scholar 

  26. Jin W, Brennan JD (2002) Properties and applications of proteins encapsulated within sol–gel derived materials. Anal Chim Acta 461:1–36

    Article  CAS  Google Scholar 

  27. Aurobind SV, Amirthalingam KP, Gomathi H (2006) Sol–gel based surface modification of electrodes for electro analysis. Adv Colloid Interface Sci 121:1–7

    Article  CAS  Google Scholar 

  28. Wang G, Xu JJ, Chen HY, Lu ZH (2003) Amperometric hydrogen peroxide biosensor with sol–gel/chitosan network-like film as immobilization matrix. Biosens Bioelectron 18:335–343

    Article  CAS  Google Scholar 

  29. Rosatto SS, Sotomayor PT, Kubota LT, Gushikem Y (2002) SiO2/Nb2O5 sol–gel as a support for HRP immobilization in biosensor preparation for phenol detection. Electrochim Acta 47:4451–4458

    Article  CAS  Google Scholar 

  30. Chen X, Wang BQ, Dong SJ (2001) Amperometric biosensor for hydrogen peroxide based on sol–gel/hydrogel composite thin film. Electroanalysis 13:1149–1152

    Article  CAS  Google Scholar 

  31. Lei CX, Hu SQ, Gao N, Shen GL, Yu RQ (2004) An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano-Au monolayer supported by sol–gel derived carbon ceramic electrode. Bioelectrochemistry 65:33–39

    Article  CAS  Google Scholar 

  32. Liu GD, Lin YH (2006) Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes. Electrochem Commun 8:251–256

    Article  CAS  Google Scholar 

  33. Tu Y, Di J, Chen X (2005) Study of the nano-size silica sol–gel film as the matrix of chemically modified electrode. J Sol–Gel Sci Technol 33:187–191

    Article  CAS  Google Scholar 

  34. Di JW, Bi SP, Zhang M (2004) Third-generation superoxide anion sensor based on superoxide dismutase directly immobilized by sol–gel thin film on gold electrode. Biosens Bioelectron 19:1479–1486

    Article  CAS  Google Scholar 

  35. Sun DM, Cai CX, Li XG, Xing W, Lu TH (2004) Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase immobilized on active carbon. J Electroanal Chem 566:415–421

    Article  CAS  Google Scholar 

  36. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  37. Chen XH, Ruan CM, Kong JJ, Deng JQ (2000) Characterization of the direct electron transfer and bioelectrocatalysis of horseradish peroxidase in DNA film at pyrolytic graphite electrode. Anal Chim Acta 412:89–98

    Article  CAS  Google Scholar 

  38. Wang BQ, Li B, Deng Q, Dong SJ (1998) Amperometric glucose biosensor based on sol–gel organic-inorganic hybrid material. Anal Chem 70:3170–3174

    Article  CAS  Google Scholar 

  39. Kamin RA, Willson GS (1980) Rotation ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal Chem 52:1198–1205

    Article  CAS  Google Scholar 

  40. Wang ZH, Liu J, Li QW, Luo GA (2001) The HRP based sol–gel film electrode and the amperometric determination of H2O2. Chin J Anal Chem 29:1482

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 20275025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Di.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Gu, M., Di, J. et al. A carbon nanotube/silica sol–gel architecture for immobilization of horseradish peroxidase for electrochemical biosensor. Bioprocess Biosyst Eng 30, 289–296 (2007). https://doi.org/10.1007/s00449-007-0126-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-007-0126-z

Keywords

Navigation