Skip to main content

Ruthenium-Catalyzed Direct Arylations Through C–H Bond Cleavages

  • Chapter
  • First Online:
C-H Activation

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 292))

Abstract

Stoichiometric cycloruthenation reactions of substrates containing Lewis-basic functionalities set the stage for efficient ruthenium-catalyzed C–H bond functionalization reactions. Thereby, selective addition reactions of C–H bonds across alkenes or alkynes enabled atom-economical synthesis of substituted arenes. More recently, ruthenium-catalyzed direct arylation reactions were examined, which display an unparalleled scope and, hence, represent economically and environmentally benign alternatives to traditional cross-coupling chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ac:

Acetyl

Ad:

Adamantyl

Bz:

Benzoyl

cat :

Catalytic

cod:

1,4-Cyclooctadiene

Cp:

Cyclopentadienyl

Cy:

Cyclohexyl

dba:

Dibenzylideneacetone

DG:

Directing group

DMA:

N,N-Dimethylacetamide

DME:

1,2-Dimethoxyethane

dr:

Diastereomeric ratio

equiv:

Equivalent

(HA)SPO:

(Heteroatom substituted) secondary phosphine oxide

i-Pr:

Iso-propyl

Mes:

Mesityl

NMP:

N-Methyl-2-pyrrolidinone

rac :

Racemic

t-Bu:

tert-Butyl

THF:

Tetrahydrofuran

TM:

Transition metal

Ts:

4-Methyl benzenesulfonyl

References

  1. Ackermann L (2009) Modern arylation methods. Wiley, Weinheim

    Book  Google Scholar 

  2. de Meijere A, Diederich F (2004) Metal-catalyzed cross-coupling reactions. Wiley, Weinheim

    Book  Google Scholar 

  3. Beller M, Bolm C (2004) Transition metals for organic synthesis. Wiley, Weinheim

    Book  Google Scholar 

  4. Lewis JC, Bergman RG, Ellman JA (2008) Acc Chem Res 41:1013

    Article  CAS  Google Scholar 

  5. Li B-J, Yang S-D, Shi Z-J (2008) Synlett 7:949

    Google Scholar 

  6. Kakiuchi F, Kochi T (2008) Synthesis:3013

    Google Scholar 

  7. Pascual S, de Mendoza P, Echavarren AM (2007) Org Biomol Chem 5:2727

    Article  CAS  Google Scholar 

  8. Alberico D, Scott ME, Lautens M (2007) Chem Rev 107:174

    Article  CAS  Google Scholar 

  9. Stuart DR, Fagnou K (2007) Aldrichimica Acta 40:35

    Google Scholar 

  10. Seregin IV, Gevorgyan V (2007) Chem Soc Rev 36:1173

    Article  CAS  Google Scholar 

  11. Kalyani D, Sanford MS (2007) Top Organomet Chem 24:85

    Article  CAS  Google Scholar 

  12. Ackermann L (2007) Synlett:507

    Google Scholar 

  13. Satoh T, Miura M (2007) Chem Lett 36:200

    Article  CAS  Google Scholar 

  14. Fairlamp IJS (2007) Chem Soc Rev 36:1036

    Article  Google Scholar 

  15. Yu J-Q, Giri R, Chen X (2006) Org Biomol Chem 4:4041

    Article  CAS  Google Scholar 

  16. Daugulis O, Zaitsev VG, Shabashov D, Pham QN, Lazareva A (2006) Synlett:3382

    Google Scholar 

  17. Dyker G (2005) Handbook of C–H transformations. Wiley, Weinheim

    Book  Google Scholar 

  18. Kakiuchi F, Murai S (2002) Acc Chem Res 35:826

    Article  CAS  Google Scholar 

  19. Miura M, Nomura M (2002) Top Curr Chem 219:211

    Article  CAS  Google Scholar 

  20. Ackermann L (2007) Top Organomet Chem 24:35

    Article  CAS  Google Scholar 

  21. Miura M, Satoh T (2009) In: Ackermann L (ed) Modern arylation methods. Wiley, Weinheim, p 335

    Chapter  Google Scholar 

  22. Ackermann L, Vicente R (2009) In: Ackermann L (ed) Modern arylation methods. Wiley, Weinheim, p 311

    Chapter  Google Scholar 

  23. Lewis JC, Wiedemann SH, Bergman RG, Ellman JA (2004) Org Lett 6:35

    Article  CAS  Google Scholar 

  24. Wang X, Lane BS, Sames D (2005) J Am Chem Soc 127:4996

    Article  CAS  Google Scholar 

  25. Lewis JC, Wu JY, Bergman RG, Ellman JA (2006) Angew Chem Int Ed 45:1589

    Article  CAS  Google Scholar 

  26. Yanagisawa S, Sudo T, Noyori R, Itami K (2006) J Am Chem Soc 128:11748

    Article  CAS  Google Scholar 

  27. Wiedemann SH, Ellman JA, Bergman RG (2005) In: Dyker G (ed) Handbook of C–H transformations. Wiley, Weinheim, p 187

    Google Scholar 

  28. Bruce MI (1977) Angew Chem Int Ed Engl 16:73

    Article  Google Scholar 

  29. Omae I (2004) Coord Chem Rev 248:995

    Article  CAS  Google Scholar 

  30. Ryabov AD (1990) Chem Rev 90:403

    Article  CAS  Google Scholar 

  31. Zhang X, Kanzelberger M, Emge TJ, Goldman AS (2004) J Am Chem Soc 126:13192

    Article  CAS  Google Scholar 

  32. Hübel W, Braye EH (1959) J Inorg Nucl Chem 10:250

    Article  Google Scholar 

  33. Kleiman JP, Dubeck M (1963) J Am Chem Soc 85:1544

    Article  CAS  Google Scholar 

  34. Cope AC, Siekman RW (1965) J Am Chem Soc 87:3272

    Article  CAS  Google Scholar 

  35. Cope AC, Friedrich EC (1968) J Am Chem Soc 90:909

    Article  CAS  Google Scholar 

  36. Chatt J, Davidson JM (1965) J Chem Soc:843

    Google Scholar 

  37. Knoth WH, Schunn RA (1969) J Am Chem Soc 91:2400

    Article  CAS  Google Scholar 

  38. Parshall GW, Knoth WH, Schunn RA (1969) J Am Chem Soc 91:4990

    Article  CAS  Google Scholar 

  39. Levison JJ, Robinson SD (1970) J Chem Soc A:639

    Google Scholar 

  40. Ainscough EW, Robinson SD, Levison JJ (1971) J Chem Soc A:3413

    Google Scholar 

  41. Bruce MI, Iqbal MZ, Stone FGA (1970) J Chem Soc A:3204

    Google Scholar 

  42. Bruce MI, Iqbal MZ, Stone FGA (1971) J Chem Soc A:2820

    Google Scholar 

  43. Reveco P, Medley JH, Garber AR, Bhacca NS, Selbin J (1985) Inorg Chem 24:1096

    Article  CAS  Google Scholar 

  44. Reveco P, Cherry WR, Medley JH, Garber AR, Gale RJ, Selbin J (1986) Inorg Chem 25:1842

    Article  CAS  Google Scholar 

  45. Constable EC, Holmes JM (1986) J Organomet Chem 301:203

    Article  CAS  Google Scholar 

  46. Martin CG, Boncella JM (1989) Organometallics 8:2968

    Article  CAS  Google Scholar 

  47. Pérez J, Riera V, Rodríguez A, Miguel D (2002) Organometallics 21:5437

    Article  Google Scholar 

  48. Abbenhuis HCL, Pfeffer M, Sutter JP, de Cian A, Fischer J, Ji HL, Nelson JH (1993) Organometallics 12:4464

    Article  CAS  Google Scholar 

  49. Fernández S, Pfeffer M, Ritleng V, Sirlin C (1999) Organometallics 18:2390

    Article  Google Scholar 

  50. Davies DL, Al-Duaij O, Fawcett J, Giardello M, Hilton ST, Russell DR (2003) Dalton Trans:4132

    Google Scholar 

  51. Trost BM (1991) Science 254:1471

    Article  CAS  Google Scholar 

  52. Kakiuchi F (2007) Top Organomet Chem 24:1

    Article  CAS  Google Scholar 

  53. Bandini M, Emer A, Tommasi S, Umani-Ronchi A (2006) Eur J Org Chem:3527

    Google Scholar 

  54. Liu C, Bender CF, Han X, Widenhoefer RA (2007) Chem Commun:3607

    Google Scholar 

  55. Nevado C, Echavarren AM (2005) Synthesis:167

    Google Scholar 

  56. Kakiuchi F, Chatani N (2004) In: Murahashi S-I (ed) Ruthenium in organic synthesis. Wiley, Weinheim, p 219

    Google Scholar 

  57. Kakiuchi F, Chatani N (2003) Adv Synth Catal 345:1077

    Article  CAS  Google Scholar 

  58. Lewis LN, Smith JF (1986) J Am Chem Soc 108:2728

    Article  CAS  Google Scholar 

  59. Murai S, Kakiuchi F, Sekine S, Tanaka Y, Sonoda M, Chatani N (1993) Nature 366:529

    Article  CAS  Google Scholar 

  60. Kakiuchi F, Yamamoto Y, Chatani N, Murai S (1995) Chem Lett:681

    Google Scholar 

  61. Cheng K, Yao B, Zao J, Zhang Y (2008) Org Lett 10:5309

    Article  CAS  Google Scholar 

  62. Kozhushkov SI, Yufit DS, Ackermann L (2008) Org Lett 10:3409

    Article  CAS  Google Scholar 

  63. Deng G, Zhao L, Li C-J (2008) Angew Chem Int Ed 47:6278

    Article  CAS  Google Scholar 

  64. Oi S, Tanaka Y, Inoue Y (2006) Organometallics 25:4773

    Article  CAS  Google Scholar 

  65. Oi S, Sato H, Sugawara S, Inoue Y (2008) Org Lett 10:1823

    Article  CAS  Google Scholar 

  66. Murahashi S-I, Yamamura M, Yanagisawa K, Mita N, Kondo K (1979) J Org Chem 44:2408

    Article  CAS  Google Scholar 

  67. Kakiuchi F, Kan S, Igi K, Chatani N, Murai S (2003) J Am Chem Soc 125:1698

    Article  CAS  Google Scholar 

  68. Kakiuchi F, Matsuura Y, Kan S, Chatani N (2005) J Am Chem Soc 127:5936

    Article  CAS  Google Scholar 

  69. Pastine SJ, Gribkov DV, Sames D (2006) J Am Chem Soc 128:14220

    Article  CAS  Google Scholar 

  70. Park YJ, Jo E-A, Jun C-H (2005) Chem Commun:1185

    Google Scholar 

  71. Ko S, Kang B, Chang S (2005) Angew Chem Int Ed Engl 44:455

    Article  CAS  Google Scholar 

  72. Oi S, Fukita S, Hirata N, Watanuki N, Miyano S, Inoue Y (2001) Org Lett 3:2579

    Article  CAS  Google Scholar 

  73. Oi S, Ogino Y, Fukita S, Inoue Y (2002) Org Lett 4:1783

    Article  CAS  Google Scholar 

  74. Oi S, Aizawa E, Ogino Y, Inoue Y (2005) J Org Chem 70:3113

    Article  CAS  Google Scholar 

  75. Oi S, Funayama R, Hattori T, Inoue Y (2008) Tetrahedron 64:6051

    Article  CAS  Google Scholar 

  76. Oi S, Sasamoto H, Funayama R, Inoue Y (2008) Chem Lett 37:994

    Article  CAS  Google Scholar 

  77. Gant TG, Meyers AI (1994) Tetrahedron 50:2297

    Article  CAS  Google Scholar 

  78. Oi S, Sakai K, Inoue Y (2005) Org Lett 7:4009

    Article  CAS  Google Scholar 

  79. Ackermann L, Althammer A, Born R (2007) Synlett:2833

    Google Scholar 

  80. Ackermann L, Althammer A, Born R (2008) Tetrahedron 64:6115

    Article  CAS  Google Scholar 

  81. Ackermann L (2006) Synthesis:1557

    Google Scholar 

  82. Ackermann L (2005) Org Lett 7:3123

    Article  CAS  Google Scholar 

  83. Ackermann L, Althammer A, Born R (2006) Angew Chem Int Ed 45:2619

    Article  CAS  Google Scholar 

  84. Ackermann L, Born R, Álvarez-Bercedo P (2007) Angew Chem Int Ed 46:6364

    Article  CAS  Google Scholar 

  85. Ackermann L, Mulzer M (2008) Org Lett 10:5043

    Article  CAS  Google Scholar 

  86. de Mendoza P, Echavarren AM (2009) In: Ackermann L (ed) Modern arylation methods. Wiley, Weinheim, p 363

    Chapter  Google Scholar 

  87. Özdemir I, Demir S, Cetinkaya B, Gourlaouen C, Maseras F, Bruneau C, Dixneuf P (2008) J Am Chem Soc 120:1156

    Article  Google Scholar 

  88. Ackermann L, Vicente R, Althammer A (2008) Org Lett 10:2299

    Article  CAS  Google Scholar 

  89. Ackermann L, Vicente R, Born R (2008) Adv Synth Catal 350:741

    Article  CAS  Google Scholar 

  90. Chuprakov S, Chernyak N, Dudnik AS, Gevorgyan V (2007) Org Lett 9:2333

    Article  CAS  Google Scholar 

  91. Ackermann L, Potukuchi HK, Landsberg D, Vicente R (2008) Org Lett 10:3081

    Article  CAS  Google Scholar 

  92. Lafrance M, Fagnou K (2006) J Am Chem Soc 128:16496 and references cited therein

    Article  CAS  Google Scholar 

  93. García-Cuadrado D, de Mendoza P, Braga AAC, Maseras F, Echavarren AM (2007) J Am Chem Soc 129:6880 and references cited therein

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Ackermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ackermann, L., Vicente, R. (2009). Ruthenium-Catalyzed Direct Arylations Through C–H Bond Cleavages. In: Yu, JQ., Shi, Z. (eds) C-H Activation. Topics in Current Chemistry, vol 292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2009_9

Download citation

Publish with us

Policies and ethics