Skip to main content

Almost Optimal Asynchronous Rendezvous in Infinite Multidimensional Grids

  • Conference paper
Distributed Computing (DISC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6343))

Included in the following conference series:

Abstract

Two anonymous mobile agents (robots) moving in an asynchronous manner have to meet in an infinite grid of dimension δ> 0, starting from two arbitrary positions at distance at most d. Since the problem is clearly infeasible in such general setting, we assume that the grid is embedded in a δ-dimensional Euclidean space and that each agent knows the Cartesian coordinates of its own initial position (but not the one of the other agent). We design an algorithm permitting the agents to meet after traversing a trajectory of length O(d δpolylogd). This bound for the case of 2d -grids subsumes the main result of [12]. The algorithm is almost optimal, since the Ω(d δ) lower bound is straightforward.

Further, we apply our rendezvous method to the following network design problem. The ports of the δ-dimensional grid have to be set such that two anonymous agents starting at distance at most d from each other will always meet, moving in an asynchronous manner, after traversing a O(d δpolylogd) length trajectory.

We can also apply our method to a version of the geometric rendezvous problem. Two anonymous agents move asynchronously in the δ-dimensional Euclidean space. The agents have the radii of visibility of r 1 and r 2, respectively. Each agent knows only its own initial position and its own radius of visibility. The agents meet when one agent is visible to the other one. We propose an algorithm designing the trajectory of each agent, so that they always meet after traveling a total distance of \(O((\frac{d}{r})^\delta {\rm polylog}(\frac{d}{r}))\), where r =  min (r 1, r 2) and for r ≥ 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, I., Dolev, D., Malkhi, D.: LLS: a locality aware location service for mobile ad hoc networks. In: Proc. DIALM-POMC 2004, pp. 75–84 (2004)

    Google Scholar 

  2. Alpern, S.: The rendezvous search problem. SIAM J. on Control and Optimization 33, 673–683 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alpern, S., Gal, S.: The theory of search games and rendezvous. Int. Series in Operations research and Management Science, vol. 55. Kluwer Academic Publisher, Dordrecht (2002)

    Google Scholar 

  4. Alpern, J., Baston, V., Essegaier, S.: Rendezvous search on a graph. Journal of Applied Probability 36, 223–231 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: Proc. 14th Annual ACM Symp. on Computational Geometry, pp. 365–373 (1998)

    Google Scholar 

  6. Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Operations Research 49, 107–118 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Baston, V., Gal, S.: Rendezvous on the line when the players’ initial distance is given by an unknown probability distribution. SIAM J. on Control and Optimization 36, 1880–1889 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points. Naval Res. Log. 48, 722–731 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. Wireless Networks 7(6), 609–616 (2001)

    Article  MATH  Google Scholar 

  10. Buchin, K.: Constructing Delaunay Triangulations along Space-Filling Curves. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 119–130. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph exploration by a finite automaton. ACM Transactions on Algorithms 4(4), 1–18 (2008)

    Article  MathSciNet  Google Scholar 

  12. Collins, A., Czyzowicz, J., Gasieniec, L., Labourel, A.: Tell me where I am so I can meet you sooner: Asynchronous rendezvous with location information. In: Proc. of ICALP 2010 (2010)

    Google Scholar 

  13. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the Robots Gathering Problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Czyzowicz, J., Dobrev, S., Gasieniec, L., Ilcinkas, D., Jansson, J., Klasing, R., Lignos, I., Martin, R.A., Sadakane, K., Sung, W.-K.: More Efficient Periodic Traversal in Anonymous Undirected Graphs. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 167–181. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) everywhere. In: Proc. of SODA 2010, pp. 22–30 (2010)

    Google Scholar 

  16. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theoretical Computer Science 355, 315–326 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dobrev, S., Jansson, J., Sadakane, K., Sung, W.-K.: Finding short right-hand-on-the-wall walks in graphs. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 127–139. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Emek, Y., Gasieniec, L., Kantor, E., Pelc, A., Peleg, D., Su, C.: Broadcasting in UDG radio networks with unknown topology. Distributed Computing 21(5), 331–351 (2009)

    Article  Google Scholar 

  20. Emek, Y., Kantor, E., Peleg, D.: On the effect of the deployment setting on broadcasting in Euclidean radio networks. In: Proc. PODC 2008, pp. 223–232 (2008)

    Google Scholar 

  21. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous oblivious robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  22. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theoretical Computer Science 345(2-3), 331–344 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gal, S.: Rendezvous search on the line. Operations Research 47, 974–976 (1999)

    Article  MATH  Google Scholar 

  24. Gasieniec, L., Klasing, R., Martin, R.A., Navarra, A., Zhang, X.: Fast periodic graph exploration with constant memory. J. on Computer Systems and Sciences 74(5), 808–822 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gotsman, C., Lindenbaum, M.: On the metric properties of discrete space-filling curves. IEEE Transactions on Image Processing 5(5), 794–797 (1996)

    Article  Google Scholar 

  26. Ilcinkas, D.: Setting Port Numbers for Fast Graph Exploration. Theor. Comput. Sci. 401(1-3), 236–242 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self stabilizing mutual exclusion. In: Proc. PODC’90, pp. 119–131 (1990)

    Google Scholar 

  28. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gathering of asynchronous oblivious robots on a ring. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 446–462. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  29. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theoretical Computer Science 390, 27–39 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kosowski, A., Navarra, A.: Graph Decomposition for Improving Memoryless Periodic Exploration. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 501–512. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  31. Kowalski, D., Malinowski, A.: How to meet in anonymous network. Theoretical Computer Science 399, 141–156 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kozma, G., Lotker, Z., Sharir, M., Stupp, G.: Geometrically aware communication in random wireless networks. In: Proc. PODC 2004, pp. 310–319 (2004)

    Google Scholar 

  33. Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a ring. In: Proc. 23rd International Conference on Distributed Computing Systems (ICDCS 2003), pp. 592–599 (2003)

    Google Scholar 

  34. Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric ad-hoc routing: theory and practice. In: Proc. PODC 2003, pp. 63–72 (2003)

    Google Scholar 

  35. Lim, W., Alpern, S.: Minimax rendezvous on the line. SIAM J. on Control and Optimization 34, 1650–1665 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  36. Moon, B., Jagadish, H.V., Faloutsos, C., Saltz, J.H.: Analysis of the Clustering Properties of the Hilbert Space-Filling Curve. IEEE Transactions on Knowledge Data Engineering 14(1), 124–141 (2001)

    Article  Google Scholar 

  37. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theoretical Computer Science 384, 222–231 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  38. Schelling, T.: The strategy of conflict. Oxford University Press, Oxford (1960)

    Google Scholar 

  39. Stachowiak, G.: Asynchronous Deterministic Rendezvous on the Line. In: Nielsen, M., Kucera, A., Miltersen, P.B., Palamidessi, C., Tuma, P., Valencia, F.D. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 497–508. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  40. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly universal exploration sequences. In: Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), pp. 599–608 (2007)

    Google Scholar 

  41. Thomas, L.: Finding your kids when they are lost. Journal on Operational Res. Soc. 43, 637–639 (1992)

    MATH  Google Scholar 

  42. Xu, B., Chen, D.Z.: Density-Based Data Clustering Algorithms for Lower Dimensions Using Space-Filling Curves. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 997–1005. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  43. Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bampas, E., Czyzowicz, J., Gąsieniec, L., Ilcinkas, D., Labourel, A. (2010). Almost Optimal Asynchronous Rendezvous in Infinite Multidimensional Grids. In: Lynch, N.A., Shvartsman, A.A. (eds) Distributed Computing. DISC 2010. Lecture Notes in Computer Science, vol 6343. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15763-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15763-9_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15762-2

  • Online ISBN: 978-3-642-15763-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics