Skip to main content

Congenital Hydrocephalus

  • Chapter
  • First Online:
Cerebrospinal Fluid Disorders

Abstract

Congenital hydrocephalus (CH) is due to disordered cerebrospinal fluid homeostasis that results in clinically significant ventriculomegaly. It is the most common disease treated by pediatric neurosurgeons and represents a tremendous burden on patients, caregivers, and healthcare systems worldwide. CH may be primary (also called developmental) or secondary (also called acquired) based on its etiology. Our understanding of the molecular pathophysiology of CH remains nascent, but advances in Genetics and Molecular Biology have elucidated some mechanisms in the etiopathogenesis of this disease. Mutations in more than 100 human genes have been identified to cause syndromic forms of primary CH; mutations in much fewer genes have been identified in nonsyndromic forms of primary CH. Here, we review the molecular genetics of congenital hydrocephalus, drawing from studies in both humans and nonhuman vertebrates. A comprehensive understanding of the key genetic drivers and the associated molecular mechanisms of CH might help identify targets for the development of novel therapeutics for this disorder of cerebrospinal fluid (CSF) homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang J, Williams MA, Rigamonti D. Genetics of human hydrocephalus. J Neurol. 2006;253:1255–66. https://doi.org/10.1007/s00415-006-0245-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kahle KT, Kulkarni AV, Limbrick DD, Warf BC. Hydrocephalus in children. Lancet. 2016;387:788–99. https://doi.org/10.1016/s0140-6736(15)60694-8.

    Article  PubMed  Google Scholar 

  3. du Plessis AJ, Robinson S, Volpe JJ. Congenital hydrocephalus. In: Volpe’s neurology of the newborn. Philadelphia: Elsevier; 2018. p. 58–72. https://doi.org/10.1016/b978-0-323-42876-7.00003-x.

    Chapter  Google Scholar 

  4. Riva-Cambrin J, et al. Center effect and other factors influencing temporization and shunting of cerebrospinal fluid in preterm infants with intraventricular hemorrhage. J Neurosurg Pediatr. 2012;9:473–81. https://doi.org/10.3171/2012.1.PEDS11292.

    Article  PubMed  PubMed Central  Google Scholar 

  5. McAllister JP 2nd. Pathophysiology of congenital and neonatal hydrocephalus. Semin Fetal Neonatal Med. 2012;17:285–94. https://doi.org/10.1016/j.siny.2012.06.004.

    Article  PubMed  Google Scholar 

  6. Lindquist B, Persson EK, Uvebrant P, Carlsson G. Learning, memory and executive functions in children with hydrocephalus. Acta Paediatr. 2008;97:596–601. https://doi.org/10.1111/j.1651-2227.2008.00747.x.

    Article  PubMed  Google Scholar 

  7. Lacy M, Baldassarre M, Nader T, Frim D. Parent ratings of executive functioning in children with shunted hydrocephalus. Pediatr Neurosurg. 2012;48:73–9. https://doi.org/10.1159/000339313.

    Article  PubMed  Google Scholar 

  8. Tully HM, Dobyns WB. Infantile hydrocephalus: a review of epidemiology, classification and causes. Eur J Med Genet. 2014;57:359–68. https://doi.org/10.1016/j.ejmg.2014.06.002.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kousi M, Katsanis N. The genetic basis of hydrocephalus. Annu Rev Neurosci. 2016;39:409–35. https://doi.org/10.1146/annurev-neuro-070815-014023.

    Article  CAS  PubMed  Google Scholar 

  10. Wright Z, Larrew TW, Eskandari R. Pediatric hydrocephalus: current state of diagnosis and treatment. Pediatr Rev. 2016;37:478–90.

    Article  PubMed  Google Scholar 

  11. Oi S. Classification of hydrocephalus: critical analysis of classification categories and advantages of “Multi-categorical Hydrocephalus Classification”. Childs Nerv Syst. 2011;27:1523–33.

    Article  PubMed  Google Scholar 

  12. Stoll C, Alembik Y, Dott B, Roth MP. An epidemiologic study of environmental and genetic factors in congenital hydrocephalus. Eur J Epidemiol. 1992;8:797–803. https://doi.org/10.1007/bf00145322.

    Article  CAS  PubMed  Google Scholar 

  13. Price JR Jr, Horne BM. Family history indicating hereditary factors in hydrocephalus. Ment Retard. 1968;6:40–1.

    PubMed  Google Scholar 

  14. Tipton RE. Familial hydrocephalus. Birth Defects Orig Artic Ser. 1971;7:231.

    CAS  PubMed  Google Scholar 

  15. Munch TN, et al. Familial aggregation of congenital hydrocephalus in a nationwide cohort. Brain J Neurol. 2012;135:2409–15. https://doi.org/10.1093/brain/aws158.

    Article  Google Scholar 

  16. Fernell E, Hagberg B, Hagberg G, von Wendt L. Epidemiology of infantile hydrocephalus in Sweden. III. Origin in preterm infants. Acta Paediatr Scand. 1987;76:418–23.

    Article  CAS  PubMed  Google Scholar 

  17. Fernell E, Hagberg B, Hagberg G, von Wendt L. Epidemiology of infantile hydrocephalus in Sweden. II. Origin in infants born at term. Acta Paediatr Scand. 1987;76:411–7.

    Article  CAS  PubMed  Google Scholar 

  18. Haverkamp F, et al. Congenital hydrocephalus internus and aqueduct stenosis: aetiology and implications for genetic counselling. Eur J Pediatr. 1999;158:474–8.

    Article  CAS  PubMed  Google Scholar 

  19. Verhagen JM, et al. Congenital hydrocephalus in clinical practice: a genetic diagnostic approach. Eur J Med Genet. 2011;54:e542–7. https://doi.org/10.1016/j.ejmg.2011.06.005.

    Article  CAS  PubMed  Google Scholar 

  20. Finckh U, Schroder J, Ressler B, Veske A, Gal A. L1CAM mutations in isolated and familial cases with clinically suspected L1-disease. Am J Med Genet. 2000;92:40–6.

    Article  CAS  PubMed  Google Scholar 

  21. Rosenthal A, Jouet M, Kenwrick S. Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nat Genet. 1992;2:107–12.

    Article  CAS  PubMed  Google Scholar 

  22. Willems PJ, Brouwer OF, Dijkstra I, Wilmink J. X-linked hydrocephalus. Am J Med Genet. 1987;27:921–8.

    Article  CAS  PubMed  Google Scholar 

  23. Adle-Biassette H, et al. Neuropathological review of 138 cases genetically tested for X-linked hydrocephalus: evidence for closely related clinical entities of unknown molecular bases. Acta Neuropathol. 2013;126:427–42. https://doi.org/10.1007/s00401-013-1146-1.

    Article  CAS  PubMed  Google Scholar 

  24. Maness PF, Schachner M. Neural recognition molecules of the immunoglobulin superfamily: signal transducers of axon guidance and neuronal migration. Nat Neurosci. 2007;10:19–26.

    Article  CAS  PubMed  Google Scholar 

  25. Patzke C, Acuna C, Giam LR, Wernig M, Sudhof TC. Conditional deletion of L1CAM in human neurons impairs both axonal and dendritic arborization and action potential generation. J Exp Med. 2016;213:499–515. https://doi.org/10.1084/jem.20150951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tully HM, et al. Two hundred thirty-six children with developmental hydrocephalus: causes and clinical consequences. J Child Neurol. 2016;31:309–20. https://doi.org/10.1177/0883073815592222.

    Article  PubMed  Google Scholar 

  27. Itoh K, Fushiki S. The role of L1cam in murine corticogenesis, and the pathogenesis of hydrocephalus. Pathol Int. 2015;65:58–66. https://doi.org/10.1111/pin.12245.

    Article  CAS  PubMed  Google Scholar 

  28. Strain L, Wright AF, Bonthron DT. Fried syndrome is a distinct X linked mental retardation syndrome mapping to Xp22. J Med Genet. 1997;34:535–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tarpey PS, et al. Mutations in the gene encoding the sigma 2 subunit of the adaptor protein 1 complex, AP1S2, cause X-linked mental retardation. Am J Hum Genet. 2006;79:1119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cacciagli P, et al. AP1S2 is mutated in X-linked Dandy-Walker malformation with intellectual disability, basal ganglia disease and seizures (Pettigrew syndrome). Eur J Hum Genet. 2014;22:363–8. https://doi.org/10.1038/ejhg.2013.135.

    Article  CAS  PubMed  Google Scholar 

  31. Saillour Y, et al. Mutations in the AP1S2 gene encoding the sigma 2 subunit of the adaptor protein 1 complex are associated with syndromic X-linked mental retardation with hydrocephalus and calcifications in basal ganglia. J Med Genet. 2007;44:739–44. https://doi.org/10.1136/jmg.2007.051334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Reusch U, Bernhard O, Koszinowski U, Schu P. AP-1A and AP-3A lysosomal sorting functions. Traffic. 2002;3:752–61.

    Article  CAS  PubMed  Google Scholar 

  33. Klezovitch K, Fernandez TE, Tapscott SJ, Vasioukhin V. Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev. 2004;18:559–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chae TH, Kim S, Marz KE, Hanson PI, Walsh CA. The hyh mutation uncovers roles for αSnap in apical protein localization and control of neural cell fate. Nat Genet. 2004;36:264–70.

    Article  CAS  PubMed  Google Scholar 

  35. Ekici AB, et al. Disturbed Wnt signalling due to a mutation in CCDC88C causes an autosomal recessive non-syndromic hydrocephalus with medial diverticulum. Mol Syndromol. 2010;1:99–112. https://doi.org/10.1159/000319859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Drielsma A, et al. Two novel CCDC88C mutations confirm the role of DAPLE in autosomal recessive congenital hydrocephalus. J Med Genet. 2012;49:708–12. https://doi.org/10.1136/jmedgenet-2012-101190.

    Article  CAS  PubMed  Google Scholar 

  37. Ruggeri G, et al. Bi-allelic mutations of CCDC88C are a rare cause of severe congenital hydrocephalus. Am J Med Genet A. 2018;176:676–81. https://doi.org/10.1002/ajmg.a.38592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ishida-Takagishi M, et al. The Dishevelled-associating protein Daple controls the non-canonical Wnt/Rac pathway and cell motility. Nat Commun. 2012;3:859. https://doi.org/10.1038/ncomms1861.

    Article  CAS  PubMed  Google Scholar 

  39. Ohata S, et al. Loss of Dishevelleds disrupts planar polarity in ependymal motile cilia and results in hydrocephalus. Neuron. 2014;83:558–71. https://doi.org/10.1016/j.neuron.2014.06.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Al-Dosari MS, et al. Mutation in MPDZ causes severe congenital hydrocephalus. J Med Genet. 2013;50:54–8. https://doi.org/10.1136/jmedgenet-2012-101294.

    Article  CAS  PubMed  Google Scholar 

  41. Sotak BN, Gleeson JG. Can’t get there from here: cilia and hydrocephalus. Nat Med. 2012;18:1742–3. https://doi.org/10.1038/nm.3011.

    Article  CAS  PubMed  Google Scholar 

  42. Feldner A, et al. Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice. EMBO Mol Med. 2017;9:890–905. https://doi.org/10.15252/emmm.201606430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shaheen R, et al. The genetic landscape of familial congenital hydrocephalus. Ann Neurol. 2017;81:890–7. https://doi.org/10.1002/ana.24964.

    Article  CAS  PubMed  Google Scholar 

  44. Kielar M, et al. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci. 2014;17:923–33. https://doi.org/10.1038/nn.3729.

    Article  CAS  PubMed  Google Scholar 

  45. Bizzotto S, et al. Eml1 loss impairs apical progenitor spindle length and soma shape in the developing cerebral cortex. Sci Rep. 2017;7:17308. https://doi.org/10.1038/s41598-017-15253-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gulsuner S, et al. Homozygosity mapping and targeted genomic sequencing reveal the gene responsible for cerebellar hypoplasia and quadrupedal locomotion in a consanguineous kindred. Genome Res. 2011;21:1995–2003. https://doi.org/10.1101/gr.126110.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Traka M, et al. WDR81 is necessary for purkinje and photoreceptor cell survival. J Neurosci. 2013;33:6834–44. https://doi.org/10.1523/JNEUROSCI.2394-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cavallin M, et al. WDR81 mutations cause extreme microcephaly and impair mitotic progression in human fibroblasts and Drosophila neural stem cells. Brain. 2017;140:2597–609.

    Article  PubMed  Google Scholar 

  49. Shankar P, Zamora C, Castillo M. Congenital malformations of the brain and spine. Handb Clin Neurol. 2016;136:1121–37. https://doi.org/10.1016/B978-0-444-53486-6.00058-2.

    Article  PubMed  Google Scholar 

  50. Copp AJ, Greene ND. Genetics and development of neural tube defects. J Pathol. 2010;220:217–30. https://doi.org/10.1002/path.2643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mitchell LE. Epidemiology of neural tube defects. Am J Med Genet C Semin Med Genet. 2005;135C:88–94.

    Article  PubMed  Google Scholar 

  52. Balashova OA, Visina O, Borodinsky LN. Folate action in nervous system development and disease. Dev Neurobiol. 2018;78:391–402. https://doi.org/10.1002/dneu.22579.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nikolopoulou E, Galea GL, Rolo A, Greene ND, Copp AJ. Neural tube closure: cellular, molecular and biomechanical mechanisms. Development. 2017;144:552–66. https://doi.org/10.1242/dev.145904.

    Article  CAS  PubMed  Google Scholar 

  54. van Reeuwijk J, et al. Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome. Hum Genet. 2007;121:685–90. https://doi.org/10.1007/s00439-007-0362-y.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shaheen R, Faqeih E, Ansari S, Alkuraya FS. A truncating mutation in B3GNT1 causes severe Walker-Warburg syndrome. Neurogenetics. 2013;14:243–5. https://doi.org/10.1007/s10048-013-0367-8.

    Article  CAS  PubMed  Google Scholar 

  56. Bouchet-Seraphin C, Vuillaumier-Barrot S, Seta N. Dystroglycanopathies: about numerous genes involved in glycosylation of one single glycoprotein. J Neuromuscul Dis. 2015;2:27–38. https://doi.org/10.3233/JND-140047.

    Article  PubMed  Google Scholar 

  57. Roscioli T, et al. Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of alpha-dystroglycan. Nat Genet. 2012;44:581–5. https://doi.org/10.1038/ng.2253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yoshida A, et al. Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell. 2001;1:717–24.

    Article  CAS  PubMed  Google Scholar 

  59. Lesnik Oberstein SA, et al. Peters Plus syndrome is caused by mutations in B3GALTL, a putative glycosyltransferase. Am J Hum Genet. 2006;79:562–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Waters AM, et al. The kinetochore protein, CENPF, is mutated in human ciliopathy and microcephaly phenotypes. J Med Genet. 2015;52:147–56. https://doi.org/10.1136/jmedgenet-2014-102691.

    Article  CAS  PubMed  Google Scholar 

  61. Pennarun G, et al. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet. 1999;65:1508–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Olbrich H, et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat Genet. 2002;30:143–4. https://doi.org/10.1038/ng817.

    Article  CAS  PubMed  Google Scholar 

  63. Smith UM, et al. The transmembrane protein meckelin (MKS3) is mutated in Meckel-Gruber syndrome and the wpk rat. Nat Genet. 2006;38:191–6. https://doi.org/10.1038/ng1713.

    Article  CAS  PubMed  Google Scholar 

  64. Kyttala M, et al. MKS1, encoding a component of the flagellar apparatus basal body proteome, is mutated in Meckel syndrome. Nat Genet. 2006;38:155–7. https://doi.org/10.1038/ng1714.

    Article  CAS  PubMed  Google Scholar 

  65. Kim J, Krishnaswami SR, Gleeson JG. CEP290 interacts with the centriolar satellite component PCM-1 and is required for Rab8 localization to the primary cilium. Hum Mol Genet. 2008;17:3796–805. https://doi.org/10.1093/hmg/ddn277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Valente EM, et al. Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes. Nat Genet. 2010;42:619–25. https://doi.org/10.1038/ng.594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gorden NT, et al. CC2D2A is mutated in Joubert syndrome and interacts with the ciliopathy-associated basal body protein CEP290. Am J Hum Genet. 2008;83:559–71. https://doi.org/10.1016/j.ajhg.2008.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hogue J, et al. Homozygosity for a FBN1 missense mutation causes a severe Marfan syndrome phenotype. Clin Genet. 2013;84:392–3. https://doi.org/10.1111/cge.12073.

    Article  CAS  PubMed  Google Scholar 

  69. Koenigstein K, et al. Chudley-McCullough syndrome: variable clinical picture in twins with a novel GPSM2 mutation. Neuropediatrics. 2016;47:197–201.

    Article  CAS  PubMed  Google Scholar 

  70. Caron C, et al. CdGAP/ARHGAP31, a Cdc42/Rac1 GTPase regulator, is critical for vascular development and VEGF-mediated angiogenesis. Sci Rep. 2016;6:27485. https://doi.org/10.1038/srep27485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Simpson MA, et al. Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet. 2011;43:303–5. https://doi.org/10.1038/ng.779.

    Article  CAS  PubMed  Google Scholar 

  72. Kibar Z, et al. Contribution of VANGL2 mutations to isolated neural tube defects. Clin Genet. 2011;80:76–82.

    Article  CAS  PubMed  Google Scholar 

  73. Seo JH, et al. Mutations in the planar cell polarity gene, Fuzzy, are associated with neural tube defects in humans. Hum Mol Genet. 2011;20:4324–33.

    Article  CAS  PubMed  Google Scholar 

  74. Wang M, et al. Role of the planar cell polarity gene Protein tyrosine kinase 7 in neural tube defects in humans. Birth Defects Res A Clin Mol Teratol. 2015;103:1021–7.

    Article  CAS  PubMed  Google Scholar 

  75. Pappa L, et al. Exome analysis in an Estonian multiplex family with neural tube defects-a case report. Childs Nerv Syst. 2017;33:1575–81. https://doi.org/10.1007/s00381-017-3491-1.

    Article  PubMed  Google Scholar 

  76. Allache R, De Marco P, Merello E, Capra V, Kibar Z. Role of the planar cell polarity gene CELSR1 in neural tube defects and caudal agenesis. Birth Defects Res A Clin Mol Teratol. 2012;94:176–81. https://doi.org/10.1002/bdra.23002.

    Article  CAS  PubMed  Google Scholar 

  77. Yoon G, Rosenberg J, Blaser S, Rauen KA. Neurological complications of cardio-facio-cutaneous syndrome. Dev Med Child Neurol. 2007;49:894–9.

    Article  PubMed  Google Scholar 

  78. Gripp KW, Hopkins E, Doyle D, Dobyns WB. High incidence of progressive postnatal cerebellar enlargement in Costello syndrome: brain overgrowth associated with HRAS mutations as the likely cause of structural brain and spinal cord abnormalities. Am J Med Genet A. 2010;152A:1161–8. https://doi.org/10.1002/ajmg.a.33391.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Dincer A, Yener U, Ozek MM. Hydrocephalus in patients with neurofibromatosis type 1: MR imaging findings and the outcome of endoscopic third ventriculostomy. AJNR Am J Neuroradiol. 2011;32:643–6. https://doi.org/10.3174/ajnr.A2357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rauen KA. The RASopathies. Annu Rev Genomics Hum Genet. 2013;14:355–69. https://doi.org/10.1146/annurev-genom-091212-153523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tos T, Alp MY, Aksoy A, Ceylaner S, Hanauer A. A familial case of Coffin-Lowry syndrome caused by RPS6KA3 C.898C>T mutation associated with multiple abnormal brain imaging findings. Genet Couns. 2015;26:47–52.

    CAS  PubMed  Google Scholar 

  82. Rijken BF, Lequin MH, Van Veelen ML, de Rooi J, Mathijssen IM. The formation of the foramen magnum and its role in developing ventriculomegaly and Chiari I malformation in children with craniosynostosis syndromes. J Craniomaxillofac Surg. 2015;43:1042–8. https://doi.org/10.1016/j.jcms.2015.04.025.

    Article  PubMed  Google Scholar 

  83. Chen CP, et al. Rapid detection of K650E mutation in FGFR3 using uncultured amniocytes in a pregnancy affected with fetal cloverleaf skull, occipital pseudoencephalocele, ventriculomegaly, straight short femurs, and thanatophoric dysplasia type II. Taiwan J Obstet Gynecol. 2013;52:420–5. https://doi.org/10.1016/j.tjog.2013.05.003.

    Article  PubMed  Google Scholar 

  84. Matsumoto A, et al. The presence of diminished white matter and corpus callosal thinning in a case with a SOX9 mutation. Brain and Development. 2017;40:325–9. https://doi.org/10.1016/j.braindev.2017.09.002.

    Article  PubMed  Google Scholar 

  85. Lausch E, et al. TBX15 mutations cause craniofacial dysmorphism, hypoplasia of scapula and pelvis, and short stature in Cousin syndrome. Am J Hum Genet. 2008;83:649–55. https://doi.org/10.1016/j.ajhg.2008.10.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Papangeli I, Scambler P. The 22q11 deletion: DiGeorge and velocardiofacial syndromes and the role of TBX1. Wiley Interdiscip Rev Dev Biol. 2013;2:393–403. https://doi.org/10.1002/wdev.75.

    Article  CAS  PubMed  Google Scholar 

  87. Van Laer L, Dietz H, Loeys B. Loeys-Dietz syndrome. Adv Exp Med Biol. 2014;802:95–105.

    Article  PubMed  Google Scholar 

  88. Riviere JB, et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet. 2012;44:934–40. https://doi.org/10.1038/ng.2331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mirzaa G, et al. De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. Nat Genet. 2014;46:510–5. https://doi.org/10.1038/ng.2948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Capo-Chichi JM, et al. Disruption of TBC1D7, a subunit of the TSC1-TSC2 protein complex, in intellectual disability and megalencephaly. J Med Genet. 2013;50:740–4. https://doi.org/10.1136/jmedgenet-2013-101680.

    Article  CAS  PubMed  Google Scholar 

  91. Ohata S, et al. Mechanosensory genes Pkd1 and Pkd2 contribute to the planar polarization of brain ventricular epithelium. J Neurosci. 2015;35:11153–68. https://doi.org/10.1523/JNEUROSCI.0686-15.2015.

    Article  CAS  PubMed  Google Scholar 

  92. Ibanez-Tallon I, et al. Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet. 2004;13:2133–41.

    Article  CAS  PubMed  Google Scholar 

  93. Banizs B, et al. Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development. 2005;132:5329–39.

    Article  CAS  PubMed  Google Scholar 

  94. Wallmeier J, et al. Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Genet. 2014;46:646–51. https://doi.org/10.1038/ng.2961.

    Article  CAS  PubMed  Google Scholar 

  95. Nunez-Olle M, et al. Constitutive Cyclin O deficiency results in penetrant hydrocephalus, impaired growth and infertility. Oncotarget. 2017;8:99261–73.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Yamamoto H, et al. Genetic deletion of afadin causes hydrocephalus by destruction of adherens junctions in radial glial and ependymal cells in the midbrain. PLoS One. 2013;8:e80356. https://doi.org/10.1371/journal.pone.0080356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim YH, et al. A complex of BBS1 and NPHP7 is required for cilia motility in zebrafish. PLoS One. 2013;8:e72549. https://doi.org/10.1371/journal.pone.0072549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cha JY, et al. The role of FoxC1 in early Xenopus development. Dev Dyn. 2007;236:2731–41.

    Article  CAS  PubMed  Google Scholar 

  99. Shibutani M, et al. Arid1b Haploinsufficiency causes abnormal brain gene expression and autism-related behaviors in mice. Int J Mol Sci. 2017;18. https://doi.org/10.3390/ijms18091872.

    Article  PubMed Central  Google Scholar 

  100. Veleri S, et al. Knockdown of Bardet-Biedl syndrome gene BBS9/PTHB1 leads to cilia defects. PLoS One. 2012;7:e34389. https://doi.org/10.1371/journal.pone.0034389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hagenlocher C, Walentek P, Muller C, Thumberger T, Feistel K. Ciliogenesis and cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1. Cilia. 2013;2:e1–e14. https://doi.org/10.1186/2046-2530-2-12.

    Article  Google Scholar 

  102. Mori N, et al. Ccdc85c encoding a protein at apical junctions of radial glia is disrupted in hemorrhagic hydrocephalus (hhy) mice. Am J Pathol. 2012;180:314–27. https://doi.org/10.1016/j.ajpath.2011.09.014.

    Article  CAS  PubMed  Google Scholar 

  103. Liu J, et al. A betaPix Pak2a signaling pathway regulates cerebral vascular stability in zebrafish. Proc Natl Acad Sci U S A. 2007;104:13990–5. https://doi.org/10.1073/pnas.0700825104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Muntean BS, Jin X, Williams FE, Nauli SM. Primary cilium regulates CaV1.2 expression through Wnt signaling. J Cell Physiol. 2014;229:1926–34. https://doi.org/10.1002/jcp.24642.

    Article  CAS  PubMed  Google Scholar 

  105. Cardenas-Rodriguez M, et al. Characterization of CCDC28B reveals its role in ciliogenesis and provides insight to understand its modifier effect on Bardet-Biedl syndrome. Hum Genet. 2013;132:91–105.

    Article  CAS  PubMed  Google Scholar 

  106. Rachel RA, et al. CEP290 alleles in mice disrupt tissue-specific cilia biogenesis and recapitulate features of syndromic ciliopathies. Hum Mol Genet. 2015;24:3775–91. https://doi.org/10.1093/hmg/ddv123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lyons PJ, Sapio MR, Fricker LD. Zebrafish cytosolic carboxypeptidases 1 and 5 are essential for embryonic development. J Biol Chem. 2013;288:30454–62. https://doi.org/10.1074/jbc.M113.497933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ying G, et al. Centrin 2 is required for mouse olfactory ciliary trafficking and development of ependymal cilia planar polarity. J Neurosci. 2014;34:6377–88. https://doi.org/10.1523/JNEUROSCI.0067-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ha S, Lindsay AM, Timms AE, Beier DR. Mutations in Dnaaf1 and Lrrc48 cause hydrocephalus, laterality defects, and sinusitis in mice. G3 (Bethesda). 2016;6:2479–87. https://doi.org/10.1534/g3.116.030791.

    Article  CAS  PubMed Central  Google Scholar 

  110. Mo D, et al. Apical targeting and endocytosis of the sialomucin endolyn are essential for establishment of zebrafish pronephric kidney function. J Cell Sci. 2012;125:5546–54. https://doi.org/10.1242/jcs.111468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Oji A, et al. CRISPR/Cas9 mediated genome editing in ES cells and its application for chimeric analysis in mice. Sci Rep. 2016;6:31666. https://doi.org/10.1038/srep31666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Clement A, Solnica-Krezel L, Gould KL. Functional redundancy between Cdc14 phosphatases in zebrafish ciliogenesis. Dev Dyn. 2012;241:1911–21. https://doi.org/10.1002/dvdy.23876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zega K, et al. Dusp16 deficiency causes congenital obstructive hydrocephalus and brain overgrowth by expansion of the neural progenitor pool. Front Mol Neurosci. 2017;10:372. https://doi.org/10.3389/fnmol.2017.00372.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Shaheen R, et al. A founder CEP120 mutation in Jeune asphyxiating thoracic dystrophy expands the role of centriolar proteins in skeletal ciliopathies. Hum Mol Genet. 2015;24:1410–9. https://doi.org/10.1093/hmg/ddu555.

    Article  CAS  PubMed  Google Scholar 

  115. Swetloff A, Ferretti P. Changes in E2F5 intracellular localization in mouse and human choroid epithelium and developmet. Int J Dev Biol. 2005;49:859–65.

    Article  CAS  PubMed  Google Scholar 

  116. Li X, et al. Concomitant activation of foxo3a and fancc or fancd2 reveals a two-tier protection from oxidative stress-induced hydrocephalus. Antioxid Redox Signal. 2014;21:1675–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Schueler M, et al. DCDC2 mutations cause a renal-hepatic ciliopathy by disrupting Wnt signaling. Am J Hum Genet. 2015;96:81–92. https://doi.org/10.1016/j.ajhg.2014.12.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang L, et al. Impaired methylation modifications of FZD3 alter chromatin accessibility and are involved in congenital hydrocephalus pathogenesis. Brain Res. 2014;1569.

    Article  CAS  PubMed  Google Scholar 

  119. Mitchison HM, et al. Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat Genet. 2012;44(381–389):S381–2. https://doi.org/10.1038/ng.1106.

    Article  CAS  Google Scholar 

  120. Davy BE, Robinson ML. Congenital hydrocephalus in hy3 mice is caused by a frameshift mutation in Hydin, a large novel gene. Hum Mol Genet. 2003;12:1163–70.

    Article  CAS  PubMed  Google Scholar 

  121. Chandrasekar G, Vesterlund L, Hultenby K, Tapia-Paez I, Kere J. The zebrafish orthologue of the dyslexia candidate gene DYX1C1 is essential for cilia growth and function. PLoS One. 2013;8:e63123. https://doi.org/10.1371/journal.pone.0063123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Moon H, et al. Intestinal cell kinase, a protein associated with endocrine-cerebro-osteodysplasia syndrome, is a key regulator of cilia length and hedgehog signaling. Proc Natl Acad Sci U S A. 2014;111:8541–6. https://doi.org/10.1073/pnas.1323161111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gonzalez AM, et al. Ecrg4 expression and its product augurin in the choroid plexus- impact on fetal brain development, cerebrospinal fluid homeostasis and neuroprogenitor cell response to CNS injury. Fluids Barriers CNS. 2011;8. https://doi.org/10.1186/2045-8118-8-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bardella C, et al. Expression of Idh1(R132H) in the Murine subventricular zone stem cell niche recapitulates features of early Gliomagenesis. Cancer Cell. 2016;30:578–94. https://doi.org/10.1016/j.ccell.2016.08.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pathak N, Obara T, Mangos S, Liu Y, Drummond IA. The zebrafish fleer gene encodes an essential regulator of cilia tubulin polyglutamylation. Mol Biol Cell. 2007;18:4353–64. https://doi.org/10.1091/mbc.E07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Akbay EA, et al. D-2-hydroxyglutarate produced by mutant IDH2 causes cardiomyopathy and neurodegeneration in mice. Genes Dev. 2014;28:479–90. https://doi.org/10.1101/gad.231233.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Manzini MC, et al. Exome sequencing and functional validation in zebrafish identify GTDC2 mutations as a cause of Walker-Warburg syndrome. Am J Hum Genet. 2012;91:541–7. https://doi.org/10.1016/j.ajhg.2012.07.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Muniz-Talavera H, Schmidt JV. The mouse Jhy gene regulates ependymal cell differentiation and ciliogenesis. PLoS One. 2017;12.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Lee MS, et al. IFT46 plays an essential role in cilia development. Dev Biol. 2015;400:248–57. https://doi.org/10.1016/j.ydbio.2015.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cesca F, et al. Kidins220/ARMS is an essential modulator of cardiovascular and nervous system development. Cell Death Dis. 2011;2:e226. https://doi.org/10.1038/cddis.2011.108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Shen H, Bocksteins E, Kondrychyn I, Snyders D, Korzh V. Functional antagonism of voltage-gated K+ channel alpha-subunits in the developing brain ventricular system. Development. 2016;143:4249–60. https://doi.org/10.1242/dev.140467.

    Article  CAS  PubMed  Google Scholar 

  132. Tong CK, et al. Primary cilia are required in a unique subpopulation of neural progenitors. Proc Natl Acad Sci U S A. 2014;111:12438–43. https://doi.org/10.1073/pnas.1321425111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gueneau L, et al. KIAA1109 variants are associated with a severe disorder of brain development and arthrogryposis. Am J Hum Genet. 2018;102:116–32. https://doi.org/10.1016/j.ajhg.2017.12.002.

    Article  CAS  PubMed  Google Scholar 

  134. Yamazaki F, et al. The Lhx9 homeobox gene controls pineal gland development and prevents postnatal hydrocephalus. Brain Struct Funct. 2015;220:1497–509.

    Article  CAS  PubMed  Google Scholar 

  135. Teng Y, et al. Loss of zebrafish lgi1b leads to hydrocephalus and sensitization to pentylenetetrazol induced seizure-like behavior. PLoS One. 2011;6:e24596. https://doi.org/10.1371/journal.pone.0024596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hanington PC, et al. Analysis of leukemia inhibitory factor and leukemia inhibitory factor receptor in embryonic and adult zebrafish (Danio rerio). Dev Biol. 2008;314:250–60. https://doi.org/10.1016/j.ydbio.2007.10.012.

    Article  CAS  PubMed  Google Scholar 

  137. Inaba Y, et al. Transport of the outer dynein arm complex to cilia requires a cytoplasmic protein Lrrc6. Genes Cells. 2016;21:728–39. https://doi.org/10.1111/gtc.12380.

    Article  CAS  PubMed  Google Scholar 

  138. Chen HL, Yuh CH, Wu KK. Nestin is essential for zebrafish brain and eye development through control of progenitor cell apoptosis. PLoS One. 2010;5:e9318. https://doi.org/10.1371/journal.pone.0009318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ridge LA, et al. Non-muscle myosin IIB (Myh10) is required for epicardial function and coronary vessel formation during mammalian development. PLoS Genet. 2017;13:e1007068. https://doi.org/10.1371/journal.pgen.1007068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhou W, Dai J, Attanasio M, Hildebrandt F. Nephrocystin-3 is required for ciliary function in zebrafish embryos. Am J Physiol Ren Physiol. 2010;299:F55–62. https://doi.org/10.1152/ajprenal.00043.2010.

    Article  CAS  Google Scholar 

  141. Jain N, et al. Conditional N-WASP knockout in mouse brain implicates actin cytoskeleton regulation in hydrocephalus pathology. Exp Neurol. 2014;254:29–40.

    Article  CAS  PubMed  Google Scholar 

  142. Vogel P, et al. Congenital hydrocephalus in genetically engineered mice. Vet Pathol. 2012;49:166–81. https://doi.org/10.1177/0300985811415708.

    Article  CAS  PubMed  Google Scholar 

  143. Ferrante MI, et al. Convergent extension movements and ciliary function are mediated by ofd1, a zebrafish orthologue of the human oral-facial-digital type 1 syndrome gene. Hum Mol Genet. 2009;18:289–303. https://doi.org/10.1093/hmg/ddn356.

    Article  CAS  PubMed  Google Scholar 

  144. Raveau M, et al. Brain ventriculomegaly in down syndrome mice is caused by Pcp4 dose-dependent cilia dysfunction. Hum Mol Genet. 2017;26:923–31. https://doi.org/10.1093/hmg/ddx007.

    Article  CAS  PubMed  Google Scholar 

  145. Zizioli D, et al. Knock-down of pantothenate kinase 2 severely affects the development of the nervous and vascular system in zebrafish, providing new insights into PKAN disease. Neurobiol Dis. 2016;85:35–48. https://doi.org/10.1016/j.nbd.2015.10.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wodarczyk C, et al. A novel mouse model reveals that polycystin-1 deficiency in ependyma and choroid plexus results in dysfunctional cilia and hydrocephalus. PLoS One. 2009;4:e7137. https://doi.org/10.1371/journal.pone.0007137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mangos S, et al. The ADPKD genes pkd1a/b and pkd2 regulate extracellular matrix formation. Dis Model Mech. 2010;3:354–65. https://doi.org/10.1242/dmm.003194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Fant ME, Fuentes J, Kong X, Jackman S. The nexus of prematurity, birth defects, and intrauterine growth restriction: a role for plac1-regulated pathways. Front Pediatr. 2014;2:8. https://doi.org/10.3389/fped.2014.00008.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Obara T, et al. Polycystin-2 immunolocalization and function in zebrafish. J Am Soc Nephrol. 2006;17:2706–18. https://doi.org/10.1681/ASN.2006040412.

    Article  CAS  PubMed  Google Scholar 

  150. Murga M, et al. POLD3 is Haploinsufficient for DNA replication in mice. Mol Cell. 2016;63:877–83. https://doi.org/10.1016/j.molcel.2016.07.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Nornes S, et al. Interference with splicing of Presenilin transcripts has potent dominant negative effects on Presenilin activity. Hum Mol Genet. 2008;17:402–12. https://doi.org/10.1093/hmg/ddm317.

    Article  CAS  PubMed  Google Scholar 

  152. Shimada IS, Acar M, Burgess RJ, Zhao Z, Morrison SJ. Prdm16 is required for the maintenance of neural stem cells in the postnatal forebrain and their differentiation into ependymal cells. Genes Dev. 2017;31:1134–46. https://doi.org/10.1101/gad.291773.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Grimes DT, Boswell CW, Morante NF, Henkelman RM, Ciruna B. Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science. 2016;352:1341–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Roset R, et al. The Rad50 hook domain regulates DNA damage signaling and tumorigenesis. Genes Dev. 2014;28:451–62. https://doi.org/10.1101/gad.236745.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Shi Y, Obert E, Rahman B, Rohrer B, Lobo GP. The retinol binding protein receptor 2 (Rbpr2) is required for photoreceptor outer segment morphogenesis and visual function in Zebrafish. Sci Rep. 2017;7:16207. https://doi.org/10.1038/s41598-017-16498-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Xu P, et al. Conditional ablation of the RFX4 isoform 1 transcription factor: allele dosage effects on brain phenotype. PLoS One. 2018;13:e0190561. https://doi.org/10.1371/journal.pone.0190561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ghosh AK, et al. Human retinopathy-associated ciliary protein retinitis pigmentosa GTPase regulator mediates cilia-dependent vertebrate development. Hum Mol Genet. 2010;19:90–8. https://doi.org/10.1093/hmg/ddp469.

    Article  CAS  PubMed  Google Scholar 

  158. Lin X, et al. Genetic deletion of Rnd3 results in aqueductal stenosis leading to hydrocephalus through upregulation of notch signaling. Proc Natl Acad Sci U S A. 2013;110:8236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Dash SN, et al. Sept7b is essential for pronephric function and development of left-right asymmetry in zebrafish embryogenesis. J Cell Sci. 2014;127:1476–86. https://doi.org/10.1242/jcs.138495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ritter-Makinson SL, et al. Group II metabotropic glutamate receptor interactions with NHERF scaffold proteins: implications for receptor localization in brain. Neuroscience. 2017;353:58–75. https://doi.org/10.1016/j.neuroscience.2017.03.060.

    Article  CAS  PubMed  Google Scholar 

  161. Hurd TW, et al. Mutation of the Mg2+ transporter SLC41A1 results in a nephronophthisis-like phenotype. J Am Soc Nephrol. 2013;24:967–77. https://doi.org/10.1681/ASN.2012101034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lee K, et al. Congenital hydrocephalus and abnormal subcommissural organ development in Sox3 transgenic mice. PLoS One. 2012;7:e29041. https://doi.org/10.1371/journal.pone.0029041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Treat AC, et al. The PDZ protein Na+/H+ exchanger regulatory Factor-1 (NHERF1) regulates planar cell polarity and motile cilia organization. PLoS One. 2016;11:e0153144. https://doi.org/10.1371/journal.pone.0153144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lehti MS, et al. Cilia-related protein SPEF2 regulates osteoblast differentiation. Sci Rep. 2018;8. https://doi.org/10.1038/s41598-018-19204-5.

  165. Brockschmidt A, et al. Neurologic and ocular phenotype in Pitt-Hopkins syndrome and a zebrafish model. Hum Genet. 2011;130:645–55. https://doi.org/10.1007/s00439-011-0999-4.

    Article  PubMed  Google Scholar 

  166. Nemajerova A, et al. Non-oncogenic roles of TAp73: from multiciliogenesis to metabolism. Cell Death Differ. 2017;25:144–53. https://doi.org/10.1038/cdd.2017.178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Xu Y, et al. Characterization of tetratricopeptide repeat-containing proteins critical for cilia formation and function. PLoS One. 2015;10:e0124378. https://doi.org/10.1371/journal.pone.0124378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Liu M, et al. Ulk4r is essential for ciliogenesis and CSF flow. J Neurosci. 2016;36:7589–600. https://doi.org/10.1523/JNEUROSCI.0621-16.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Liu M, et al. Ulk4 regulates neural stem cell pool. Stem Cells. 2016;34:2318–31.

    Article  CAS  PubMed  Google Scholar 

  170. Hirschner W, et al. Biosynthesis of Wdr16, a marker protein for kinocilia-bearing cells, starts at the time of kinocilia formation in rat, and wdr16 gene knockdown causes hydrocephalus in zebrafish. J Neurochem. 2007;101:274–88. https://doi.org/10.1111/j.1471-4159.2007.04500.x.

    Article  CAS  PubMed  Google Scholar 

  171. Heye N, Dunne JW. Noonan’s syndrome with hydrocephalus, hindbrain herniation, and upper cervical intracord cyst. J Neurol Neurosurg Psychiatry. 1995;59:338–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Thompson D, et al. RAF1 variants causing biventricular hypertrophic cardiomyopathy in two preterm infants: further phenotypic delineation and review of literature. Clin Dysmorphol. 2017;26:195–9. https://doi.org/10.1097/MCD.0000000000000194.

    Article  PubMed  Google Scholar 

  173. Gripp KW, et al. A novel rasopathy caused by recurrent de novo missense mutations in PPP1CB closely resembles Noonan syndrome with loose anagen hair. Am J Med Genet A. 2016;170:2237–47. https://doi.org/10.1002/ajmg.a.37781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Reinker KA, Stevenson DA, Tsung A. Orthopaedic conditions in Ras/MAPK related disorders. J Pediatr Orthop. 2011;31:599–605.

    Article  PubMed  Google Scholar 

  175. Wilkie AO, et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet. 1995;9:165–72.

    Article  CAS  PubMed  Google Scholar 

  176. Killer M, et al. Cytokine and growth factor concentration in cerebrospinal fluid from patients with hydrocephalus following endovascular embolization of unruptured aneurysms in comparison with other types of hydrocephalus. Neurochem Res. 2010;35:1652–8. https://doi.org/10.1007/s11064-010-0226-z.

    Article  CAS  PubMed  Google Scholar 

  177. Ohmiya M, et al. Administration of FGF-2 to embryonic mouse brain induces hydrocephalic brain morphology and aberrant differentiation of neurons in the postnatal cerebral cortex. J Neurosci Res. 2001;65:228–35.

    Article  CAS  PubMed  Google Scholar 

  178. Bristol RE, Lekovic GP, Rekate HL. The effects of craniosynostosis on the brain with respect to intracranial pressure. Semin Pediatr Neurol. 2004;11:262–7.

    Article  PubMed  Google Scholar 

  179. Unger S, Scherer G, Superti-Furga A. Campomelic dysplasia. In: GeneReviews. Seattle: University of Washington; 2008. p. 1–17. [updated: 2013].

    Google Scholar 

  180. Cheung M, Briscoe J. Neural crest development is regulated by the transcription factor Sox9. Development. 2003;130:5681–93. https://doi.org/10.1242/dev.00808.

    Article  CAS  PubMed  Google Scholar 

  181. Lee YH, Saint-Jeannet JP. Sox9 function in craniofacial development and disease. Genesis. 2011;49:200–8. https://doi.org/10.1002/dvg.20717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Gopakumar H, et al. Acampomelic form of campomelic dysplasia with SOX9 missense mutation. Indian J Pediatr. 2014;81:98–100.

    Article  PubMed  Google Scholar 

  183. Scott CE, et al. SOX9 induces and maintains neural stem cells. Nat Neurosci. 2010;13:1181–9. https://doi.org/10.1038/nn.2646.

    Article  CAS  PubMed  Google Scholar 

  184. Mirzaa GM, et al. Association of MTOR mutations with developmental brain disorders, including megalencephaly, focal cortical dysplasia, and pigmentary mosaicism. JAMA Neurol. 2016;73:836–45. https://doi.org/10.1001/jamaneurol.2016.0363.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Ryskalin L, et al. mTOR-dependent cell proliferation in the brain. Biomed Res Int. 2017;2017:7082696. https://doi.org/10.1155/2017/7082696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Foerster P, et al. mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis. Development. 2017;144:201–10. https://doi.org/10.1242/dev.138271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Godfrey C, et al. Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain. 2007;130:2725–35. https://doi.org/10.1093/brain/awm212.

    Article  PubMed  Google Scholar 

  188. van Reeuwijk J, Brunner HG, van Bokhoven H. Glyc-O-genetics of Walker-Warburg syndrome. Clin Genet. 2005;67:281–9.

    Article  PubMed  Google Scholar 

  189. Currier SC, et al. Mutations in POMT1 are found in a minority of patients with Walker-Warburg syndrome. Am J Med Genet A. 2005;133A:53–7.

    Article  PubMed  Google Scholar 

  190. Satz JS, et al. Brain and eye malformations resembling Walker-Warburg syndrome are recapitulated in mice by dystroglycan deletion in the epiblast. J Neurosci. 2008;28:10567–75. https://doi.org/10.1523/JNEUROSCI.2457-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Sironen A, et al. Loss of SPEF2 function in mice results in spermatogenesis defects and primary ciliary dyskinesia. Biol Reprod. 2011;85:690–701. https://doi.org/10.1095/biolreprod.111.091132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. May-Simera HL, Kelley MW. Cilia, Wnt signaling, and the cytoskeleton. Cilia. 2012;1:7. https://doi.org/10.1186/2046-2530-1-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Schrander-Stumpel C, Fryns JP. Congenital hydrocephalus: nosologyand guidelines for clinical approach and genetic counselling. Eur J Pediatr. 1998;157:355–62.

    Article  CAS  PubMed  Google Scholar 

  194. Limbrick DD Jr, et al. Cerebrospinal fluid biomarkers of infantile congenital hydrocephalus. PLoS One. 2017;12:e0172353. https://doi.org/10.1371/journal.pone.0172353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristopher Thomas Kahle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Furey, C.G., Antwi, P., Kahle, K.T. (2019). Congenital Hydrocephalus. In: Limbrick Jr., D., Leonard, J. (eds) Cerebrospinal Fluid Disorders . Springer, Cham. https://doi.org/10.1007/978-3-319-97928-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97928-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97927-4

  • Online ISBN: 978-3-319-97928-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics