Skip to main content

Nanoantimicrobials Mechanism of Action

  • Chapter
  • First Online:
Nanobiotechnology Applications in Plant Protection

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Understanding the molecular mode of actions of nanoantmicrobial will be helpful in creating viable administration systems to control critical pathogenic plant diseases. Similarly, the understanding of those mechanisms may assist to avoid resistance mechanisms, which are known and used in the case of pathogenic microorganisms. The potential mechanism of toxicity has been attributed to several possible mechanisms; the disintegration or arrival of particles from the nanoparticles inspire either provocative reaction, mitochondrial brokenness, interruption of cell layer respectability, oxidative pressure, protein or DNA degradation and harm, or reactive oxygen species (ROS) age, influencing the proteins and phospholipids and eventually causing cell passing. Specific attention was given to antimicrobial agents antimicrobial instruments with center around age of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), OH-(hydroxyl radicals), and O2−2 (peroxide). ROS has been a major consideration for a few systems including cell wall harm because of NPs-restricted association and improved membrane permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaszadegan A, Ghahramani Y, Gholami A, Hemmateenejad B, Dorostkar S, Nabavizadeh M, Sharghi H (2015) The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J Nanomater ID 720654

    Google Scholar 

  • Abd-Elsalam KA, Vasil’kov AY, Said-Galiev EE, Rubina MS, Khokhlov AR, Naumkin AV, Shtykova EV, Alghuthaymi MA (2017) Bimetallic and chitosan nanocomposites hybrid with trichoderma: novel antifungal agent against cotton soil-borne fungi. Euro J Plant Pathol. https://doi.org/10.1007/s10658-017-1349-8

  • Abkhoo J, Panjehkeh N (2017) Evaluation of antifungal activity of silver nanoparticles on Fusarium oxysporum. Int J Inf Secur 4(2):e41126. https://doi.org/10.5812/iji.41126

    Article  Google Scholar 

  • Ahmed IIS, Yadav DR, Lee YS (2016) Applications of nickel nanoparticles for control of fusarium wilt on lettuce and tomato. Int J Innov Res Sci Eng Technol 5:7378–7385

    Article  Google Scholar 

  • Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115:6279–6288

    Article  PubMed  CAS  Google Scholar 

  • Al-Jumaili A, Alancherry S, Bazaka K, Jacob MV (2017) Review on the antimicrobial properties of carbon nanostructures. Materials 10:1066. https://doi.org/10.3390/ma10091066

    Article  PubMed Central  Google Scholar 

  • Allahverdiyev AM, Abamor ES, Bagirova M, Baydar SY, Ates SC, Kaya F, Kaya C (2013) Investigation of antileishmanial activities of Tio2@Ag nanoparticles on biological properties of L. tropica and L. infantum parasites, in vitro. Experimental Parasitol 135:55–63

    Article  CAS  Google Scholar 

  • Alonso A, Vigués N, Muñoz-Berbel X, Macanás J, Muñoz M, Mas J, Muraviev DN (2011) Environmentally-safe bimetallic Ag@Co magnetic nanocomposites with antimicrobial activity. Chem Commun (Camb) 47:10464–10466

    Article  CAS  Google Scholar 

  • Ansari MA, Khan HM, Khan AA, Pal R, Cameotra SS (2013) Antibacterial potential of Al2O3 nanoparticles against multidrug resistance strains of Staphylococcus aureus isolated from skin exudates. J Nanopart Res 15:1970

    Article  CAS  Google Scholar 

  • Arciniegas-Grijalba PA, Patin˜o-Portela MC, Mosquera-Sa´nchez LP, Guerrero-Vargas JA, Rodrı´guez-Pa´ez JE (2017) ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl Nanosci 7:225–241

    Article  CAS  Google Scholar 

  • Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–664

    Article  PubMed  CAS  Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopart:689419. https://doi.org/10.1155/2014/689419

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  PubMed  CAS  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Baruah S, Dutta J (2009) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7:161–204

    Article  CAS  Google Scholar 

  • Benhamou N (1992) Ultrastructural and cytochemical aspects of chitosan on Fusarium oxysporum f. sp. radices-lycopersici, agent of tomato crown and root rot. Phytopathology 82:1185–1193

    Article  CAS  Google Scholar 

  • Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61

    Article  CAS  Google Scholar 

  • Borkow G, Gabbay J (2005) Copper as a biocidal tool. Curr Med Chem 12:2163–2175

    Article  PubMed  CAS  Google Scholar 

  • Brady-Est´evez AS, Kang S, Elimelech M (2008) A single walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small 4:481–484

    Article  CAS  Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet M (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870

    Article  PubMed  CAS  Google Scholar 

  • Brunel F, Gueddari NE, Moerschbacher BM (2013) Complexation of copper (II) with chitosan nanogels: toward control of microbial growth. Carbohydr Polym 92:1348–1356

    Article  PubMed  CAS  Google Scholar 

  • Budak H, Akpinar BA (2015) Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomics 15:523–531

    Article  PubMed  CAS  Google Scholar 

  • Butt HJ, Berger R, Bonaccurso E, Chen Y, Wang J (2007) Impact of atomic force microscopy on interface and colloid science. Adv Colloid Interf Sci 133:91–104

    Article  CAS  Google Scholar 

  • Canale Rappussi MC, Pascholati SF, Aparecida Benato E, Cia P (2009) Chitosan reduces infection by Guignardia citricarpa in postharvest “Valencia” oranges. Braz Arch BioTechnol 52:513–521

    Article  Google Scholar 

  • Carbon J, David H (1968) Thiobases in Escherichia coli transfer RNA-2- thiocytosine and 5-methylaminomethyl-2-thiouracil. Science 161(3846):1146–1147

    Article  PubMed  CAS  Google Scholar 

  • Cardinale M (2014) Scanning a microhabitat: plant-microbe interactions revealed by confocal laser microscopy. Front Microbiol 5:94. https://doi.org/10.3389/fmicb.2014.00094

    Article  PubMed  PubMed Central  Google Scholar 

  • Carré G, Hamon E, Ennahar S, Estner M, Lett MC, Horvatovich P, Gies JP, Kellerb V, Kellerb N, Andrea P (2014) TiO2 Photocatalysis damages lipids and proteins in Escherichia coli. Appl Environ Microbiol 80:2573–2581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cataldo F, Da Ros T (2008) Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes. Springer Science & Business Media, Dordrecht

    Book  Google Scholar 

  • Chandra S, Chakarborty N, Dasgupta A, Sarkar J, Panda K, Acharya K (2015) Chitosan nanoparticle: a positive modulator of innate immune responses in plants. Sci Rep 5:1–13

    Google Scholar 

  • Chang YN, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5:2850–2871

    Article  PubMed Central  CAS  Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25:241–258

    Article  CAS  Google Scholar 

  • Chen JP, Peng H, Wang X, Shao F, Yuan Z, Han H (2014) Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 6:1879–1889

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Ma Z, Liu G, Wei H, Xie X (2016) Antibacterial activity of cationic cyclen-functionalized fullerene derivatives: membrane stress. Dig J Nanomater Biostruct (DJNB) 11:753–761

    Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588

    Article  PubMed  CAS  Google Scholar 

  • Choi JY, Kim KH, Choy KC, Oh KT, Kim KN (2007) Photocatalytic antibacterial effect of TiO 2 fim formed on Ti and TiAg exposed to Lactobacillus acidophilus. J Biomed Mater Res Part B 80:353–359

    Article  CAS  Google Scholar 

  • Chou KS, Chen CC (2007) Fabrication and characterization of silver core and porous silica shell nanocomposite particles. Microporous and Mesoporous Mater 98:208–213

    Article  CAS  Google Scholar 

  • Chung YC, Chen CY (2008) Antibacterial characteristics and activity of acid-soluble chitosan. Bioresour Technol 99:2806–2814

    Article  PubMed  CAS  Google Scholar 

  • Chung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JC, Lin JG (2004) Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol Sin 25:932–936

    PubMed  CAS  Google Scholar 

  • Chwalibog A, Sawosz E, Hotowy A, Szeliga J, Mitura S, Mitura K et al (2010) Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomed 5:1085–1094

    Article  CAS  Google Scholar 

  • Cioffi N, Rai M (2012) NanoAntimicrobials: progress and prospects springer. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Sabbatini L, Zambonin PG, Tantillo G, Ghibelli LD, Alessio M, Bleve-Zacheo T, Traversa E (2004) Antifungal activity of polymer-based copper nano-composite coatings. Appl Phys Lett 85:2417–2419

    Article  CAS  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262

    Article  CAS  Google Scholar 

  • Come V, Deschamps A, Mertial A (2003) Bioactive packaging materials from edible chitosan polymer-antimicrobial activity assessment on dairy-related contaminants. J Food Sci 68:2788–2792

    Article  Google Scholar 

  • Cota-Arriola O, Cortez-Rocha MO, Burgos-Hernández A, Ezquerra-Brauer JM, Plascencia-Jatomea M (2013) Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: development of new strategies for microbial control in agriculture. J Sci Food Agric 93:1525–1536

    Article  PubMed  CAS  Google Scholar 

  • Cui Y, Zhao Y, Tian Y, Liu W, Ma W, Jiang X (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33:2327–2333

    Article  PubMed  CAS  Google Scholar 

  • Cui J, Yang Y, Zheng M, Liu Y, Xiao Y, Lei B, Chen W (2014) Facile fabrication of graphene oxide loaded with silver nanoparticles as antifungal materials. Mater Res Express 1:045007

    Article  CAS  Google Scholar 

  • Das R, Gang S, Nath SS, Bhattacharjee R (2010) Linoleic acid capped copper nanoparticles for antibacterial activity. Bionanosci J 4:82–86

    Article  CAS  Google Scholar 

  • Das SN, Madhuprakash J, Sarma PVSRN, Purushotham P, Suma K, Manjeet K, Podile AR (2015) Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants. Crit Rev Biotechnol 35:29–43

    Article  PubMed  CAS  Google Scholar 

  • De Faria AF, De Moraes ACM, Alves OL (2014) Toxicity of nanomaterials to microorganisms: mechanisms, methods, and new perspectives. In: Duran N, Guterres SS, Alves OL (eds) Nano medicine and Nanotoxicology. Springer, New York, pp 363–405

    Chapter  Google Scholar 

  • De Filpo G, Palermo AM, Rachiele F, Nicoletta FP (2013) Preventing fungal growth in wood by titanium dioxide nanoparticles. Int Biodeterior Biodegradation 85:217–222

    Article  CAS  Google Scholar 

  • De La Torre-Roche R, Hawthorne J, Deng YQ, Xing BS, Cai WJ, Newman LA, Wang Q, Ma XM, Hamdi H, White JC (2013) Multiwalled carbon nanotubes and C-60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47:12539–12547

    Article  CAS  Google Scholar 

  • Dizaj SM, Mennati A, Jafari S, Khezri K, Adibkia K (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5:19–23

    CAS  Google Scholar 

  • Donsì F, Annunziata M, Sessa M, Ferrari G (2011) Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT Food Sci Technol 44:1908–1914

    Article  CAS  Google Scholar 

  • Durán N, Durán M, Bispo M, Jesus d, Seabra AB, Fávaro WJ, Nakazato G (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine 12:789–799

    Article  PubMed  CAS  Google Scholar 

  • El Hadrami A, Adam LR, El Hadrami I, Daayf F (2010) Chitosan in plant protection. Mar Drugs 8:968–987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fakruddin MD, Hossain Z, Afroz H (2012) Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotechnol 10:31

    Article  Google Scholar 

  • Fondevilla S, Rubiales D (2012) Powdery mildew control in pea. A review. Agron Sustain Dev 32:401–409

    Article  CAS  Google Scholar 

  • Foster HA, Ditta IB, Varghese S, Steele A (2011) Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 90:1847–1868

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fröhlich E (2017) Role of omics techniques in the toxicity testing of nanoparticles. J Nanobiotechnol 15:84. https://doi.org/10.1186/s12951-017-0320-3

    Article  Google Scholar 

  • Fu PP, Xia Q, Hwang HM, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22:64–75

    Article  PubMed  CAS  Google Scholar 

  • García-Rincóna J, Vega-Pérezb J, Guerra-Sánchezb MG, Hernández-Lauzardo AN, Peña-Díazc A, Velázquez-Del Vallea MG (2010) Effect of chitosan on growth and plasma membrane properties of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Pestic Biochem Phys 97:275–278

    Article  CAS  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257

    Article  CAS  Google Scholar 

  • Goy RC, Britto D, Assis OBG (2009) A review of the antimicrobial activity of chitosan. Polímeros 19:241–247

    Article  CAS  Google Scholar 

  • Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77:1541–1548

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Silver S (1998) Silver as a biocide: will resistance become a problem? Nat Biotechnol 16:888–890

    Article  PubMed  CAS  Google Scholar 

  • Gurunathan S, Han JW, Dayem AA, Eppakayala V, Kim JH (2012) Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomedicine 7:5901–5914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hadwiger LA (1999) Host-parasite interactions: elicitation of defense responses in plant with chitosan. Experientia Suppl 87:185–200

    CAS  Google Scholar 

  • Haghighi F, Roudbar Mohammadi S, Mohammadi P, Eskandari M, Hosseinkhani S (2012) The evaluation of Candida albicans bio¿lms formation on silicone catheter, PVC and glass coated with titanium dioxide nanoparticles by XTT method and ATPase assay. Bratisl Lek Listy 113:711–715

    Google Scholar 

  • Hamouda T, Baker J (2000) Antimicrobial mechanism of action of surfactant lipid preparations in enteric gram-negative bacilli. J Appl Microbiol 89:397–403

    Article  PubMed  CAS  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    Article  PubMed  CAS  Google Scholar 

  • He Y, Ingudam S, Reed S, Gehring A, Strobaugh TPN, Irwin P (2016) Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J Nanobiotechnol 14:54. https://doi.org/10.1186/s12951-016-0202-0

    Article  CAS  Google Scholar 

  • Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S (2001) Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. Int J Food Microbiol 71:235–244

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Lauzardo A, Velázquez M, Guerra-Sánchez M (2011) Current status of action mode and effect of chitosan against phytopathogens fungi. Afr J Microbiol Res 5:4243–4247

    Google Scholar 

  • Hoseinzadeh A, Habibi-Yangjeh A, Davari M (2016) Antifungal activity of magnetically separable Fe3O4/ZnO/AgBr nanocomposites prepared by a facile microwave-assisted method. Prog Nat Sci: Mater Int J 26:334–340

    Article  CAS  Google Scholar 

  • Hossain F, Perales-Perez OJ, Hwang S, Román F (2014) Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci Total Environ 466–467:1047–1059

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Wang L, Liu L, Hou Y, Li L (2015) Nanotechnology in agriculture, livestock, and aquaculture in China. A review. Agron Sustain Dev 35:369–400

    Article  Google Scholar 

  • Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145

    Article  PubMed  CAS  Google Scholar 

  • Imada K, Sakai S, Kajihara H, Tanaka S, Ito S (2016) Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol 65:551–560

    Article  CAS  Google Scholar 

  • Imam J, Singh PK, Shukla P (2016) Plant microbe interactions in post genomic era: perspectives and applications. Front Microbiol 7:1488. https://doi.org/10.3389/fmicb.2016.01488

    Article  PubMed  PubMed Central  Google Scholar 

  • Ingle AP, Duran N, Rai M (2013) Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Appl Microbiol Biotechnol 98:1001–1009

    Article  PubMed  CAS  Google Scholar 

  • Ismail M, Prasad R, Ibrahim AIM, Ahmed ISA (2017) Modern prospects of nanotechnology in plant pathology. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 305–317

    Chapter  Google Scholar 

  • Issam ST, Adele MG, Adele CP, Stephane G, Veronique C (2005) Chitosan polymer as bioactive coating and film against Aspergillus niger contamination. J Food Sci 70:100–104

    Article  Google Scholar 

  • Jastrzębska AM, Kurtycz P, Olszyna AR (2012) Recent advances in graphene family materials toxicity investigations. J Nanopart Res 14(12):1–21

    Article  CAS  Google Scholar 

  • Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KV (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 90:78–84

    Article  PubMed  CAS  Google Scholar 

  • Jayaseelan C, Ramkumar R, Abdul Rahuman A, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod 45:423–429

    Article  CAS  Google Scholar 

  • Je JY, Kim SK (2006) Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. J Agric Food Chem 54:6629–6633

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut 157:1619–1625

    Article  PubMed  CAS  Google Scholar 

  • Jo Y, Kim BH, Jun G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Jo DH, Kim JH, Lee TG, Kim JH (2015) Review article: size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine 11:1603–1611

    Article  PubMed  CAS  Google Scholar 

  • Joshi N, Jain N, Pathak A, Singh J, Prasad R, Upadhyaya CP (2018) Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sol-Gel Sci Techn. https://doi.org/10.1007/s10971-018-4666-2

  • Jyoti S, Satendra S, Sushma S, Anjana T, Shashi S (2007) Antistressor activity of Ocimum sanctum (Tulsi) against experimentally induced oxidative stress in rabbits. Methods Find Exp Clin Pharmacol 29:411–416

    Article  PubMed  CAS  Google Scholar 

  • Kairyte K, Kadys A, Luksiene Z (2013) Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. Photochem J Photobiol B 128:78–84

    Article  CAS  Google Scholar 

  • Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673

    Article  PubMed  CAS  Google Scholar 

  • Karthikeyan R, Amaechi BT, Rawls HR, Lee VA (2011) Antimicrobial activity of nanoemulsion on cariogenic Streptococcus mutans. Arch Oral Biol 56:437–445

    Article  PubMed  CAS  Google Scholar 

  • Katiyar D, Hemantarajan A, Sing B (2015) Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Ind J Plant Physiol 20:1–9

    Article  CAS  Google Scholar 

  • Kaur K (2016) Nanoemulsions as delivery vehicles for food and pharmaceuticals. In: Grumezescu AM (ed) Emulsions. Nanotechnology in the Agri-Food Industry, vol. 3. https://doi.org/10.1016/B978-0-12-804306-6.00018-0

  • Kaur P, Thakur R, Choudhary A (2012) An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. Int J Sci Technol Res 1:83–86

    Google Scholar 

  • Kim J, Cho H, Ryu S, Choi M (2000) Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion. Arch Biochem Biophys 382:72–80

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee J, Kim SH, Park YK, Park YH, Hwang CY et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3(95):101–157

    Google Scholar 

  • Kim SW, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764

    PubMed  Google Scholar 

  • Kim SH, Lee HS, Ryu DS, Choi SJ, Lee DS (2011) Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Kor Microbiol Biotechnol 39:77–85

    CAS  Google Scholar 

  • Kleandrova VV, Luan F, Speck-Planche A, Cordeiro M (2015) Review of structures containing fullerene-C60 for delivery of antibacterial agents. Multitasking model for computational assessment of safety profiles. Curr Bioinforma 10:565–578

    Article  CAS  Google Scholar 

  • Knief C (2014) Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front Plant Sci 5:216. https://doi.org/10.3389/fpls.2014.00216

    Article  PubMed  PubMed Central  Google Scholar 

  • Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648–653

    Article  PubMed  CAS  Google Scholar 

  • Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesized metallic nanoparticles using for pharmacological applications. Saudi Pharmaceutical J 24:473–484

    Article  Google Scholar 

  • Kuzma J (2007) Moving forward responsibly oversight for the nanotechnology-biology interface. J Nanopart Res 9:165–182

    Article  Google Scholar 

  • Lankadurai BP, Nagato EG, Simpson MJ (2013) Environmental metabolomics: an emerging approach to study organism responses to environmental stressors. Environ Rev 21:180–205

    Article  CAS  Google Scholar 

  • Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, moleculartargets and applications. Nat Rev Microbiol 11:371–384

    Article  PubMed  CAS  Google Scholar 

  • Leuba KD, Durmus NG, Taylor EN, Webster TJ (2013) Short communication: carboxylate functionalized superparamagnetic iron oxide nanoparticles (SPION) for the reduction of S. aureus growth post biofilm formation. Int J Nanomedicine 8:731–736

    PubMed  PubMed Central  Google Scholar 

  • Leung YH, Ng AMC, Xu X, Shen Z, Gethings LA, Wong MT, Chan CM, Guo MY, Ng YH, Djurišić AB, Lee PK (2014) Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small 10:1171–1183

    Article  PubMed  CAS  Google Scholar 

  • Li XF, Feng XQ, Yang S, Wang TP (2008) Effects of molecular weight and concentration of chitosan on antifungal activity against Aspergillus niger. Iran Polym J 17:843–852

    CAS  Google Scholar 

  • Li Y, Zhang W, Niu J, Chen Y (2012a) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6:5164–5173

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Yu S, Wu Q, Tang M, Pu Y, Wang D (2012b) Chronic Al2O3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode Caenorhabditis elegans. Hazard Mater J 219–220:221–230

    Article  CAS  Google Scholar 

  • Li B, Liu BP, Shan CL, Ibrahim M, Lou YH, Wang YL, Xie GL, Li HY, Sun GC (2013a) Antibacterial activity of two chitosan solutions and their effect on rice bacterial leaf blight and leaf streak. Pest Manag Sci 69:312–320

    Article  PubMed  CAS  Google Scholar 

  • Li C, Wang X, Chen F, Zhang C, Zhi X, Wang K, Cui D (2013b) The antifungal activity of graphene oxide –silver nanocomposites. Biomaterials 34:3882–3890

    Article  PubMed  CAS  Google Scholar 

  • Li JG, Zhu WH, Zhang M, Zheng X, Di Z et al (2014) Antibacterial activity of large area monolayer graphene film manipulated by charge transfer. Sci Rep 4:4359–4367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin X, Li J, Ma S, et al (2014) Toxicity of TiO2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry. Rozhkova EA, ed. PLoS One. 2014;9(10):e110247. doi:https://doi.org/10.1371/journal.pone.0110247

  • Liu XF, Guan YL, Yang DZ, Li Z, Yao KD (2001) Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci 79:1324–1335

    Article  CAS  Google Scholar 

  • Liu H, Du YM, Wang XH, Sun LP (2004) Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol 95:147–155

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Qiao SZ, Hu QZ, Lu GQ (2011a) Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7:425–443

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011b) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Zhao Z, Feng H, Cui FJ (2012) One-pot synthesis of Ag–Fe3O4 nanocomposites in the absence of additional reductant and its potent antibacterial properties. Mater Chem 22:13891–13894

    Article  CAS  Google Scholar 

  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H et al (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Li J, Y Y, Yu CM, Wang Y, Li XM, Li N (2014) Germination and physiological response of wheat (Triticum aestivum) to pre-soaking with oligochitosan. Int J Agric Biol 16:766–770

    Google Scholar 

  • Makhluf S, Dror R, Nitzan Y et al (2005) Microwave-assisted synthesis of nanocrystalline MgO and its use as bacteriocide. Adv Funct Mater 15:1708–1715

    Article  CAS  Google Scholar 

  • Malarkodi C, Rajeshkumar S, Paulkumar K, Gnanajobitha G, Vanaja M, Annadurai G (2013) Biosynthesis of semiconductor nanoparticles by using sulfur reducing bacteria Serratia nematodiphila. Adv Nano Res 1:83–91

    Article  Google Scholar 

  • Mansilla AY, Albertengo L, Rodríguez MS, Debbaudt A, Zúñiga A, Casalongué CA (2013) Evidence on antimicrobial properties and mode of action of a chitosan obtained from crustacean exoskeletons on Pseudomonas syringae pv. tomato DC3000. Appl Microbiol Biotechnol 97:6957–6966

    Article  PubMed  CAS  Google Scholar 

  • Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551

    Article  CAS  Google Scholar 

  • Markowska-Szczupak A, Ulfig K, Morawski AW (2011) The application of titanium dioxide for deactivation of bioparticulates: an overview. Catal Today 169:249–257

    Article  CAS  Google Scholar 

  • Marquez IG, Akuaku J, Cruz I, Cheetham J, Golshani A, Smith ML (2013) Disruption of protein synthesis as antifungal mode of action by chitosan. Int J Food Micobiol 164:108–112

    Article  CAS  Google Scholar 

  • Matˇeejka V, Tokarsk´y J (2014) Photocatalytical nanocomposites: a review. J Nanosci Nanotechnol 14:1597–1616

    Article  CAS  Google Scholar 

  • Mathur A, Raghavan A, Chaudhury P, Johnson JB, Roy R, Kumari J, Chaudhuri G, Chandrasekaran N, Suraishkumar GK (2015) Cytotoxicity of titania nanoparticles towards waste water isolate Exiguobacterium acetylicum under UVA, visible light and dark conditions. Environ J Chem Eng 3:1837–1846

    Article  CAS  Google Scholar 

  • Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meng XH, Tian S (2009) Effects of preharvest application of antagonistic yeast combined with chitosan on decay and quality of harvested table grape fruit. J Sci Food Agric 89:1838–1842

    Article  CAS  Google Scholar 

  • Meng XH, Qin GZ, Tian SP (2010) Influences of preharvest spraying Cryptococcus laurentii combined with chitosan coating on postharvest disease and quality of table grapes in storage. LWT – Food Sci Technol 43:596–601

    Article  CAS  Google Scholar 

  • Moghimi R, Ghaderi L, Rafati H, Aliahmadi A, McClements DJ (2016) Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chem 194:410–415

    Article  PubMed  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  PubMed  CAS  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  PubMed  CAS  Google Scholar 

  • Nair R, Kumar D (2013) Plant diseases—control and remedy through nanotechnology. In: Tuteja N, Gill S (eds) Crop improvement under adverse conditions. Springer, New York, pp 231–243

    Chapter  Google Scholar 

  • Nambiar PR, Gupta RR, Misra V (2010) An “omics” based survey of human colon cancer. Mutat Res 693:3–18

    Article  PubMed  CAS  Google Scholar 

  • Navrotsky A (2000) Technology and applications nanomaterials in the environment agriculture and technology (NEAT). J Nanopart Res 2:321–323

    Article  Google Scholar 

  • Niazi JH, Gu MB (2009) Toxicity of metallic nanoparticles in microorganisms- a review. In. 452. Atmospheric and biological environmental monitoring, Kim YJ, Platt U, Gu MB, Iwahashi H, 453. Eds. Springer Netherlands: Dordrecht, 2009, pp 193–206

    Google Scholar 

  • Ocsoy I, Paret LM, Ocsoy AM, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ASC Nano 7:8972–8980

    Article  CAS  Google Scholar 

  • Pandian CJR, Palanivel S, Dhanasekaran (2016) Screening antimicrobial activity of nickel nanoparticles synthesized using Ocimum sanctum leaf extract. J Nanoparticle Article ID 4694367, 13. https://doi.org/10.1155/2016/4694367

  • Parry JM, Parry EM (2012) Genetic toxicology: principles and methods. Humana Press, New York

    Book  Google Scholar 

  • Paspaltsis I, Kotta K, Lagoudaki R, Grigoriadis N, Poulios I, Sklaviadis T (2006) Titanium dioxide photocatalytic inactivation of prions. J Gen Virol 87:3125–3130

    Article  PubMed  CAS  Google Scholar 

  • Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65:1803–1815

    Article  PubMed  CAS  Google Scholar 

  • Perez Espitia PJP, Soares NFF, Coimbra JSR, Andrade NJ, Cruz RS, Medeiros EAA (2012) Zinc oxide nanoparticles: synthesis antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447–1464

    Article  CAS  Google Scholar 

  • Peter KS, Rosalyn L, George LM, Klabunde JK (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  • Petrus E, Petrus E, Tinakumari S, Chai L, Ubong A, Tunung R, Elexson N, Chai LF, Son R (2011) A study on the minimum inhibitory concentration and minimum bactericidal concentration of nano colloidal silver on food borne pathogens. Int Food Res J 18:55–66

    CAS  Google Scholar 

  • Pichyangkura R, Chadchawan S (2015) Biostimulant activity of chitosan in horticulture. Sci Hortic 196:49–65

    Article  CAS  Google Scholar 

  • Pontón J (2008) La pared celular de los hongos y el mecanismo de accio’n de la anidulafungina. Rev Iberoam Micol 25:78–82

    Article  PubMed  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart:963961 https://doi.org/10.1155/2014/963961

  • Prasad R, Swamy VS, Varma A (2012) Biogenic synthesis of silver nanoparticles from the leaf extract of Syzygium cumini (L.) and its antibacterial activity. Int J Pharma Bio Sci 3(4):745–752

    CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afri J Biotechnol 13:705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017b) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology. Springer, Singapore, pp 253–269

    Chapter  Google Scholar 

  • Priyanka KP, Harikumar VS, Balakrishna KM, Varghese T (2017) Inhibitory effect of TiO2 NPs on symbiotic arbuscular mycorrhizal fungi in plant roots. IET Nanobiotechnol 111:66–70

    Google Scholar 

  • Rabea EI, Badawy MEI, Steurbaut W, Stevens CV (2009) In vitro assessment of N-(benzyl) chitosan derivatives against some plant pathogenic bacteria and fungi. Eur Polym J 45:237–245

    Article  CAS  Google Scholar 

  • Raghupathi KR, Koodali RT, Manna AC (2011) Size dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020–4028

    Article  PubMed  CAS  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293

    Article  PubMed  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotech Adv 27:76–83

    Article  CAS  Google Scholar 

  • Rai A, Prabhune A, Perry CC (2010) Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 20:6789–6798

    Article  CAS  Google Scholar 

  • Raimondi S, Zanni E, Talora C, Rossi M, Palleschi C, Uccelletti D (2008) SOD1, a new Kluyveromyces lactis helper gene for heterologous protein secretion. Appl Environ Microbiol 74:7130–7137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roda F, Al-Thani PNK, Al-Maadeed MA (2014) Garphene oxide as antimicrobial against two gram-positive and two gram-negative bacteria in addition to one fungus. Online J Biol Sci 14:230–239

    Article  Google Scholar 

  • Roopan SM, Surendra TV, Elango G et al (2014) Biosynthetic trends and future aspects of bimetallic nanoparticles and its medicinal applications. Appl Microbiol Biotechnol 98:5289–5300

    Article  PubMed  CAS  Google Scholar 

  • Ruparelia JP, Chatterjee A, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716

    Article  PubMed  CAS  Google Scholar 

  • Sadiq IM, Chowdhury N, Chandrasekaran A, Mukherjee (2009) Antimicrobial sensitivity of E. coli to alumina NPs. Nanomed Nanotechnol 5:282–286

    Article  CAS  Google Scholar 

  • Sadiq IM, Pakrashi S, Chandrasekaran N, Mukherjee A (2011) Studies on toxicity of aluminium oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp and Chlorella sp. J Nanopart Res 13:3287–3299

    Article  CAS  Google Scholar 

  • Sadjad S, Ali K, Hossein M (2017) Nano-bio control of bacteria: a novel mechanism for antibacterial activities of magnetic nanoparticles as a temporary nanomagnets. J Mol Liquids 251. https://doi.org/10.1016/j.molliq.2017.12.036

  • Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683

    Article  PubMed  CAS  Google Scholar 

  • Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A, Raliya R, Biswas P (2015) Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromolecules 75:346–353

    Article  CAS  Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3–3

    Article  Google Scholar 

  • Samberg ME, Orndorff PE, Monteiro-Riviere NA (2011) Antibacterial efficacy of silver nanoparticles of different sizes, surface conditions and synthesis methods. Nanotoxicology 5(2):244–253

    Article  PubMed  CAS  Google Scholar 

  • Sang WK, Jin HJ, Kabir L et al (2012) Antifungal effects of silver nanoparticles (Ag NPs) against various plant pathogenic fungi. Mycobiology 40:415–427

    Google Scholar 

  • Santos CMJ, Mangadlao F, Ahmed A, Advincula LRC et al (2012) Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations. Nanotechnology 23:395101–395101

    Article  PubMed  CAS  Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29

    Article  PubMed  CAS  Google Scholar 

  • Sawai J, Yoshikawa T (2004) Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol 96:803–809

    Article  PubMed  CAS  Google Scholar 

  • Sawai JE, Kawada F, Kanou H, Igarashi A, Hashimoto T, Kokugan M, Shimizu (1996) Detection of active oxygen generated from ceramic powders having antibacterial activity. J Chem Eng Jpn 29:627–633

    Article  CAS  Google Scholar 

  • Sawai J, Kojima H, Igarashi H, Hasimoto A, Shoji S, Takehara A, Sawaki T, Kokugan T, Shimizu M (1997) Escherichia coli damage by ceramic powder slurries. J Chem Eng Jpn 30:1034–1039

    Article  CAS  Google Scholar 

  • Sawai J, Kojima H, Igarashi H, Hasimoto A, Shoji S, Sawaki T, Hakoda A, Kawada E, Kokugan T, Shimizu M (2000) Antibacterial characteristics of magnesium oxide powder. World J Microbiol Biotechnol 16:187–194

    Article  CAS  Google Scholar 

  • Sawai J, Shuga S, Kojima H (2001) Kinetic analysis of death of bacteria in CaO powder slurry. Int Biodeterior Biodegradation 47:23–26

    Article  CAS  Google Scholar 

  • Sawangphruk M, Srimuk P, Chiochan P, Sangsri T, Siwayaprahm P (2012) Synthesis antifungal activity of reduced graphene oxide nanosheets. Carbon 50:5156–5161

    Article  CAS  Google Scholar 

  • Sayed HH, Shamroukh AH, Rashad AE (2006) Synthesis and biological evaluation of some pyrimidine, pyrimido [2,1-b] [1,3] thiazine and thiazolo [3,2-a] pyrimidine derivatives. Acta Pharma 56:23–144

    Google Scholar 

  • Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. WIREs Nanomed Nanobiotechnol 2:554–568

    Article  CAS  Google Scholar 

  • Shah MA, Towkeer A (2010) Principles of nanosciences and nanotechnology. Narosa Publishing House, New Delhi

    Google Scholar 

  • Shankramma K, Yallappa S, Shivanna MB, Manjanna J (2016) Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl Nanosci 6:983–990

    Article  CAS  Google Scholar 

  • Shao X, Wang H, Xu F, Cheng S (2013) Effects and possible mechanisms of tea tree oil vapor treatment on the main disease in postharvest strawberry fruit. Postharvest Biol Technol 7:94–101

    Article  CAS  Google Scholar 

  • Sharma P, Sharma A, Sharma M, Bhalla N, Estrela P, Jain A, Thakur P, Thakur A (2017) Nanomaterial fungicides: in vitro and in vivo antimycotic activity of cobalt and nickel nanoferrites on phytopathogenic fungi. Glob Chall 1(1700041):1–7

    Google Scholar 

  • Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2:83–92

    Google Scholar 

  • Shrivastava S, Prasad R, Varma A (2014) Anatomy of root from eyes of a microbiologist. In: Morte A, Varma A (eds) Root engineering, vol 40. Springer, Berlin/Heidelberg, pp 3–22

    Chapter  Google Scholar 

  • Sierra-Fernandez A, De la Rosa-García SC, Gomez-Villalba LS, Gómez-Cornelio S, Rabanal ME, Fort R, Quintana P (2017) Synthesis, photocatalytic, and antifungal properties of MgO, ZnO and Zn/Mg oxide nanoparticles for the protection of calcareous stone heritage. ACS Appl Mater Interfaces 929:24873–24886

    Article  CAS  Google Scholar 

  • Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH (2009) Nanogenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914

    Article  PubMed  CAS  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett 7:219–242

    CAS  PubMed  Google Scholar 

  • Sonawane RS, Hegde SG, Dongare MK (2003) Preparation of titanium (VI) oxide thin film photocatalyst by sol–gel dip coating. Mater Chem Phys 77(3):744–746

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  PubMed  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  PubMed  CAS  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  • Sudarshan NR, Hoover DG, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6:257–272

    Article  CAS  Google Scholar 

  • Tang Y (2015) Non-genomic omic techniques. In: Tang Y, Sussman M, Liu D, Poxton I, Schwartzman J (eds) Molecular Medical Microbiology. Academic Press, London, pp 399–406

    Google Scholar 

  • Tang Z-X, Lv B-F (2014) MgO nanoparticles as antibacterial agent: preparation and activity. Braz J Chem Eng 31(3):591–601

    Article  Google Scholar 

  • Tarafdar JC, Sharma S, Raliya R (2013) Nanotechnology: interdisciplinary science of applications. Afr J Biotechnol 12(3):219–226

    Google Scholar 

  • Tavaria FK, Costa EM, Gens EJ, Malcata FX, Pintado ME (2013) Influence of abiotic factors on the antimicrobial activity of chitosan. J Dermatol 40:1014–1019

    Article  PubMed  CAS  Google Scholar 

  • Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34:43–69

    Article  PubMed  CAS  Google Scholar 

  • Torres R, Valentines MC, Usall J, Vinas I, Larrigaudiere C (2003) Possible involvement of hydrogen peroxide in the development of resistance mechanisms in “golden delicious” apple fruit. Postharvest Biol Technol 27:235–242

    Article  CAS  Google Scholar 

  • Tu Y, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, Liu Z, Huang Q, Fan C, Fang H, Zhou R (2013) Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat Nanotechnol 8:594–601

    Article  PubMed  CAS  Google Scholar 

  • Usha R, Prabu E, Palaniswamy M, Venil CK, Rajendran R (2010) Synthesis of metal oxide nanoparticles by Streptomyces sp for development of antimicrobial textiles. Global J Biotechnol Biochem 5:153–160

    CAS  Google Scholar 

  • Usman MS, Ibrahim NA, Shameli K, Zainuddin N, Junus WMZW (2012) Copper nanoparticles mediated by chitosan: synthesis and characterization via chemical methods. Molecules 17:14928–14936

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei. Inscience J 1:65–79

    Article  CAS  Google Scholar 

  • Van SN, Minh HD, Anh DN (2013) Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatal Agric Biotechnol 2(4):289–294

    Google Scholar 

  • Van-Loon LC, Van-Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  CAS  Google Scholar 

  • Vidic J, Stankic S, Haque F, Ciric D, Goffic R, Vidy A, Jupille J, Delmas BJ (2013) Selective antibacterial effects of mixed ZnMgO nanoparticles. J Nanopart Res 15:1–10

    Article  CAS  Google Scholar 

  • Wang SY, Gao H (2012) Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and postharvest fruit quality of strawberries (Fragaria x ananassa Duch.). LWT – Food Sci Technol 52:71–79

    Article  CAS  Google Scholar 

  • Wang SR, Lawson PC, Ray H, Yu (2010) Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria. Toxicol Ind Health 27:547–554

    Article  CAS  Google Scholar 

  • Wang X, Liu X, Chen J, Han H, Yuan Z (2014) Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon 68:798–806

    Google Scholar 

  • Wang L, Hu C, Shao L (2017a) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Zhou Z, Chen F (2017b) Surface modification of carbon nanotubes with an enhanced antifungal activity for the control of plant fungal pathogen. Materials 10:1375. https://doi.org/10.3390/ma10121375

    Article  PubMed Central  Google Scholar 

  • Wani AH, Shah MA (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J App Pharm Sci 2:40–44

    Google Scholar 

  • Waters KM, Masiello LM, Zangar RC et al (2009) Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol Sci 107:553–569

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mode of action of ZnO. Appl Environ Microbiol 77:2325–2331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xing K, Chen XG, Liu CS, Cha DS, Park HJ (2009) Oleoyl-chitosan nanoparticles inhibits Escherichia coli and Staphylococcus aureus by damaging the cell membrane and putative binding to extracellular or intracellular targets. Int J Food Microbiol 132:127–133

    Article  PubMed  CAS  Google Scholar 

  • Xing K, Zhu X, Peng X, Qin S (2015) Chitosan antimicrobial and eliciting properties for pest control in agriculture a review. Agron Sustain Dev 35:569–588

    Article  CAS  Google Scholar 

  • Xu FF, Imlay JA (2012) Silver (I), mercury (II), cadmium (II), and zinc (II) target exposed enzymic iron-sulfur clusters when they toxify Escherichia coli. Appl Environ Microbiol 78:3614–3621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamamoto O, Sawai J, Sasamoto T (2000) Change in antibacterial characteristics with doping amount of ZnO in MgO-ZnO solid solution. Int J Inorg Mater 2:451–454

    Article  Google Scholar 

  • Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli studied by energy filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71:7589–7593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    Article  PubMed  CAS  Google Scholar 

  • Yen MT, Yang JH, Mau JL (2008) Antioxidant properties of chitosan from crab shells. Carbohydr Polym 74:840–844

    Article  CAS  Google Scholar 

  • Yin JJ, Liu J, Ehrenshaft M, Roberts JE, Fu PP, Mason RP, Zhao B (2012) Phototoxicity of nano titanium dioxides in HaCaT keratinocytes generation of reactive oxygen species and cell damage. Toxicol Appl Pharmacol 263:81–88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu JC, Tang HY, Yu JG (2002) Bactericidal and photocatalytic activities of TiO2 thin films prepared by sol–gel and reverse micelle methods. J Photochem Photobiol A Chem 3:211–219

    Article  Google Scholar 

  • Yu Q, Li J, Zhang Y, Wang Y, Liu L, Li M (2016) Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. Sci Rep 26667(36):6

    Google Scholar 

  • Zakrzewska A, Boorsma A, Brul S, Hellingwerf KJ, Klis FM (2005) Transcriptional response of Saccharomyces cerevisiae to the plasma membrane-perturbing compound chitosan. Eukaryot Cell 4:703–715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9:479–489

    Article  CAS  Google Scholar 

  • Zhang H, Li R, Liu (2011) Effects of chitin and its derivative chitosan on postharvest decay of fruits: a review. Int J Mol Sci 12:917–934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang A, Sun H, Wang P, Han Y, Wang X (2012) Modern analytical techniques in metabolomics analysis. Analyst 137:293–300

    Article  PubMed  CAS  Google Scholar 

  • Zhao D, Wang J, Sun BH, Sun BH, Gao JQ, Xu R (2000) Development and application of TiO2 photocatalysis as antimicrobial agent. J Liaoning Univ (Nat Sci Ed) 2:173–174

    Google Scholar 

  • Zhao Y, Tian Y, Cui Y, Liu W, Ma W, Jiang X (2010) Small molecule-capped gold nanoparticles as potent antibacterial agents that target gram-negative bacteria. J Amer Chem Soc 132(35):12349–11256

    Article  CAS  Google Scholar 

  • Zhou R, Gao H (2014) Cytotoxicity of graphene: recent advances and future perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:452–474

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Science and Technology Development Fund (STDF), Joint Egypt (STDF)-South Africa (NRF) Scientific Cooperation, Grant ID 27837 to Kamel Abd-Elsalam.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mostafa, M., Amal-Asran, Almoammar, H., Abd-Elsalam, K.A. (2018). Nanoantimicrobials Mechanism of Action. In: Abd-Elsalam, K., Prasad, R. (eds) Nanobiotechnology Applications in Plant Protection. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-91161-8_11

Download citation

Publish with us

Policies and ethics