Skip to main content

Immunological and Phenotypic Considerations in Supplementing Cardiac Biomaterials with Cells

  • Chapter
  • First Online:
Biomaterials for Cardiac Regeneration

Abstract

The use of implantable biomaterials in cardiovascular system is growing, in part because of the improvement of biotechnology. These biomaterials provide opportunities for effective treatment of cardiovascular diseases with minimal associated morbidities. However, in doing so, there are concerns regarding the immune responses to these implants, and in particular, long-term reactions are crucial. The relatively recent advent of tissue engineered implants promises to revolutionize patient specific devices, yet it comes with the added complexity of understanding host–implant compatibility. In this chapter, we discuss the current comprehension related to immune reactions to implants, both cell-based and acellular. Tissue and organ rejection in the cardiovascular setting are discussed together with the immunologic considerations for grafts, patches, and heart valves. We explore the use of stem cells in cardiovascular bioprostheses as well as their associated advantages and potential risks. Lastly, potential future directions of tissue-engineered cardiac bioprostheses are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://patienteducationcenter.org/articles/heart-valve-replacement/

References

  • Abraham GA et al (2000) Evaluation of the porcine intestinal collagen layer as a biomaterial. J Biomed Mater Res 51(3):442–452

    Article  MathSciNet  Google Scholar 

  • Abraham GA, de Queiroz AA, Roman JS (2001) Hydrophilic hybrid IPNs of segmented polyurethanes and copolymers of vinylpyrrolidone for applications in medicine. Biomaterials 22(14):1971–1985

    Article  Google Scholar 

  • Akins CW (1996a) Medtronic-Hall prosthetic aortic valve. Semin Thorac Cardiovasc Surg 8(3):242–248

    Google Scholar 

  • Akins CW (1996b) Long-term results with the Medtronic-Hall valvular prosthesis. Ann Thorac Surg 61(3):806–813

    Article  Google Scholar 

  • Alavi SH (2014) Towards development of hybrid engineered heart valves, University of California, Irvine

    Google Scholar 

  • Alavi SH, Kheradvar A (2011) Metal mesh scaffold for tissue engineering of membranes. Tissue Eng Part C Methods 18(4):293–301

    Article  Google Scholar 

  • Alavi SH, Liu WF, Kheradvar A (2013) Inflammatory response assessment of a hybrid tissue-engineered heart valve leaflet. Ann Biomed Eng 41(2):316–326

    Article  Google Scholar 

  • Allman AJ et al (2001) Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation 71(11):1631–1640

    Article  Google Scholar 

  • Allman AJ et al (2002) The Th2-restricted immune response to xenogeneic small intestinal submucosa does not influence systemic protective immunity to viral and bacterial pathogens. Tissue Eng 8(1):53–62

    Article  Google Scholar 

  • Amano J et al (2003) Cardiac myxoma: its origin and tumor characteristics. Ann Thorac Cardiovasc Surg 9(4):215–221

    Google Scholar 

  • Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20(2):86–100

    Article  Google Scholar 

  • Andersson J et al (2005) Binding of C3 fragments on top of adsorbed plasma proteins during complement activation on a model biomaterial surface. Biomaterials 26(13):1477–1485

    Article  Google Scholar 

  • Awad MR et al (2001) The effect of cytokine gene polymorphisms on pediatric heart allograft outcome. J Heart Lung Transplant 20(6):625–630

    Article  Google Scholar 

  • Azzawi M et al (2001) Tumor necrosis factor-alpha gene polymorphism and death due to acute cellular rejection in a subgroup of heart transplant recipients. Hum Immunol 62(2):140–142

    Article  Google Scholar 

  • Bach FH et al (1997) Accommodation of vascularized xenografts: expression of “protective genes” by donor endothelial cells in a host Th2 cytokine environment. Nat Med 3(2):196–204

    Article  Google Scholar 

  • Badylak SF, Gilbert TW (2008) Immune response to biologic scaffold materials. Semin Immunol 20(2):109–116

    Article  Google Scholar 

  • Badylak SF et al (2001) Marrow-derived cells populate scaffolds composed of xenogeneic extracellular matrix. Exp Hematol 29(11):1310–1318

    Article  Google Scholar 

  • Badylak S et al (2002) Morphologic study of small intestinal submucosa as a body wall repair device. J Surg Res 103(2):190–202

    Article  Google Scholar 

  • Badylak SF et al (2008) Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A 14(11):1835–1842

    Article  Google Scholar 

  • Bakaeen FG et al (2003) Surgical outcome in 85 patients with primary cardiac tumors. Am J Surg 186(6):641–647, discussion 647

    Article  Google Scholar 

  • Batten P, Sarathchandra P, Antoniw JW, Tay SS, Lowdell MW, Taylor PM, Yacoub MH (2006) Human mesenchymal stem cells induce t cell anergy and downregulate T cell allo-responses via the TH2 pathway: relevance to tissue engineering human heart valves. Tissue Eng 12(8):2263–2273

    Article  Google Scholar 

  • Batten P, Rosenthal NA, Yacoub MH (2007) Immune response to stem cells and strategies to induce tolerance. Philos Trans R Soc Lond B Biol Sci 362(1484):1343–1356

    Article  Google Scholar 

  • Baudet EM et al (1995) Long-term results of valve replacement with the St. Jude Medical prosthesis. J Thorac Cardiovasc Surg 109(5):858–870

    Article  Google Scholar 

  • Bechtel JF, Stierle U, Sievers HH (2008) Fifty-two months’ mean follow up of decellularized SynerGraft-treated pulmonary valve allografts. J Heart Valve Dis 17(1):98–104, discussion 104

    Google Scholar 

  • Beltrami AP et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6):763–776

    Article  Google Scholar 

  • Bernasconi M et al (1996) Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins. Proc Natl Acad Sci U S A 93(23):13164–13169

    Article  Google Scholar 

  • Bernet F, Stulz PM, Carrel TP (1998) Long-term remission after resection, chemotherapy, and irradiation of a metastatic myxoma. Ann Thorac Surg 66(5):1791–1792

    Article  Google Scholar 

  • Bloomfield P et al (1991) Twelve-year comparison of a Bjork-Shiley mechanical heart valve with porcine bioprostheses. N Engl J Med 324(9):573–579

    Article  Google Scholar 

  • Bonhoeffer P et al (2000) Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet 356(9239):1403–1405

    Article  Google Scholar 

  • Bouten C et al (2011) Substrates for cardiovascular tissue engineering. Adv Drug Deliv Rev 63(4):221–241

    Article  Google Scholar 

  • Breuer CK et al (2004) Application of tissue-engineering principles toward the development of a semilunar heart valve substitute. Tissue Eng 10(11–12):1725–1736

    Article  Google Scholar 

  • Brown BN et al (2009) Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30(8):1482–1491

    Article  Google Scholar 

  • Buhler L et al (2000) High-dose porcine hematopoietic cell transplantation combined with CD40 ligand blockade in baboons prevents an induced anti-pig humoral response. Transplantation 69(11):2296–2304

    Article  Google Scholar 

  • Buhler L et al (2001) CD40-CD154 pathway blockade requires host macrophages to induce humoral unresponsiveness to pig hematopoietic cells in baboons. Transplantation 72(11):1759–1768

    Article  Google Scholar 

  • Burke AP, Cowan D, Virmani R (1992) Primary sarcomas of the heart. Cancer 69(2):387–395

    Article  Google Scholar 

  • Butany J et al (2005) Cardiac tumours: diagnosis and management. Lancet Oncol 6(4):219–228

    Article  Google Scholar 

  • Caralps JM et al (2005) Complete surgical excision of a huge left ventricular fibroma. J Thorac Cardiovasc Surg 129(6):1444–1445

    Article  Google Scholar 

  • Carpentier A et al (1969) Biological factors affecting long-term results of valvular heterografts. J Thorac Cardiovasc Surg 58(4):467–483

    Google Scholar 

  • Cartier PC et al (1999) Clinical and hemodynamic performance of the Freestyle aortic root bioprosthesis. Ann Thorac Surg 67(2):345–349, discussion 349–51

    Article  Google Scholar 

  • Caspi O et al (2007) Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res 100(2):263–272

    Article  Google Scholar 

  • Chen N, Field EH (1995) Enhanced type 2 and diminished type 1 cytokines in neonatal tolerance. Transplantation 59(7):933–941

    Article  Google Scholar 

  • Chen G et al (2005) Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys. Nat Med 11(12):1295–1298

    Article  Google Scholar 

  • Cohn LH et al (1989) Fifteen-year experience with 1678 Hancock porcine bioprosthetic heart valve replacements. Ann Surg 210(4):435–442, discussion 442–3

    Article  Google Scholar 

  • Consigny PM (2000) Endothelial cell seeding on prosthetic surfaces. J Long Term Eff Med Implants 10(1–2):79–95

    Google Scholar 

  • Cozzi E, White DJ (1995) The generation of transgenic pigs as potential organ donors for humans. Nat Med 1(9):964–966

    Article  Google Scholar 

  • Crespo-Leiro MG et al (2005) Humoral heart rejection (severe allograft dysfunction with no signs of cellular rejection or ischemia): incidence, management, and the value of C4d for diagnosis. Am J Transplant 5(10):2560–2564

    Article  Google Scholar 

  • Dalmasso AP et al (1992) Mechanism of complement activation in the hyperacute rejection of porcine organs transplanted into primate recipients. Am J Pathol 140(5):1157–1166

    Google Scholar 

  • DePalma VA et al (1972) Investigation of three-surface properties of several metals and their relation to blood compatibility. J Biomed Mater Res 6(4):37–75

    Article  MathSciNet  Google Scholar 

  • Dichek DA et al (1989) Seeding of intravascular stents with genetically engineered endothelial cells. Circulation 80(5):1347–1353

    Article  Google Scholar 

  • Drukker M et al (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A 99(15):9864–9869

    Article  Google Scholar 

  • Dunn PF et al (1996) Seeding of vascular grafts with genetically modified endothelial cells. Secretion of recombinant TPA results in decreased seeded cell retention in vitro and in vivo. Circulation 93(7):1439–1446

    Article  Google Scholar 

  • Eisen HJ et al (1999) Safety, tolerability and efficacy of cyclosporine microemulsion in heart transplant recipients: a randomized, multicenter, double-blind comparison with the oil based formulation of cyclosporine–results at six months after transplantation. Transplantation 68(5):663–671

    Article  Google Scholar 

  • Ekdahl KN et al (2011) Innate immunity activation on biomaterial surfaces: a mechanistic model and coping strategies. Adv Drug Deliv Rev 63(12):1042–1050

    Article  Google Scholar 

  • Eliaz N, Nissan O (2007) Innovative processes for electropolishing of medical devices made of stainless steels. J Biomed Mater Res A 83(2):546–557

    Article  Google Scholar 

  • Fang NT et al (2007) Construction of tissue-engineered heart valves by using decellularized scaffolds and endothelial progenitor cells. Chin Med J (Engl) 120(8):696–702

    Google Scholar 

  • Fedoseyeva EV et al (2002) Modulation of tissue-specific immune response to cardiac myosin can prolong survival of allogeneic heart transplants. J Immunol 169(3):1168–1174

    Article  Google Scholar 

  • Filova E et al (2009) Tissue-engineered heart valves. Physiol Res 58(Suppl 2):S141–S158

    Google Scholar 

  • Flanagan TC et al (2007) The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials 28(23):3388–3397

    Article  Google Scholar 

  • Gabbay S et al (1984) Calcification of implanted xenograft pericardium. Influence of site and function. J Thorac Cardiovasc Surg 87(5):782–787

    Google Scholar 

  • Gandaglia A et al (2011) Cells, scaffolds and bioreactors for tissue-engineered heart valves: a journey from basic concepts to contemporary developmental innovations. Eur J Cardiothorac Surg 39(4):523–531

    Article  Google Scholar 

  • Geha AS et al (1979) Late failure of porcine valve heterografts in children. J Thorac Cardiovasc Surg 78(3):351–364

    Google Scholar 

  • Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285(5430):1028–1032

    Article  Google Scholar 

  • Gilbert TW et al (2007) Degradation and remodeling of small intestinal submucosa in canine Achilles tendon repair. J Bone Joint Surg Am 89(3):621–630

    Article  Google Scholar 

  • Golomb G et al (1987) The role of glutaraldehyde-induced cross-links in calcification of bovine pericardium used in cardiac valve bioprostheses. Am J Pathol 127(1):122–130

    Google Scholar 

  • Gorbet MB, Sefton MV (2004) Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 25(26):5681–5703

    Article  Google Scholar 

  • Gowdamarajan A, Michler RE (2000) Therapy for primary cardiac tumors: is there a role for heart transplantation? Curr Opin Cardiol 15(2):121–125

    Article  Google Scholar 

  • Grabenwoger M et al (2000) Different modes of degeneration in autologous and heterologous heart valve prostheses. J Heart Valve Dis 9(1):104–109, discussion 110–1

    Google Scholar 

  • Haas A (2007) The phagosome: compartment with a license to kill. Traffic 8(4):311–330

    Article  MathSciNet  Google Scholar 

  • Hammermeister KE et al (1993) A comparison of outcomes in men 11 years after heart-valve replacement with a mechanical valve or bioprosthesis. N Engl J Med 328(18):1289–1296

    Article  Google Scholar 

  • Hammond EH et al (1989) Vascular (humoral) rejection in heart transplantation: pathologic observations and clinical implications. J Heart Transplant 8(6):430–443

    Google Scholar 

  • Hare JM et al (2012) Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 308(22):2369–2379

    Article  Google Scholar 

  • Hashi CK et al (2007) Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci U S A 104(29):11915–11920

    Article  Google Scholar 

  • He W et al (2005) Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering. Tissue Eng 11(9–10):1574–1588

    Article  Google Scholar 

  • Hecker JF, Scandrett LA (1985) Roughness and thrombogenicity of the outer surfaces of intravascular catheters. J Biomed Mater Res 19(4):381–395

    Article  Google Scholar 

  • Henson PM (1971a) The immunologic release of constituents from neutrophil leukocytes. I. The role of antibody and complement on nonphagocytosable surfaces or phagocytosable particles. J Immunol 107(6):1535–1546

    Google Scholar 

  • Henson PM (1971b) The immunologic release of constituents from neutrophil leukocytes. II. Mechanisms of release during phagocytosis, and adherence to nonphagocytosable surfaces. J Immunol 107(6):1547–1557

    Google Scholar 

  • Hilfiker A et al (2011) Mesenchymal stem cells and progenitor cells in connective tissue engineering and regenerative medicine: is there a future for transplantation? Langenbecks Arch Surg 396(4):489–497

    Article  Google Scholar 

  • Hoerstrup SP et al (2000) Functional living trileaflet heart valves grown in vitro. Circulation 102(90003):III-44–III-49

    Google Scholar 

  • Hoffman FM (2005) Outcomes and complications after heart transplantation: a review. J Cardiovasc Nurs 20(5 Suppl):S31–S42

    Article  Google Scholar 

  • Hoffmeier A et al (2005) Neoplastic heart disease – the Muenster experience with 108 patients. Thorac Cardiovasc Surg 53(1):1–8

    Article  Google Scholar 

  • Hruban RH et al (1990) Accelerated arteriosclerosis in heart transplant recipients is associated with a T-lymphocyte-mediated endothelialitis. Am J Pathol 137(4):871–882

    Google Scholar 

  • Iturbe-Alessio I et al (1986) Risks of anticoagulant therapy in pregnant women with artificial heart valves. N Engl J Med 315(22):1390–1393

    Article  Google Scholar 

  • Jamieson WR et al (2005) Carpentier-Edwards supra-annular aortic porcine bioprosthesis: clinical performance over 20 years. J Thorac Cardiovasc Surg 130(4):994–1000

    Article  Google Scholar 

  • Jamieson WR et al (2011) Medtronic Mosaic porcine bioprosthesis: assessment of 12-year performance. J Thorac Cardiovasc Surg 142(2):302–7.e2

    Article  Google Scholar 

  • Jarcho J et al (1994) Influence of HLA mismatch on rejection after heart transplantation: a multiinstitutional study. The Cardiac Transplant Research Database Group. J Heart Lung Transplant 13(4):583–595, discussion 595–6

    Google Scholar 

  • Jarman-Smith ML et al (2004) Porcine collagen crosslinking, degradation and its capability for fibroblast adhesion and proliferation. J Mater Sci Mater Med 15(8):925–932

    Article  Google Scholar 

  • Jenney CR, Anderson JM (2000) Adsorbed serum proteins responsible for surface dependent human macrophage behavior. J Biomed Mater Res 49(4):435–447

    Article  Google Scholar 

  • Joner M et al (2006) Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 48(1):193–202

    Article  Google Scholar 

  • Juthier F et al (2006) Decellularized heart valve as a scaffold for in vivo recellularization: deleterious effects of granulocyte colony-stimulating factor. J Thorac Cardiovasc Surg 131(4):843–852

    Article  Google Scholar 

  • Kandemir O et al (2006) St. Jude Medical and CarboMedics mechanical heart valves in the aortic position: comparison of long-term results. Tex Heart Inst J 33(2):154–159

    Google Scholar 

  • Kfoury AG et al (2006) Impact of repetitive episodes of antibody-mediated or cellular rejection on cardiovascular mortality in cardiac transplant recipients: defining rejection patterns. J Heart Lung Transplant 25(11):1277–1282

    Article  Google Scholar 

  • Kfoury AG et al (2009) Cardiovascular mortality among heart transplant recipients with asymptomatic antibody-mediated or stable mixed cellular and antibody-mediated rejection. J Heart Lung Transplant 28(8):781–784

    Article  Google Scholar 

  • Kim JI et al (2013) Elevated levels of interferon-gamma production by memory T cells do not promote transplant tolerance resistance in aged recipients. PLoS One 8(12):e82856

    Article  Google Scholar 

  • Kim YK et al (2014) Modification of biomaterials with a self-protein inhibits the macrophage response. Adv Healthc Mater 3:989

    Article  Google Scholar 

  • Kobashigawa J et al (1998) A randomized active-controlled trial of mycophenolate mofetil in heart transplant recipients. Mycophenolate Mofetil Investigators. Transplantation 66(4):507–515

    Article  Google Scholar 

  • Kobayashi T, Cooper DK (1999) Anti-Gal, alpha-Gal epitopes, and xenotransplantation. Subcell Biochem 32:229–257

    Google Scholar 

  • Kon ND et al (2002) Eight-year results of aortic root replacement with the freestyle stentless porcine aortic root bioprosthesis. Ann Thorac Surg 73(6):1817–1821, discussion 1821

    Article  Google Scholar 

  • Konakci KZ et al (2005) Alpha-Gal on bioprostheses: xenograft immune response in cardiac surgery. Eur J Clin Invest 35(1):17–23

    Article  Google Scholar 

  • L’Heureux N et al (2006) Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 12(3):361–365

    Article  Google Scholar 

  • Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23(7):845–856

    Article  Google Scholar 

  • Lai L et al (2002) Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295(5557):1089–1092

    Article  Google Scholar 

  • Lakshmanan R, Krishnan UM, Sethuraman S (2012) Living cardiac patch: the elixir for cardiac regeneration. Expert Opin Biol Ther 12(12):1623–1640

    Article  Google Scholar 

  • Lee JH et al (1998) Platelet adhesion onto chargeable functional group gradient surfaces. J Biomed Mater Res 40(2):180–186

    Article  Google Scholar 

  • Leprince P et al (1999) Posttransplantation cytotoxic immunoglobulin G is associated with a high rate of acute allograft dysfunctions in heart transplant recipients. Am Heart J 138(3 Pt 1):586–592

    Article  Google Scholar 

  • Leung JM et al (2014) Surface modification of polydimethylsiloxane with a covalent antithrombin-heparin complex to prevent thrombosis. J Biomater Sci Polym Ed 25:786

    Article  Google Scholar 

  • Li F et al (2004) Low-molecular-weight peptides derived from extracellular matrix as chemoattractants for primary endothelial cells. Endothelium 11(3–4):199–206

    Article  Google Scholar 

  • Li X et al (2011) Current usage and future directions for the bovine pericardial patch. Ann Vasc Surg 25(4):561–568

    Article  MATH  Google Scholar 

  • Libby P, Pober JS (2001) Chronic rejection. Immunity 14(4):387–397

    Article  Google Scholar 

  • Lichtenberg A et al (2006) Preclinical testing of tissue-engineered heart valves re-endothelialized under simulated physiological conditions. Circulation 114(1 Suppl):I559–I565

    Google Scholar 

  • Lila N et al (2010) Gal knockout pig pericardium: new source of material for heart valve bioprostheses. J Heart Lung Transplant 29(5):538–543

    Article  Google Scholar 

  • Lindenfeld J et al (2004) Drug therapy in the heart transplant recipient: part I: cardiac rejection and immunosuppressive drugs. Circulation 110(24):3734–3740

    Article  Google Scholar 

  • Love JW et al (1992) Experimental evaluation of an autologous tissue heart valve. J Heart Valve Dis 1(2):232–241

    Google Scholar 

  • Lowe HC, Oesterle SN, Khachigian LM (2002) Coronary in-stent restenosis: current status and future strategies. J Am Coll Cardiol 39(2):183–193

    Article  Google Scholar 

  • Lutter G et al (2010) Percutaneous tissue-engineered pulmonary valved stent implantation. Ann Thorac Surg 89(1):259–263

    Article  Google Scholar 

  • Magilligan DJ Jr et al (1985) The porcine bioprosthetic valve. Twelve years later. J Thorac Cardiovasc Surg 89(4):499–507

    Google Scholar 

  • Magilligan DJ Jr et al (1989) The porcine bioprosthetic heart valve: experience at 15 years. Ann Thorac Surg 48(3):324–329, discussion 330

    Article  Google Scholar 

  • Mani G et al (2007) Coronary stents: a materials perspective. Biomaterials 28(9):1689–1710

    Article  Google Scholar 

  • Manji RA et al (2006) Glutaraldehyde-fixed bioprosthetic heart valve conduits calcify and fail from xenograft rejection. Circulation 114(4):318–327

    Article  Google Scholar 

  • Manji RA et al (2012) Porcine bioprosthetic heart valves: the next generation. Am Heart J 164(2):177–185

    Article  Google Scholar 

  • Matthews AM (1998) The development of the Starr-Edwards heart valve. Tex Heart Inst J 25(4):282–293

    Google Scholar 

  • McGregor CG et al (2011) Cardiac xenotransplantation technology provides materials for improved bioprosthetic heart valves. J Thorac Cardiovasc Surg 141(1):269–275

    Article  MathSciNet  Google Scholar 

  • Mehta RH et al (2009) Reoperation for bleeding in patients undergoing coronary artery bypass surgery: incidence, risk factors, time trends, and outcomes. Circ Cardiovasc Qual Outcomes 2(6):583–590

    Article  Google Scholar 

  • Mendelson K, Schoen F (2006) Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann Biomed Eng 34(12):1799–1819

    Article  Google Scholar 

  • Mendoza CE, Rosado MF, Bernal L (2001) The role of interleukin-6 in cases of cardiac myxoma. Clinical features, immunologic abnormalities, and a possible role in recurrence. Tex Heart Inst J 28(1):3–7

    Google Scholar 

  • Michaels PJ et al (2003) Humoral rejection in cardiac transplantation: risk factors, hemodynamic consequences and relationship to transplant coronary artery disease. J Heart Lung Transplant 22(1):58–69

    Article  Google Scholar 

  • Milano A et al (1984) Calcific degeneration as the main cause of porcine bioprosthetic valve failure. Am J Cardiol 53(8):1066–1070

    Article  Google Scholar 

  • Milas M et al (2000) Adenovirus-mediated p53 gene therapy inhibits human sarcoma tumorigenicity. Cancer Gene Ther 7(3):422–429

    Article  Google Scholar 

  • Mitchell RN (2009) Graft vascular disease: immune response meets the vessel wall. Annu Rev Pathol 4:19–47

    Article  Google Scholar 

  • Momand J et al (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69(7):1237–1245

    Article  Google Scholar 

  • Nau GJ et al (1997) A chemoattractant cytokine associated with granulomas in tuberculosis and silicosis. Proc Natl Acad Sci U S A 94(12):6414–6419

    Article  Google Scholar 

  • Nazneen F et al (2012) Surface chemical and physical modification in stent technology for the treatment of coronary artery disease. J Biomed Mater Res B Appl Biomater 100(7):1989–2014

    Article  Google Scholar 

  • Neragi-Miandoab S, Kim J, Vlahakes GJ (2007) Malignant tumours of the heart: a review of tumour type, diagnosis and therapy. Clin Oncol (R Coll Radiol) 19(10):748–756

    Article  Google Scholar 

  • Nguyen K, Shih-Horng S, Zilberman M, Bohluli P, Frenkel P, Tang L, Eberhart R, Timmons R (2004) Biomaterial and stent technology. Tissue engineering and novel delivery systems. CRC Press, Boca Raton, FL

    Google Scholar 

  • Nilsson B et al (2007) The role of complement in biomaterial-induced inflammation. Mol Immunol 44(1–3):82–94

    Article  MathSciNet  Google Scholar 

  • Nishio S et al (2014) Decade of histological follow-up for a fully biodegradable poly-l-lactic acid coronary stent (Igaki-Tamai Stent) in humans: are bioresorbable scaffolds the answer? Circulation 129(4):534–535

    Article  MathSciNet  Google Scholar 

  • Noiseux N et al (2006) Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther 14(6):840–850

    Article  Google Scholar 

  • Nussbaum J et al (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21(7):1345–1357

    Article  Google Scholar 

  • O’Brien B, Carroll W (2009) The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: a review. Acta Biomater 5(4):945–958

    Article  Google Scholar 

  • O’Brien MF et al (1995) Allograft aortic valve replacement: long-term follow-up. Ann Thorac Surg 60(2 Suppl):S65–S70

    Article  Google Scholar 

  • Ostuni E, Chapman R, Holmlin RE, Takayama S, Whitesides GM (2001) A survey of structure-property relationships of surfaces that resist adsorption of protein. Langmuir 17(18):5605–5620

    Article  Google Scholar 

  • Phelps CJ et al (2003) Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299(5605):411–414

    Article  Google Scholar 

  • Piccotti JR et al (1997) Are Th2 helper T lymphocytes beneficial, deleterious, or irrelevant in promoting allograft survival? Transplantation 63(5):619–624

    Article  Google Scholar 

  • Pok S, Jacot JG (2011) Biomaterials advances in patches for congenital heart defect repair. J Cardiovasc Transl Res 4(5):646–654

    Article  Google Scholar 

  • Press OW, Livingston R (1987) Management of malignant pericardial effusion and tamponade. JAMA 257(8):1088–1092

    Article  Google Scholar 

  • Pucci A et al (2000) Histopathologic and clinical characterization of cardiac myxoma: review of 53 cases from a single institution. Am Heart J 140(1):134–138

    Article  Google Scholar 

  • Putnam JB Jr et al (1991) Primary cardiac sarcomas. Ann Thorac Surg 51(6):906–910

    Article  Google Scholar 

  • Qu Z et al (2014) Immobilization of actively thromboresistant assemblies on sterile blood-contacting surfaces. Adv Healthc Mater 3(1):30–35

    Article  Google Scholar 

  • Rabkin E, Schoen FJ (2002) Cardiovascular tissue engineering. Cardiovasc Pathol 11(6):305–317

    Article  Google Scholar 

  • Rabkin-Aikawa E, Mayer JE Jr, Schoen FJ (2005) Heart valve regeneration. Adv Biochem Eng Biotechnol 94:141–179

    Google Scholar 

  • Record RD et al (2001) In vivo degradation of 14C-labeled small intestinal submucosa (SIS) when used for urinary bladder repair. Biomaterials 22(19):2653–2659

    Article  Google Scholar 

  • Reed EF et al (2006) Acute antibody-mediated rejection of cardiac transplants. J Heart Lung Transplant 25(2):153–159

    Article  Google Scholar 

  • Reemtsma K (1989) Vascular immunoobliterative disease: a common cause of graft failure. Transplant Proc 21(4):3706

    Google Scholar 

  • Rieder E et al (2005) Tissue engineering of heart valves: decellularized porcine and human valve scaffolds differ importantly in residual potential to attract monocytic cells. Circulation 111(21):2792–2797

    Article  Google Scholar 

  • Riess FC et al (2007) Hemodynamic performance of the Medtronic Mosaic porcine bioprosthesis up to ten years. Ann Thorac Surg 83(4):1310–1318

    Article  Google Scholar 

  • Rippel RA, Ghanbari H, Seifalian AM (2012) Tissue-engineered heart valve: future of cardiac surgery. World J Surg 36(7):1581–1591

    Article  Google Scholar 

  • Rose AG et al (1991) Histopathology of hyperacute rejection of the heart: experimental and clinical observations in allografts and xenografts. J Heart Lung Transplant 10(2):223–234

    Google Scholar 

  • Rose DM, Alon R, Ginsberg MH (2007) Integrin modulation and signaling in leukocyte adhesion and migration. Immunol Rev 218:126–134

    Article  Google Scholar 

  • Sacks MS, Schoen FJ, Mayer JE (2009) Bioengineering challenges for heart valve tissue engineering. Annu Rev Biomed Eng 11(1):289–313

    Article  Google Scholar 

  • Saleem S et al (1996) Acute rejection of vascularized heart allografts in the absence of IFNgamma. Transplantation 62(12):1908–1911

    Article  Google Scholar 

  • Salomon RN et al (1991) Human coronary transplantation-associated arteriosclerosis. Evidence for a chronic immune reaction to activated graft endothelial cells. Am J Pathol 138(4):791–798

    Google Scholar 

  • Sanganalmath SK, Bolli R (2013) Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 113(6):810–834

    Article  Google Scholar 

  • Schmidt D et al (2010) Minimally-invasive implantation of living tissue engineered heart valves. A comprehensive approach from autologous vascular cells to stem cells. J Am Coll Cardiol 56(6):510–520

    Article  Google Scholar 

  • Schoen FJ (1998) Pathologic findings in explanted clinical bioprosthetic valves fabricated from photooxidized bovine pericardium. J Heart Valve Dis 7(2):174–179

    MathSciNet  Google Scholar 

  • Schoen FJ (2011) Heart valve tissue engineering: quo vadis? Curr Opin Biotechnol 22(5):698–705

    Article  Google Scholar 

  • Schoen FJ, Levy RJ (2005) Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg 79(3):1072–1080

    Article  Google Scholar 

  • Schoen FJ, Collins JJ Jr, Cohn LH (1983) Long-term failure rate and morphologic correlations in porcine bioprosthetic heart valves. Am J Cardiol 51(6):957–964

    Article  Google Scholar 

  • Schoen FJ et al (1987) Causes of failure and pathologic findings in surgically removed Ionescu-Shiley standard bovine pericardial heart valve bioprostheses: emphasis on progressive structural deterioration. Circulation 76(3):618–627

    Article  Google Scholar 

  • Seino Y, Ikeda U, Shimada K (1993) Increased expression of interleukin 6 mRNA in cardiac myxomas. Br Heart J 69(6):565–567

    Article  Google Scholar 

  • Shabalovskaya SA (1996) On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. Biomed Mater Eng 6(4):267–289

    Google Scholar 

  • Shinoka T, Breuer CK, Tanel RE, Zund G, Miura T, Ma PX, Langer R, Vacanti JP, Mayer JE Jr (1995) Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg 60(6 Suppl):S513–S516

    Article  Google Scholar 

  • Shinoka T, Ma PX, Shum-Tim D, Breuer CK, Cusick RA, Zund G, Langer R, Vacanti JP, Mayer JE Jr (1996) Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation 94(9 Suppl):164–168

    Google Scholar 

  • Shirota T et al (2003) Human endothelial progenitor cell-seeded hybrid graft: proliferative and antithrombogenic potentials in vitro and fabrication processing. Tissue Eng 9(1):127–136

    Article  MathSciNet  Google Scholar 

  • Silva GV et al (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111(2):150–156

    Article  Google Scholar 

  • Simionescu DT (2004) Prevention of calcification in bioprosthetic heart valves: challenges and perspectives. Expert Opin Biol Ther 4(12):1971–1985

    Article  Google Scholar 

  • Simon P et al (2003) Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur J Cardiothorac Surg 23(6):1002–1006, discussion 1006

    Article  Google Scholar 

  • Smith JD et al (1995) Humoral immune response to human aortic valve homografts. Ann Thorac Surg 60(2 Suppl):S127–S130

    Article  Google Scholar 

  • Sodian R, Lueders C, Kraemer L, Kuebler W, Shakibaei M, Reichart B, Daebritz S, Hetzer R (2006) Tissue engineering of autologous human heart valves using cryopreserved vascular umbilical cord cells. Ann Thorac Surg 81:2207–2216

    Article  Google Scholar 

  • Stachelek SJ et al (2011) The effect of CD47 modified polymer surfaces on inflammatory cell attachment and activation. Biomaterials 32(19):4317–4326

    Article  Google Scholar 

  • Starr A, Edwards ML (1961) Mitral replacement: the shielded ball valve prosthesis. J Thorac Cardiovasc Surg 42:673–682

    Google Scholar 

  • Stein PD et al (1988) Leukocytes, platelets, and surface microstructure of spontaneously degenerated porcine bioprosthetic valves. J Card Surg 3(3):253–261

    Article  Google Scholar 

  • Steinhoff G et al (2000) Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation 102(90003):III-50–III-55

    Google Scholar 

  • Sutherland FW et al (2005) From stem cells to viable autologous semilunar heart valve. Circulation 111(21):2783–2791

    Article  Google Scholar 

  • Swijnenburg RJ et al (2005) Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 112(9 Suppl):I166–I172

    Google Scholar 

  • Swijnenburg RJ et al (2008) Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci U S A 105(35):12991–12996

    Article  Google Scholar 

  • Syedain ZH, Tranquillo RT (2009) Controlled cyclic stretch bioreactor for tissue-engineered heart valves. Biomaterials 30(25):4078–4084

    Article  Google Scholar 

  • Takeuchi M, Kuratani T, Miyagawa S, Shirakawa Y, Shimamura K, Kin K, Yoshida T, Arai Y, Hoashi T, Teramoto N, Hirakawa K, Kawaguchi N, Sawa Y (2014) Tissue-engineered stent-graft integrates with aortic wall by recruiting host tissue into graft scaffold. J Thorac Cardiovasc Surg (in press)

    Google Scholar 

  • Talbert WM Jr, Wright P (1982) Acute aortic stenosis of a porcine valve heterograft apparently caused by graft rejection: case report with discussion of immune mediated host response. Tex Heart Inst J 9(2):225–229

    Google Scholar 

  • Tang L, Jennings TA, Eaton JW (1998) Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc Natl Acad Sci U S A 95(15):8841–8846

    Article  Google Scholar 

  • Thevenot P, Hu W, Tang L (2008) Surface chemistry influences implant biocompatibility. Curr Top Med Chem 8(4):270–280

    Article  Google Scholar 

  • Thierry B et al (2002) Nitinol versus stainless steel stents: acute thrombogenicity study in an ex vivo porcine model. Biomaterials 23(14):2997–3005

    Article  Google Scholar 

  • Thomson DJ et al (2001) Medtronic Mosaic porcine bioprosthesis: midterm investigational trial results. Ann Thorac Surg 71(5 Suppl):S269–S272

    Article  Google Scholar 

  • Totaro P et al (2005) Carpentier-Edwards PERIMOUNT Magna bioprosthesis: a stented valve with stentless performance? J Thorac Cardiovasc Surg 130(6):1668–1674

    Article  Google Scholar 

  • Tu Q et al (2013) Effect of tissue specificity on the performance of extracellular matrix in improving endothelialization of cardiovascular implants. Tissue Eng Part A 19(1–2):91–102

    Article  Google Scholar 

  • Turner D, Grant S, Yonan N, Sheldon S, Dyer PA, Sinnott PJ, Hutchinson IV (1997) Cytokine gene polymorphism and heart transplant rejection. Transplantation 64(5):776–779

    Article  Google Scholar 

  • Urbanek K et al (2005) Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci U S A 102(24):8692–8697

    Article  Google Scholar 

  • Valentin JE et al (2006) Extracellular matrix bioscaffolds for orthopaedic applications. A comparative histologic study. J Bone Joint Surg Am 88(12):2673–2686

    Article  Google Scholar 

  • van der Laan JS et al (1991) TFE-plasma polymerized dermal sheep collagen for the repair of abdominal wall defects. Int J Artif Organs 14(10):661–666

    Google Scholar 

  • van Wachem PB et al (1994) Tissue regenerating capacity of carbodiimide-crosslinked dermal sheep collagen during repair of the abdominal wall. Int J Artif Organs 17(4):230–239

    Google Scholar 

  • Vander Salm TJ (2000) Unusual primary tumors of the heart. Semin Thorac Cardiovasc Surg 12(2):89–100

    Google Scholar 

  • Vesely I (2005) Heart valve tissue engineering. Circ Res 97(8):743–755

    Article  Google Scholar 

  • Virmani R, Farb A (1999) Pathology of in-stent restenosis. Curr Opin Lipidol 10(6):499–506

    Article  Google Scholar 

  • Vogt F et al (2004) Long-term assessment of a novel biodegradable paclitaxel-eluting coronary polylactide stent. Eur Heart J 25(15):1330–1340

    Article  Google Scholar 

  • Wan S et al (1996) Human cytokine responses to cardiac transplantation and coronary artery bypass grafting. J Thorac Cardiovasc Surg 111(2):469–477

    Article  Google Scholar 

  • Wang X (2013) Overview on biocompatibilities of implantable biomaterials. In: Pignatello R (ed) Advances in biomaterials science and biomedical applications. InTech Open, Rijeka, Croatia

    Google Scholar 

  • Welters MJ et al (2002) A broad and strong humoral immune response to donor HLA after implantation of cryopreserved human heart valve allografts. Hum Immunol 63(11):1019–1025

    Article  Google Scholar 

  • Wilhelmi MH et al (2003) Role of inflammation in allogeneic and xenogeneic heart valve degeneration: immunohistochemical evaluation of inflammatory endothelial cell activation. J Heart Valve Dis 12(4):520–526

    Google Scholar 

  • Wilson CJ et al (2005) Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng 11(1–2):1–18

    Article  Google Scholar 

  • Wu GW et al (2009) Asymptomatic antibody-mediated rejection after heart transplantation predicts poor outcomes. J Heart Lung Transplant 28(5):417–422

    Article  Google Scholar 

  • Wu YQ et al (2011) Protection of nonself surfaces from complement attack by factor H-binding peptides: implications for therapeutic medicine. J Immunol 186(7):4269–4277

    Article  Google Scholar 

  • Xia Z, Triffitt JT (2006) A review on macrophage responses to biomaterials. Biomed Mater 1(1):R1–R9

    Article  Google Scholar 

  • Xu C et al (2002) Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 91(6):501–508

    Article  Google Scholar 

  • Yamashita J et al (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408(6808):92–96

    Article  Google Scholar 

  • Zantop T et al (2006) Extracellular matrix scaffolds are repopulated by bone marrow-derived cells in a mouse model of achilles tendon reconstruction. J Orthop Res 24(6):1299–1309

    Article  Google Scholar 

  • Zellner JL et al (1999) Long-term experience with the St. Jude Medical valve prosthesis. Ann Thorac Surg 68(4):1210–1218

    Article  Google Scholar 

  • Zietz C et al (1998) MDM-2 oncoprotein overexpression, p53 gene mutation, and VEGF up-regulation in angiosarcomas. Am J Pathol 153(5):1425–1433

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Kheradvar M.D., Ph.D., F.A.H.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Plimpton, S.R., Liu, W.F., Kheradvar, A. (2015). Immunological and Phenotypic Considerations in Supplementing Cardiac Biomaterials with Cells. In: Suuronen, E., Ruel, M. (eds) Biomaterials for Cardiac Regeneration. Springer, Cham. https://doi.org/10.1007/978-3-319-10972-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10972-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10971-8

  • Online ISBN: 978-3-319-10972-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics