Skip to main content

Advertisement

Log in

Biomaterials Advances in Patches for Congenital Heart Defect Repair

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

This article reviews current applications and novel candidate biomaterials for use as tissue-engineered scaffolds in pediatric cardiac tissue engineering. This overview of different types of biomaterials includes naturally derived and synthetic polymers and their biological, physical, and biomechanical properties for the use as a patch or baffle for surgical reconstruction of congenital heart defects. Applications and characteristics of composite biomaterials are highlighted with their respective feasibilities in use as cardiac scaffolds. Currently, a wide range of biomaterials has been introduced for cardiovascular reconstruction for complex congenital cardiac defects. However, there are still many remaining challenges for engineered tissue implantations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin, J. A., Kung, H. C., Mathews, T. J., Hoyert, D. L., Strobino, D. M., Guyer, B., et al. (2008). Annual summary of vital statistics: 2006. Pediatrics, 121(4), 788–801.

    Article  PubMed  Google Scholar 

  2. Kung HC, H. D., Xu, J., & Murphy, S. L. (2008). Deaths: Final data for 2005. National Vital Statistics Reports, 56(10), 1–124.

    PubMed  Google Scholar 

  3. Silka, M. J., Hardy, B. G., Menashe, V. D., & Morris, C. D. (1998). A population-based prospective evaluation of risk of sudden cardiac death after operation for common congenital heart defects. Journal of the American College of Cardiology, 32(1), 245–251.

    Article  PubMed  CAS  Google Scholar 

  4. Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., et al. (2010). Executive summary: Heart disease and stroke statistics–2010 update: A report from the American Heart Association. Circulation, 121(7), 948–954.

    Article  PubMed  Google Scholar 

  5. Reller, M. D., Strickland, M. J., Riehle-Colarusso, T., Mahle, W. T., & Correa, A. (2008). Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. Journal of Pediatrics, 153(6), 807–813.

    Article  PubMed  Google Scholar 

  6. Mirensky, T., & Breuer, C. K. (2008). The development of tissue engineered grafts for reconstructive cardiothoracic surgical applications. Pediatric Research, 63, 559–568.

    Article  PubMed  CAS  Google Scholar 

  7. Mayer, J. E., Jr. (1995). Uses of homograft conduits for right ventricle to pulmonary artery connections in the neonatal period. Seminars in Thoracic and Cardiovascular Surgery, 7(3), 130–132.

    PubMed  Google Scholar 

  8. Kim, B. S., Baez, C. E., & Atala, A. (2000). Biomaterials for tissue engineering. World Journal of Urology, 18(1), 2–9.

    Article  PubMed  CAS  Google Scholar 

  9. Mooney, D. J., Baldwin, D. F., Suh, N. P., Vacanti, J. P., & Langer, R. (1996). Novel approach to fabricate porous sponges of poly(D, L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials, 17(14), 1417–1422.

    Article  PubMed  CAS  Google Scholar 

  10. Dhandayuthapani, B., Krishnan, U. M., & Sethuraman, S. (2010). Fabrication and characterization of chitosan–gelatin blend nanofibers for skin tissue engineering. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 94(1), 264–272 [Research Support, Non-U.S. Gov't].

    PubMed  Google Scholar 

  11. Sherwood, J. K., Riley, S. L., Palazzolo, R., Brown, S. C., Monkhouse, D. C., Coates, M., et al. (2002). A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials, 23(24), 4739–4751.

    Article  PubMed  CAS  Google Scholar 

  12. Madihally, S. V., & Matthew, H. W. (1999). Porous chitosan scaffolds for tissue engineering. Biomaterials, 20(12), 1133–1142.

    Article  PubMed  CAS  Google Scholar 

  13. Moshfeghian, A., Tillman, J., & Madihally, S. V. (2006). Characterization of emulsified chitosan–PLGA matrices formed using controlled-rate freezing and lyophilization technique. Journal of Biomedical Materials Research. Part A, 79(2), 418–430.

    Article  PubMed  Google Scholar 

  14. Joesten, M. D., & Wood, J. L. (1993). The world of chemistry (2nd ed.). Fort Worth: Saunders College.

    Google Scholar 

  15. Eschenhagen, T., & Zimmermann, W. H. (2005). Engineering myocardial tissue. Circulation Research, 97(12), 1220–1231.

    Article  PubMed  CAS  Google Scholar 

  16. Seliktar, D., Black, R. A., Vito, R. P., & Nerem, R. M. (2000). Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Annals of Biomedical Engineering, 28(4), 351–362.

    Article  PubMed  CAS  Google Scholar 

  17. Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F. J., Langer, R., et al. (2004). Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 101(52), 18129–18134.

    Article  PubMed  CAS  Google Scholar 

  18. Shin, M., Ishii, O., Sueda, T., & Vacanti, J. P. (2004). Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials, 25(17), 3717–3723.

    Article  PubMed  CAS  Google Scholar 

  19. Stankus, J. J., Guan, J., & Wagner, W. R. (2004). Fabrication of biodegradable elastomeric scaffolds with sub-micron morphologies. Journal of Biomedical Materials Research. Part A, 70(4), 603–614.

    PubMed  Google Scholar 

  20. Hu, M., Kurisawa, M., Deng, R., Teo, C.-M., Schumacher, A., Thong, Y.-X., et al. (2009). Cell immobilization in gelatin-hydroxyphenylpropionic acid hydrogel fibers. Biomaterials, 30(21), 3523–3531.

    Article  PubMed  CAS  Google Scholar 

  21. Mao, J., Zhao, L., De Yao, K., Shang, Q., Yang, G., & Cao, Y. (2003). Study of novel chitosan–gelatin artificial skin in vitro. Journal of Biomedical Materials Research, 64A(2), 301–308.

    Article  CAS  Google Scholar 

  22. Pangburn, S. H., Trescony, P. V., & Heller, J. (1982). Lysozyme degradation of partially deacetylated chitin, its films and hydrogels. Biomaterials, 3(2), 105–108.

    Article  PubMed  CAS  Google Scholar 

  23. DeLeon, S. Y., LoCicero, J., 3rd, Ilbawi, M. N., & Idriss, F. S. (1986). Repeat median sternotomy in pediatrics: experience in 164 consecutive cases. The Annals of Thoracic Surgery, 41(2), 184–188.

    Article  PubMed  CAS  Google Scholar 

  24. Sakai, T., Li, R. K., Weisel, R. D., Mickle, D. A., Kim, E. T., Jia, Z. Q., et al. (2001). The fate of a tissue-engineered cardiac graft in the right ventricular outflow tract of the rat. The Journal of Thoracic and Cardiovascular Surgery, 121(5), 932–942.

    Article  PubMed  CAS  Google Scholar 

  25. Ozawa, T., Mickle, D. A., Weisel, R. D., Koyama, N., Wong, H., Ozawa, S., et al. (2002). Histologic changes of nonbiodegradable and biodegradable biomaterials used to repair right ventricular heart defects in rats. The Journal of Thoracic and Cardiovascular Surgery, 124(6), 1157–1164.

    Article  PubMed  Google Scholar 

  26. Matsumura, G., Shin’oka, T., Ikada, Y., Sakamoto, T., & Kurosawa, H. (2008). Novel anti-adhesive pericardial substitute for multistage cardiac surgery. Asian Cardiovascular & Thoracic Annals, 16(4), 309–312.

    Google Scholar 

  27. VandeVord, P. J., Matthew, H. W., DeSilva, S. P., Mayton, L., Wu, B., & Wooley, P. H. (2002). Evaluation of the biocompatibility of a chitosan scaffold in mice. Journal of Biomedical Materials Research, 59(3), 585–590.

    Article  PubMed  CAS  Google Scholar 

  28. Choi, B. K., Kim, K. Y., Yoo, Y. J., Oh, S. J., Choi, J. H., & Kim, C. Y. (2001). In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. International Journal of Antimicrobial Agents, 18(6), 553–557.

    Article  PubMed  CAS  Google Scholar 

  29. Risbud, M. V., Hardikar, A. A., Bhat, S. V., & Bhonde, R. R. (2000). pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. Journal of Controlled Release, 68(1), 23–30.

    Article  PubMed  CAS  Google Scholar 

  30. Ishihara, M., Obara, K., Nakamura, S., Fujita, M., Masuoka, K., Kanatani, Y., et al. (2006). Chitosan hydrogel as a drug delivery carrier to control angiogenesis. Journal of Artificial Organs, 9(1), 8–16.

    Article  PubMed  CAS  Google Scholar 

  31. Kurdi, M., Chidiac, R., Hoemann, C., Zouein, F., Zgheib, C., & Booz, G. W. (2010). Hydrogels as a platform for stem cell delivery to the heart. Congestive Heart Failure, 16(3), 132–135.

    Article  PubMed  Google Scholar 

  32. Ren, D., Yi, H., Wang, W., & Ma, X. (2005). The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydrate Research, 340(15), 2403–2410 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  33. Sun, W., Darling, A., Starly, B., & Nam, J. (2004). Computer-aided tissue engineering: Overview, scope and challenges. Biotechnology and Applied Biochemistry, 39(Pt 1), 29–47.

    Article  PubMed  CAS  Google Scholar 

  34. Blan, N. R., & Birla, R. K. (2008). Design and fabrication of heart muscle using scaffold-based tissue engineering. Journal of Biomedical Materials Research. Part A, 86(1), 195–208.

    Article  PubMed  Google Scholar 

  35. Mei, N., Chen, G., Zhou, P., Chen, X., Shao, Z. Z., Pan, L. F., et al. (2005). Biocompatibility of poly(epsilon-caprolactone) scaffold modified by chitosan—the fibroblasts proliferation in vitro. Journal of Biomaterials Applications, 19(4), 323–339.

    Article  PubMed  CAS  Google Scholar 

  36. Wei, X., Gong, C., Gou, M., Fu, S., Guo, Q., Shi, S., et al. (2009). Biodegradable poly([var epsilon]-caprolactone)–poly(ethylene glycol) copolymers as drug delivery system. International Journal of Pharmaceutics, 381(1), 1–18. doi:10.1016/j.ijpharm.2009.07.033.

    Article  PubMed  CAS  Google Scholar 

  37. Birla, R. K., Borschel, G. H., Dennis, R. G., & Brown, D. L. (2005). Myocardial engineering in vivo: Formation and characterization of contractile, vascularized three-dimensional cardiac tissue. Tissue Engineering, 11(5–6), 803–813. Article.

    Article  PubMed  CAS  Google Scholar 

  38. Mol, A., van Lieshout, M. I., Dam-de Veen, C. G., Neuenschwander, S., Hoerstrup, S. P., Baaijens, F. P., et al. (2005). Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials, 26(16), 3113–3121.

    Article  PubMed  CAS  Google Scholar 

  39. Park, J. B., Lee, J. Y., Park, Y. J., Rhee, S. H., Lee, S. C., Kim, T. I., et al. (2007). Enhanced bone regeneration in beagle dogs with bovine bone mineral coated with a synthetic oligopeptide. Journal of Periodontology, 78(11), 2150–2155.

    Article  PubMed  CAS  Google Scholar 

  40. Huang, Y. C., Dennis, R. G., Larkin, L., & Baar, K. (2005). Rapid formation of functional muscle in vitro using fibrin gels. Journal of Applied Physiology, 98(2), 706–713.

    Article  PubMed  Google Scholar 

  41. Jockenhoevel, S., Zund, G., Hoerstrup, S. P., Chalabi, K., Sachweh, J. S., Demircan, L., et al. (2001). Fibrin gel—advantages of a new scaffold in cardiovascular tissue engineering. Eur J Cardio-Thorac Surg., 19(4), 424–430. Proceedings Paper.

    Article  CAS  Google Scholar 

  42. Christman, K. L., Fok, H. H., Sievers, R. E., Fang, Q. H., & Lee, R. J. (2004). Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Engineering, 10(3–4), 403–409. Article.

    Article  PubMed  CAS  Google Scholar 

  43. Christman, K. L., Vardanian, A. J., Fang, Q. Z., Sievers, R. E., Fok, H. H., & Lee, R. J. (2004). Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. Journal of the American College of Cardiology, 44(3), 654–660. Article.

    Article  PubMed  CAS  Google Scholar 

  44. Black, L. D., Meyers, J. D., Weinbaum, J. S., Shvelidze, Y. A., & Tranquillo, R. T. (2009). Cell-induced alignment augments twitch force in fibrin gel-based engineered myocardium via gap junction modification. Tissue Engineering. Part A, 15(10), 3099–3108.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang, G., Wang, X., Wang, Z., Zhang, J., & Suggs, L. (2006). A PEGylated fibrin patch for mesenchymal stem cell delivery. Tissue Engineering, 12(1), 9–19.

    Article  PubMed  CAS  Google Scholar 

  46. Pankajakshan, D., Philipose, L. P., Palakkal, M., Krishnan, K., & Krishnan, L. K. (2008). Development of a fibrin composite-coated poly(epsilon-caprolactone) scaffold for potential vascular tissue engineering applications. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 87(2), 570–579. Research Support, Non-U.S. Gov’t.

    Article  PubMed  Google Scholar 

  47. Petrenko, Y. A., Ivanov, R. V., Petrenko, A. Y., & Lozinsky, V. I. (2011) Coupling of gelatin to inner surfaces of pore walls in spongy alginate-based scaffolds facilitates the adhesion, growth and differentiation of human bone marrow mesenchymal stromal cells. The Journal of Materials Science: Materials in Medicine. doi:10.1007/s10856-011-4323-6.

  48. Tan, H., & Marra, K. G. (2010). Injectable, biodegradable hydrogels for tissue engineering applications. Materials., 3(3), 1746–1767.

    Article  CAS  Google Scholar 

  49. Leor, J., Aboulafia-Etzion, S., Dar, A., Shapiro, L., Barbash, I. M., Battler, A., et al. (2000). Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation, 102(19 Suppl 3), III56–III61.

    PubMed  CAS  Google Scholar 

  50. Tee, R., Lokmic, Z., Morrison, W. A., & Dilley, R. J. (2010). Strategies in cardiac tissue engineering. ANZ Journal of Surgery, 80(10), 683–693.

    Article  PubMed  Google Scholar 

  51. Ren, Y.-J., Zhou, Z.-Y., Liu, B.-F., Xu, Q.-Y., & Cui, F.-Z. (2009). Preparation and characterization of fibroin/hyaluronic acid composite scaffold. International Journal of Biological Macromolecules, 44(4), 372–378. doi:10.1016/j.ijbiomac.2009.02.004.

    Article  PubMed  CAS  Google Scholar 

  52. Tudorache, I., Kostin, S., Meyer, T., Teebken, O., Bara, C., Hilfiker, A., et al. (2009). Viable vascularized autologous patch for transmural myocardial reconstruction. Eur J Cardio-Thorac Surg., 36(2), 306–311.

    Article  Google Scholar 

  53. Vesely, I., & Mako, W. J. (1998). Comparison of the compressive buckling of porcine aortic valve cusps and bovine pericardium. The Journal of Heart Valve Disease, 7(1), 34–39.

    PubMed  CAS  Google Scholar 

  54. Huanglee, L. L. H., Cheung, D. T., & Nimni, M. E. (1990). Biochemical-changes and cytotoxicity associated with the degradation of polymeric glutaraldehyde derived cross-links. Journal of Biomedical Materials Research, 24(9), 1185–1201. Article.

    Article  CAS  Google Scholar 

  55. Maizato, M. J. S., Pires, M. D., Canzian, M., Higa, O. Z., Pitombo, R. N. M., & Leirner, A. A. (2008). Histological evaluation of biocompatibility of lyophilized bovine pericardium implanted subcutaneously in rats. Artificial Organs, 32(4), 268–271. Proceedings Paper.

    Article  PubMed  Google Scholar 

  56. Santibanez-Salgado, J. A., Olmos-Zuniga, J. R., Perez-Lopez, M., Aboitiz-Rivera, C., Gaxiola-Gaxiola, M., Jasso-Victoria, R., et al. (2010). Lyophilized glutaraldehyde-preserved bovine pericardium for experimental atrial septal defect closure. European Cells & Materials, 19, 158–165.

    CAS  Google Scholar 

  57. Prevel, C. D., Eppley, B. L., Summerlin, D. J., Sidner, R., Jackson, J. R., McCarty, M., et al. (1995). Small intestinal submucosa: Utilization as a wound dressing in full-thickness rodent wounds. Annals of Plastic Surgery, 35(4), 381–388.

    Article  PubMed  CAS  Google Scholar 

  58. Badylak, S. F., Tullius, R., Kokini, K., Shelbourne, K. D., Klootwyk, T., Voytik, S. L., et al. (1995). The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model. Journal of Biomedical Materials Research, 29(8), 977–985.

    Article  PubMed  CAS  Google Scholar 

  59. Kropp, B. P., Eppley, B. L., Prevel, C. D., Rippy, M. K., Harruff, R. C., Badylak, S. F., et al. (1995). Experimental assessment of small intestinal submucosa as a bladder wall substitute. Urology, 46(3), 396–400.

    Article  PubMed  CAS  Google Scholar 

  60. Badylak, S., Obermiller, J., Geddes, L., & Matheny, R. (2003). Extracellular matrix for myocardial repair. The Heart Surgery Forum, 6(2), E20–E26.

    PubMed  Google Scholar 

  61. Crapo, P. M., & Wang, Y. D. (2010). Small intestinal submucosa gel as a potential scaffolding material for cardiac tissue engineering. Acta Biomaterialia, 6(6), 2091–2096. Article.

    Article  PubMed  CAS  Google Scholar 

  62. Tottey, S., Johnson, S. A., Crapo, P. M., Reing, J. E., Zhang, L., Jiang, H., et al. (2011). The effect of source animal age upon extracellular matrix scaffold properties. Biomaterials, 32(1), 128–136.

    Article  PubMed  CAS  Google Scholar 

  63. Place, E. S., George, J. H., Williams, C. K., & Stevens, M. M. (2009). Synthetic polymer scaffolds for tissue engineering. Chemical Society Reviews, 38(4), 1139–1151.

    Article  PubMed  CAS  Google Scholar 

  64. Pok, S. W., Wallace, K. N., & Madihally, S. V. (2010). In vitro characterization of polycaprolactone matrices generated in aqueous media. Acta Biomaterialia, 6(3), 1061–1068.

    Article  PubMed  CAS  Google Scholar 

  65. Zein, I., Hutmacher, D. W., Tan, K. C., & Teoh, S. H. (2002). Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 23(4), 1169–1185.

    Article  PubMed  CAS  Google Scholar 

  66. Nguyen, T. H., & Lee, B. T. (2010). Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility. Journal of Materials Science. Materials in Medicine, 21(6), 1969–1978.

    Article  Google Scholar 

  67. van der Giessen, W. J., Lincoff, A. M., Schwartz, R. S., van Beusekom, H. M., Serruys, P. W., Holmes, D. R., Jr., et al. (1996). Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation, 94(7), 1690–1697.

    PubMed  Google Scholar 

  68. Li, W. J., Cooper, J. A., Jr., Mauck, R. L., & Tuan, R. S. (2006). Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomaterialia, 2(4), 377–385.

    Article  PubMed  Google Scholar 

  69. Htay, A. S., Teoh, S. H., & Hutmacher, D. W. (2004). Development of perforated microthin poly(epsilon-caprolactone) films as matrices for membrane tissue engineering. Journal of Biomaterials Science, Polymer Edition, 15(5), 683–700.

    Article  CAS  Google Scholar 

  70. Aliabadi, H. M., Mahmud, A., Sharifabadi, A. D., & Lavasanifar, A. (2005). Micelles of methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization and controlled delivery of cyclosporine A. Journal of Controlled Release, 104(2), 301–311.

    Article  PubMed  CAS  Google Scholar 

  71. Pitt, C. G., Gratzl, M. M., Kimmel, G. L., Surles, J., & Schindler, A. (1981). Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (epsilon-caprolactone), and their copolymers in vivo. Biomaterials, 2(4), 215–220. Research Support, U.S. Gov’t, P.H.S.

    Article  PubMed  CAS  Google Scholar 

  72. Shin’oka, T., Matsumura, G., Hibino, N., Naito, Y., Watanabe, M., Konuma, T., et al. (2005). Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. The Journal of Thoracic and Cardiovascular Surgery, 129(6), 1330–1338.

    Article  PubMed  Google Scholar 

  73. Hutmacher, D. W., Goh, J. C., & Teoh, S. H. (2001). An introduction to biodegradable materials for tissue engineering applications. Annals Of The Academy Of Medicine, Singapore., 30(2), 183–191.

    PubMed  CAS  Google Scholar 

  74. Gunatillake, P. A., & Adhikari, R. (2003). Biodegradable synthetic polymers for tissue engineering. European Cells & Materials, 5, 1–16. discussion.

    CAS  Google Scholar 

  75. Ke, Q., Yang, Y., Rana, J. S., Chen, Y., Morgan, J. P., & Xiao, Y. F. (2005). Embryonic stem cells cultured in biodegradable scaffold repair infarcted myocardium in mice. Sheng Li Xue Bao, 57(6), 673–681.

    PubMed  CAS  Google Scholar 

  76. Falco, E. E., Patel, M., & Fisher, J. P. (2008). Recent developments in cyclic acetal biomaterials for tissue engineering applications. Pharmaceutical Research, 25(10), 2348–2356.

    Article  PubMed  CAS  Google Scholar 

  77. Xue, L., & Greisler, H. P. (2003). Biomaterials in the development and future of vascular grafts. Journal of Vascular Surgery, 37(2), 472–480.

    Article  PubMed  Google Scholar 

  78. Park, H., Radisic, M., Lim, J. O., Chang, B. H., & Vunjak-Novakovic, G. (2005). A novel composite scaffold for cardiac tissue engineering. In Vitro Cellular & Developmental Biology. Animal, 41(7), 188–196. Article.

    Article  CAS  Google Scholar 

  79. Natarajan, A., Chun, C. J., Hickman, J. J., & Molnar, P. (2008). Growth and electrophysiological properties of rat embryonic cardiomyocytes on hydroxyl- and carboxyl-modified surfaces. Journal of Biomaterials Science, Polymer Edition, 19(10), 1319–1331. Article.

    Article  CAS  Google Scholar 

  80. Baskett, R. J., Ross, D. B., Nanton, M. A., & Murphy, D. A. (1996). Factors in the early failure of cryopreserved homograft pulmonary valves in children: Preserved immunogenicity? The Journal of Thoracic and Cardiovascular Surgery, 112(5), 1170–1178. discussion 8–9.

    Article  PubMed  CAS  Google Scholar 

  81. Seo, N. M., Ko, J. H., Park, Y. H., & Chun, H. J. (2011). In vitro biocompatibility of PLGA-HA nano-hybrid scaffold. Tissue Eng Regen Med, 8(1), 16–22. Article.

    Google Scholar 

  82. Amato, J. J., Cotroneo, J. V., Galdieri, R. J., Alboliras, E., Antillon, J., & Vogel, R. L. (1989). Experience with the polytetrafluoroethylene surgical membrane for pericardial closure in operations for congenital cardiac defects. The Journal of Thoracic and Cardiovascular Surgery, 97(6), 929–934. Article.

    PubMed  CAS  Google Scholar 

  83. Kay, P. H., & Ross, D. N. (1985). Fifteen years’ experience with the aortic homograft: the conduit of choice for right ventricular outflow tract reconstruction. The Annals of Thoracic Surgery, 40(4), 360–364.

    Article  PubMed  CAS  Google Scholar 

  84. Li, R. K., Jia, Z. Q., Weisel, R. D., Mickle, D. A., Choi, A., & Yau, T. M. (1999). Survival and function of bioengineered cardiac grafts. Circulation, 100(19 Suppl), II63–II69.

    PubMed  CAS  Google Scholar 

  85. Sarasam, A. R., Samli, A. I., Hess, L., Ihnat, M. A., & Madihally, S. V. (2007). Blending chitosan with polycaprolactone: Porous scaffolds and toxicity. Macromolecular Bioscience, 7(9–10), 1160–1167.

    Article  PubMed  CAS  Google Scholar 

  86. Francis, L., Meng, D., Knowles, J. C., Roy, I., & Boccaccini, A. R. (2010). Multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering. Acta Biomaterialia, 6(7), 2773–2786.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Larissa Ikelle for careful reading of the manuscript. Funding was provided by Texas Children’s Hospital and the Virginia and L.E. Simmons Family Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey G. Jacot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pok, S., Jacot, J.G. Biomaterials Advances in Patches for Congenital Heart Defect Repair. J. of Cardiovasc. Trans. Res. 4, 646–654 (2011). https://doi.org/10.1007/s12265-011-9289-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9289-8

Keywords

Navigation