Skip to main content

Efficiency of Soil, Plant and Microbes for Healthy Plant Immunity and Sustainable Agricultural System

  • Chapter
  • First Online:
Plant Microbe Interface

Abstract

For the vital functioning of soil ecosystem, microbes have always been the superior force in driving many processes. These microorganisms are the main key facilitators in nutrient cycles associated with plant root system by delivering nutrients and suppressing pathogens, thereby sustaining plant health. Their amazing activity and biochemical versatility, especially the roots of growing plants, show great potential for beneficial microorganisms, for the development of biotechnology applications, for the control of plants of wild plants and for increased food crops. In this chapter we review the existing literature on the interaction between plants, microorganisms and soil. The rhizosphere is an arena where the complex rhizosphere community, which includes both microflora and microfauna, communicates with pathogens and influences the outcome of pathogen infection. A number of microorganisms are advantageous to the plants which include nitrogen-fixing bacteria, endo- and ectomycorrhizal fungi and plant growth-promoting bacteria and fungi. Some of the activities include complex systems of communication, in case of symbiosis such as arbuscular microscopic symbiosis, many millions of years old, while others include exudates from the root and other products of the rhizodeposition which are used as substrates for soil microorganisms. Since degradation of organic compounds in the rhizosphere is encouraged by the release of root expressions and enzymes in plants, therefore, biodegradation plays an important role, depending on the contact between the soil and the contaminated substances surrounding the plants. There is a considerable potential in the expanded area of microorganisms to replace synthetic biological chemistry. Since microbial activities are an important and sensitive component of soil, they are also good indicators of soil disorder and ecosystem. Still, an extended use of microorganisms for bioindication purposes and sustainable means of soil management depends on advances in understanding microbial ecology, especially on a field scale. As a result, to enhance the regenerative capacity of soil ecosystems for sustainable agriculture, it is best to understand how to increase the dynamics and potential of soil biology. This will allow new applications of knowledge to address the challenges of pest and diseases and increase global food production and sustainable farming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal M, Singh B, Rajput M, Marshall F, Bell JN (2003) Effect of air pollution on peri-urban agriculture: a case study. Environ Pollut 126:323–329

    Article  CAS  PubMed  Google Scholar 

  • Amato G, Liccardi GD, Amato M, Cazzola M (2002) Outdoor air pollution, climate changes and allergic bronchial asthma. Eur Respir J 20:763–776

    Article  PubMed  CAS  Google Scholar 

  • Arneth A, Harisson S, Zaehle S, Tsigaridis K, Menon S, Bartlein PJ, Feichter J, Korhola A, Kulmala M, O’Donnell D et al (2010) Terrestrial biogeochemical feedbacks in the climate system. Nat Geosci 3:525–532

    Article  CAS  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Baldotto LEB, Olivares FL (2008) Phylloepiphytic interaction between bacteria and different plant species in a tropical agricultural system. Can J Microbiol 54:918–931

    Article  CAS  PubMed  Google Scholar 

  • Beckett KP, Freer-Smith P, Taylor G (2000) Effective tree species for local air quality management. J Arboric 26:12–19

    Google Scholar 

  • Bending GD (2003) The rhizosphere and its microorganisms. In: Thomas B, Murphy DJ, Murray BG (eds) Encyclopaedia of applied plant sciences. Academic, London, pp 1123–1129

    Chapter  Google Scholar 

  • Berg G, Krechel A, Ditz M, Faupel A, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229

    Article  CAS  PubMed  Google Scholar 

  • Bharti N, Barnawal D, Wasnik K, Tewari SK, Kalra A (2016) Co-inoculation of Dietzia natronolimnaea and Glomus intraradiences with vermi compost positively influences Ocimum basilicum growth and resident microbial community structure in salt affected low fertility soils. Appl Soil Ecol 100:211–225

    Article  Google Scholar 

  • Bianciotto V, Minerdi D, Perotto S, Bonfante P (1996) Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma 193:123–131

    Article  Google Scholar 

  • Borrego-Hernandez O, Garcia-Reynoso JA, Ojeda-Ramirez MM, Suarez-Lastra M (2014) Retrospective health impact assessment for ozone pollution in Mexico city from 1991 to 2011. Atmosfera 27:261–271

    Article  Google Scholar 

  • Bouwer EJ, Zehnder AJB (1993) Bioremediation of organic compounds-putting microbial metabolisms to work. Trends Biotechnol 11:360–367

    Article  CAS  PubMed  Google Scholar 

  • Bowen G, Rovira A (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102

    Article  Google Scholar 

  • Brack CL (2002) Pollution mitigation and carbon sequestration by an urban forest. Environ Pollut 116:195–200

    Article  Google Scholar 

  • Brimner TA, Boland GJ (2003) A review of the non-target effects of fungi used to biologically control plant diseases. Agric Ecosyst Environ 100:3–16

    Article  Google Scholar 

  • Broeckling CD (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Calfapietra C, Fares S, Manes F, Morani A, Sgrigna G, Loreto F (2013) Role of biogenic volatile organic compounds (BVOC) emitted by urban trees on ozone concentration in cities: a review. Environ Pollut 183:71–80

    Article  CAS  PubMed  Google Scholar 

  • Cardelino CA, Chameides WL (1990) Natural hydrocarbons, urbanization, and urban ozone. J Geophys Res 95:13971–13979

    Article  CAS  Google Scholar 

  • Carpenter-Boggs L, Loynachan TE, Stahl PD (1995) Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil Biol Biochem 27(11):1445–1451

    Article  CAS  Google Scholar 

  • Citernesi AS, Fortuna P, Filippi C, Bagnoli G, Giovannetti M (1996) The occurrence of antagonistic bacteria in Glomus mosseae pot cultures. Agronomie 16(10):671–677

    Article  Google Scholar 

  • Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD (2015) Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol 205:1525–1536

    Article  CAS  PubMed  Google Scholar 

  • Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, Von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Directive 1999/13/EC. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:01999L0013–20101201&qid=1406008935749&from=ES. Accessed 31 Aug 2015

  • Dzierzanowski K, Popek R, Gawronska H, Saebo A, Gawronski SW (2011) Deposition of particulate matter of different size fractions on leaf surface and waxes of urban forest species. Int J Phytorem 13:1037–1046

    Article  CAS  Google Scholar 

  • Ehlers RU (2006) Einsatz der Biotechnologie im biologischen Pflanzenschutz. Schrreihe Dtsch Phytomed Ges 8:17–31

    CAS  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478(7369):337–342

    Article  CAS  PubMed  Google Scholar 

  • Fowler D, Flechard C, Skiba U, Coyle M, Cape JN (1998) The atmospheric budget of oxidized nitrogen and its role in ozone formation and deposition. New Phytol 139:11–23

    Article  CAS  Google Scholar 

  • Gao Y, Cheng Z, Ling W, Huang J (2010) Arbuscular mycorrhizal fungal hyphae contribute to the uptake of polycyclic aromatic hydrocarbons by plant roots. Bioresour Technol 101:6895–6901

    Article  CAS  PubMed  Google Scholar 

  • Garbaye J (1991) Biological interactions in the mycorrhizosphere. Experientia 47(4):370–375

    Article  Google Scholar 

  • Gheorghe IF, Ion B (2015) The effects of air pollutants on vegetation and the role of vegetation in reducing atmospheric pollution. http://cdn.intechopen.com/pdfs-wm/18642.pdf. Accessed 22 Oct 2015

  • Gianinazzi S, Schuepp H (1994) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser Verlag, Basel, p 226

    Book  Google Scholar 

  • Giese M, Baue-Doranth LC, Sandermann H Jr (1994) Detoxification of formaldehyde by the spider plant (Chlorophytum comosum L.) and by soybean (Glycine max L.) cell-suspension cultures. Plant Physiol 104:1301–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giri B, Giang PH, Kumari R, Prasad R, Sachdev M, Garg AP, Oelmuller R, Varma A (2005) Mycorrhizosphere: strategies and functions. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions, vol 3. Springer, Berlin, pp 213–252

    Chapter  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  • Goettel MS (2008) Are entomopathogenic fungi only entomopathogens? A preamble. J Invertebr Pathol 98:255

    Article  PubMed  Google Scholar 

  • Gunnell D, Eddleston M, Phillips MR, Konradsen F (2007) The global distribution of fatal pesticide self-poisoning: systematic review. BMC Public Health 21(7):357

    Article  Google Scholar 

  • Harman EG, Howell CR, Viterbo A, Chet I, Lorito M (2004a) Trichoderma species opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Harman WL, Gerik TJ, Williams JR (2004b) CROPMAN: a crop production/environmental simulation tool to enhance agricultural sustainability. In: Dilawari VK, Brar LS, Jalota SK (eds) Proceedings of sustaining agriculture: problems and prospects. Punjab Agricultural University, Ludhiana, pp 22–30

    Google Scholar 

  • Harrison SP, Morfopoulos C, Dani KGS, Prentice IC, Arneth A, Atwell BJ, Barkley MP, Leishman MR, Loreto F, Medlyn BE et al (2012) Volatile isoprenoid emissions from plastid to planet. New Phytol 197:49–57

    Article  PubMed  CAS  Google Scholar 

  • Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285

    Article  CAS  Google Scholar 

  • Hiltner L (1904) Ãœber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründungung und Brache. ArbDtsch Landwirtsch Ges 98:59–78

    Google Scholar 

  • Ignoffo CM (1992) Environmental factors affecting persistence of entomopathogens. Fla Entomol 75:516–525

    Article  Google Scholar 

  • Jackson T, Glare TR (1992) Use of pathogens in scarab pest management. Intercept, Andover

    Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • John MW (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  Google Scholar 

  • Johnson SC, Mitchell C, McNicol JW, Thompson J, Karley AJ (2013) Downstairs drivers - root herbivores shape communities of above-ground herbivores and natural enemies via changes in plant nutrients. J Anim Ecol 82:1021–1030

    Article  PubMed  Google Scholar 

  • Karami M, Homaee S, Afzalinia H, Ruhipour S (2012) Organic resource management: impacts on soil aggregate stability and other soil physico-chemical properties. Agric Ecosyst Environ 148:22–28

    Article  CAS  Google Scholar 

  • Karl T, Harley P, Emmons L, Thornton B, Guenther A, Basu C, Turnipseed A, Jardine K (2010) Efficient atmospheric cleansing of oxidized organic trace gases by vegetation. Science 330:816–819

    Article  CAS  PubMed  Google Scholar 

  • Khan HU, Ahmad R, Ahmed W, Khan SM, Aslam Khan M (2001) Evaluation of the combined effects of Paecilomyces lilacinus and Trichoderma harzianum against root-knot disease of tomato. J Biol Sci 1(3):139–142

    Article  Google Scholar 

  • Kim KJ, Kil MJ, Song JS, Yoo EH (2008) Efficiency of volatile formaldehyde removal by indoor plants: contribution of aerial plant parts versus the root zone. Hortscience 133:521–526

    Google Scholar 

  • Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassman R, von Mering C, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390

    Article  CAS  PubMed  Google Scholar 

  • Langley JA, Hungate BA (2003) Mycorrhizal controls on belowground litter quality. Ecology 84:2302–2312

    Article  Google Scholar 

  • Leach AW, Mumford JD (2008) Pesticide environmental accounting: a method for assessing the external costs of individual pesticide applications. Environ Pollut 151:139–147

    Article  CAS  PubMed  Google Scholar 

  • Lee KE, Pankhurst CE (1992) Soil organisms and sustainable productivity. Aust J Soil Res 30(6):855–892

    Article  Google Scholar 

  • Lehmann A, Leifheit EF, Rilling MC (2017) Mycorrhiza and soil aggregation. Mycorrhizal mediation of soil fertility, structure and carbon storage, Chapter 14, pp 241–262

    Google Scholar 

  • Lesaulnier C, Papamichail D, McCorkle S, Olivier B, Skiena S, Taghavi S, Zak D, van der Lelie D (2008) Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol 10:926–941

    Article  CAS  PubMed  Google Scholar 

  • Lichtfouse E, Navarrete M, Debaeke P, Souchère V, Alberola C, Ménassieu J (2009) Agronomy for sustainable agriculture: a review. In: Sustainable agriculture. Springer, Dordrecht, pp 1–7

    Chapter  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the Mycorrhizosphere effect. Phytopathology 78:366–370

    Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JM (1986) Rhizosphere microbiology and its manipulation. Biol Agric Hortic 3:143–152

    Article  Google Scholar 

  • Lynch JM (ed) (1987) The rhizosphere. Wiley, Chichester

    Google Scholar 

  • Lynch JM (1990) The Rhizosphere. Wiley, Chichester, 458 p

    Google Scholar 

  • Marilley L, Vogt G, Blanc M, Aragno M (1998) Bacterial diversity in the bulk soil and rhizosphere fractions of Lolium perenne and Trifolium repens as revealed by PCR restriction analysis of 16S rDNA. Plant Soil 198:219–224

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Maurhofer M, Keel C, Schnider U, Voisard C, Haas D, Defago G (1992) Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathology 82:190–195

    Article  CAS  Google Scholar 

  • McDonald AG, Bealey WJ, Fowler D, Dragosits U, Skiba U, Smith RI, Donovan RG, Brett HE, Hewitt CN, Nemitz E (2007) Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmos Environ 41:8455–8467

    Article  CAS  Google Scholar 

  • McGrath SP, Chaudri AM, Giller KE (1995) Long-term effects of metals in sewage-sludge on soils, microorganisms and plants. J Ind Microbiol 14:94–104

    Article  CAS  PubMed  Google Scholar 

  • McGuinness M, Dowling D (2009) Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6:2226–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Megali L, Glauser G, Rasmann S (2013) Fertilization with beneficial microorganisms decrease tomato defenses against insect pests. Agron Sustain Dev 34:649–656

    Article  CAS  Google Scholar 

  • Miransari M (2011) Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol 193:77–81

    Article  CAS  PubMed  Google Scholar 

  • Mohsenzadeh F, Nasseri S, Mesdaghinia A, Nabizadeh R, Zafari D, Khodakaramian G, Chehregani A (2010) Phytoremediation of petroleum-polluted soils: application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils. Ecotoxicol Environ Saf 73:613–619

    Article  CAS  PubMed  Google Scholar 

  • Morris SJ, Blackwood CB (2015) The ecology of soil biota and their function, Chapter 10. In: Soil microbiology, ecology and biodiversity, 4th edn. Academic, London, pp 273–309

    Chapter  Google Scholar 

  • Mosttafiz S, Rahman M, Rahman M (2012) Biotechnology: role of microbes in sustainable agriculture and environmental health. Internet J Microbiol 101:1937–8289

    Google Scholar 

  • Myers I, Maynard RL (2005) Polluted air-outdoors and indoors. Occup Med 55:432–438

    Article  CAS  Google Scholar 

  • Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15(2):327–337

    Google Scholar 

  • Nowak DJ (2015) Air pollution removal by Chicago’s urban forest. http://www.nrs.fs.fed.us/pubs/gtr/gtr_ne186.pdf. Accessed 22 Oct 2015

  • Nowak DJ, Civerloo KL, Rao ST, Sistla G, Luley CJ, Crane DEA (2000) Modeling study of the impact of urban trees on ozone. Atmos Environ 34:1610–1613

    Article  Google Scholar 

  • Nowak DJ, Crane DE, Stevens JC (2006) Air pollution removal by urban trees and shrubs in the United States. Urban For Urban Green 4:115–123

    Article  Google Scholar 

  • Nowak DJ, Crane DE, Stevens JC, Hoehn RE, Walton JT, Bond JA (2008) Ground-based method of assessing urban forest structure and ecosystem services. Arboricult Urban For 34:347–358

    Google Scholar 

  • Ostro BD, Tran H, Levy JI (2006) The health benefits of reduced tropospheric ozone in California. J Air Waste Manag Assoc 56:1007–1021

    Article  CAS  PubMed  Google Scholar 

  • Papen H, Gebler A, Zumbusch E, Rennenberg H (2002) Chemolithoautotrophic nitrifiers in the phyllosphere of a spruce ecosystem receiving high atmospheric nitrogen input. Curr Microbiol 44:56–60

    Article  CAS  PubMed  Google Scholar 

  • Parrish DD, Zhu T (2009) Clean air for megacities. Science 326:674–675

    Article  CAS  PubMed  Google Scholar 

  • Pastuszka JS (2007) Effect of particulate aerosols on air quality—methods of identification and assessment (Wplyw aerozoli ziarnistych na jakosc powietrza—Metody identyfikacji I oceny. Ekoprofit. Finanse Nauka Technol. Prawo). Ekoprofit Financ Sci Technol Law 2:7–15

    Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, NY, 424 p

    Google Scholar 

  • Popek R, Gawronska H, Wrochna M, Gawronski SW, Saebo A (2012) Particulate matter on foliage of 13 woody species: deposition on surfaces and phytostabilization in waxes- a 3-year study. Int J Phytorem 15:245–256

    Article  CAS  Google Scholar 

  • Popek R, GawroÅ„ska H, GawroÅ„ski SW (2015) The level of particulate matter on foliage depends on the distance from the source of emission. Int J Phytorem 17:1262–1268

    Article  CAS  Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, Switzerland, pp 247–260

    Chapter  Google Scholar 

  • Prasad R, Gupta N, Satti U, Wang S, Ahmed ISA, Varma A (2017) Management of fungal pathogens by mycorrhiza. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer International Publishing AG, pp 179–194

    Google Scholar 

  • Qi WZ, Zhao L (2013) Study of the siderophore-producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. J Basic Microbiol 53:355–364

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Weller DM (2001) Exploiting genotypic diversity of 2,4 diacetylphloroglucinol producing pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Appl Environ Microbiol 67:2545–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV (2012) Freitas, H. perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 1:1562–1574

    Article  CAS  Google Scholar 

  • Ren Y, Ge Y, Gu B, Min Y, Tani A, Chang J (2014) Role of management strategies and environmental factors in determining the emission of biogenic volatile organic compounds from urban greenspaces. Environ Sci Technol 48:6237–6246

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Saebo A, Popek R, Nawrot B, Hanslin HM, Gawronska H, Gawronski SW (2012) Plant species differences in particulate matter accumulation on leaf surfaces. Sci Total Environ 427-428:347–354

    Article  CAS  PubMed  Google Scholar 

  • Salthammer T, Uhde E (2009) Organic indoor air pollutants: occurrence-measurement-evaluation, 2nd edn. Wiley, New York, NY, pp 1–464

    Book  Google Scholar 

  • Samoli E, Aga E, Touloumi G, Nisiotis K, Forsberg B, Lefranc A, Pekkanen J, Wojtyniak B, Schindler C, Niciu E et al (2006) Short-term effects of nitrogen dioxide on mortality: an analysis within the APHEA project. Eur Respir J 27:1129–1137

    Article  CAS  PubMed  Google Scholar 

  • Scheller RM, Van Tuyl S, Clark KL, Hom J, La Puma I (2011) Carbon sequestration in New Jersey pine barrens under different scenarios of fire management. Ecosystems 2011(14):987–1004

    Article  Google Scholar 

  • Schneider A, Tesileanu R, Charles R, Sinaj S (2013) Kinetics of soil potassium sorption-desorption and fixation. Commun Soil Sci Plant Anal 44:837–849

    Article  CAS  Google Scholar 

  • Sedjo R, Sohngen B (2012) Carbon sequestration in forests and soils. Annu Rev Resour Econ 4:127–144

    Article  Google Scholar 

  • Sriprapat W, Thiravertyan P (2013) Phytoremediation of BTEX from indoor air by Zamioculcas zamiifolia. Water Air Soil Pollut 224:1482

    Article  CAS  Google Scholar 

  • St-Arnaud M, Vujanovic V (2007) Effect of the arbuscular mycorrhizal symbiosis on plant diseases and pests. In: Hamel C, Plenchette C (eds) Mycorrhizae in crop production. Haworth Food & Agricultural Products Press, Binghampton, NY, pp 67–122

    Google Scholar 

  • Studdert JP, Kaya HK (1990) Water potential, temperature, and soil type on the formation of Beauveria bassiana soil colonies. J Invertebr Pathol 56:380–386

    Article  Google Scholar 

  • Taha H (1996) Modeling impacts of increased urban vegetation on ozone air quality in the south coast Air Basin. Atmos Environ 30:3423–3430

    Article  CAS  Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2:194–208

    Article  Google Scholar 

  • Vagaggini B, Taccola M, Cianchetti S, Carnevali S, Bartoli ML, Bacci E, Dente FL, Di Franco A, Giannini D, Paggiaro PI (2002) Ozone exposure increases eosinophilic airway response induced by previous allergen challenge. Am J Respir Crit Care Med 166:1073–1077

    Article  PubMed  Google Scholar 

  • Van Sluys MA, Monteiro-Vitorello CB, Camargo LE, Menck CF, da Silva AC, Ferro JA, Oliveira MC, Setubal JC, Kitajima JP, Simpson AJ (2002) Comparative genome analysis of plant-associated bacteria. Annu Rev Phytopathol 40:169–189

    Article  PubMed  CAS  Google Scholar 

  • Vega FE (2008) Insect pathology and fungal endophytes. J Invertebr Pathol 98:277–279

    Article  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 2003(255):571–586

    Article  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Lim H, Woo SL, Lorito M (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86

    Article  CAS  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  PubMed  Google Scholar 

  • Voriskova J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486

    Article  CAS  PubMed  Google Scholar 

  • Welburn A (1990) Why are atmospheric oxides of nitrogen usually phytotoxic and not alternative fertilizers? New Phytol 115:395–429

    Article  Google Scholar 

  • Welburn A (1998) Atmospheric nitrogenous compounds and ozone-Is NOx fixation by plants a possible solution? New Phytol 139:5–9

    Article  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009a) Exploiting plant–microbe partnerships for improving biomass production and remediation. Trends Biotechnol 27:591–598

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009b) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    Article  CAS  PubMed  Google Scholar 

  • Whipps J (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • White PJ (2003) Ion transport. In: Thomas B, Murphy DJ, Murray BG (eds) Encyclopaedia of applied plant sciences. Academic, London, pp 625–634

    Chapter  Google Scholar 

  • Winter K, Holtum JAM (2014) Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis. J Exp Bot 65:425–3441

    Google Scholar 

  • Wolverton BC, Wolverton JD (1993) Plants and soil microorganisms: removal of formaldehyde, ethylbenzene, and ammonia from the indoor environment. J Miss Acad Sci 38:11–15

    Google Scholar 

  • World Health Organization (WHO) (2000) The right to healthy indoor air—report on a WHO meeting. World Health Organization (WHO), Bilthoven

    Google Scholar 

  • Wu D, Sun MZ, Zhang C, Xin Y (2014) Antioxidant properties of lactobacillus and its protecting effect to oxidative stress Caco-2 cells. J Anim Plant Sci 24:1766–1771

    Google Scholar 

  • Yang J, McBride J, Zhou J, Sun Z (2005) The urban forest in Beijing and its role in air pollution reduction. Urban For Urban Green 3:65–68

    Article  Google Scholar 

  • Yang DS, Pennisi SV, Son KC, Kays SJ (2009) Screening indoor plants for volatile organic pollutant removal efficiency. Horscience 44:1377–1381

    Article  Google Scholar 

  • Yu C, Crump D (1998) A review of the emission of VOCs from polymeric materials used in buildings. Build Environ 33:357–337

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, G., Nishat, Y., Haris, M., Danish, M., Hussain, T. (2019). Efficiency of Soil, Plant and Microbes for Healthy Plant Immunity and Sustainable Agricultural System. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Microbe Interface. Springer, Cham. https://doi.org/10.1007/978-3-030-19831-2_15

Download citation

Publish with us

Policies and ethics