Skip to main content

Perspectives on the Role of Arbuscular Mycorrhizal Fungi in the In Vivo Vegetative Plant Propagation

  • Chapter
  • First Online:
Biofertilizers for Sustainable Agriculture and Environment

Part of the book series: Soil Biology ((SOILBIOL,volume 55))

Abstract

Vegetative propagation is an important method for increasing the productivity of economically important agricultural and horticultural plants. Apart from the application of phytohormones, beneficial microorganisms such as arbuscular mycorrhizal (AM) fungi being natural biofertilizers are also widely used in the field of horticultural production systems. The mutualistic association between the AM fungi and plant are not only known for their efficient water and nutrient uptake, less vulnerability to pathogens, and ability to withstand or tolerate abiotic and biotic stresses but are also involved in the production of plant hormones and adventitious root formation in asexual propagation. The inoculation of AM fungi to the rooting substrate could result in similar responses on the cuttings to those obtained through the application of exogenous plant growth regulators. In addition, the combined use of AM fungi along with plant hormones leads to increased root initiation and development of plant parts. The early inoculation of AM fungi onto the rooting medium enhances the plant growth rate of vegetatively propagated plant species after forming a symbiotic relationship with the plant. Moreover, a series of sequential signaling events are known to occur between AM fungi and the host plant during the development of roots. The present chapter focuses on the role of AM fungi in various types of vegetative propagation including cutting, layering, and grafting, the interaction between the plant hormones, and the AM symbiosis. The mechanism involved in the production of plant hormones through AM fungi and thereby the physiological changes occurring in the plant metabolism during propagation is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adekola OF, Akpan IG, Musa AK (2012) Effect of varying concentration of auxins and stem length on growth and development of Jatropha curcas L. EJESM 5:314–323

    Google Scholar 

  • Aguín O, Mansilla JP, Vilariño A, Sainz MJ (2004) Effects of mycorrhizal inoculation on root morphology and nursery production of three Grapevine rootstocks. Am J Enol Vitic 55:109–111

    Google Scholar 

  • Almeida-Rodríguez AM, Gómes MP, Loubert-Hudon A, Joly S, Labrecque M (2015) Symbiotic association between Salix purpurea L. and Rhizophagus irregularis: modulation of plant responses under copper stress. Tree Physiol 36:407–420

    Article  PubMed  CAS  Google Scholar 

  • Asha Thomas, Rajeshkumar S (2014) Effect of arbuscular mycorrhizal fungus and plant growth promoting rhizomicroorganisms on productivity of Strobilanthes ciliatus Nees., an endemic to Western Ghats, South India. IJPSI 3:26–29

    Google Scholar 

  • Ávila Díaz-Granados RA, Orozco Silva OJ, Moreno GL, Magnitskiy S, Rodríguez A (2009) Influence of mycorrhizal fungi on the rooting of stem and stolon cuttings of the Colombian blueberry (Vaccinium meridionale Swartz). Int J Fruit Sci 9:372–384

    Article  Google Scholar 

  • Babaj I, Sallaku G, Balliu A (2014) The effects of endogenous mycorrhiza (Glomus spp.) on plant growth and yield of grafted cucumber (Cucumis sativum L.) under common commercial greenhouse conditions. Albanian J Agric Sci 13:24–28

    Google Scholar 

  • Back MM, Altmann T, Dutra de Souza PV (2016) Influence of arbuscular mycorrhizal fungi on the vegetative development of citrus rootstocks. Pesq Agropec Trop 46:407–412

    Article  Google Scholar 

  • Barea JM, Azcón-Aguilar C (1982) Production of plant growth-regulating substances by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 43:810–813

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barman P, Swamy GSK, Patil BP, Patil CP, Thammaiah N (2006) Softwood grafting of seedless lime as influenced by arbuscular mycorrhizal fungi and different age of rootstocks. Karnataka J Agric Sci 20:691–693

    Google Scholar 

  • Barrows JB, Roncadori RW (1977) Endomycorrhizal synthesis by Gigaspora margarita in poinsettia. Mycologia 69:1173–1184

    Article  Google Scholar 

  • Belew D, Astatkie T, Mokashi MN, Getachew Y, Patil CP (2010) Effects of salinity and mycorrhizal inoculation (Glomus fasciculatum) on growth responses of grape Rootstocks (Vitis spp.). S Afr J Enol Vitic 31:82–87

    Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2015) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559

    PubMed  Google Scholar 

  • Berta G, Trotta A, Fusconi A, Hooker J, Munro M, Atkinson D, Giovannetti M, Morini S, Fortuna P, Tisserant B, Gianinazzi-Pearson V, Gianinazzi S (1994) Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol 15:281–293

    Article  Google Scholar 

  • Biermann B, Linderman RG (1983) Mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. New Phytol 95:97–105

    Article  Google Scholar 

  • Bisognin DA (2011) Breeding vegetatively propagated horticultural crops. Crop Breed Appl Biotechnol 11:35–43

    Article  Google Scholar 

  • Bolandnazar S, Moghbeli EM, Panahandeh J, Arzanlou M (2014) Biological control of Fusarium wilt in greenhouse tomato by mycorrhizal fungi and resistant rootstock. Acta Hortic 1041:127–132

    Article  Google Scholar 

  • Brundrett MC (1991) Mycorrhizas in natural ecosystems. Adv Ecol Res 21:171–313

    Article  Google Scholar 

  • Calvet C, Pera J, Estaun V, Camprub A (1989) Vesicular-arbuscular mycorrhizae of kiwifruit in an agricultural soil: inoculation of seedlings and hardwood cuttings with Glomus mosseae. Agronomie 9:181–185

    Article  Google Scholar 

  • Camprubi A, Estaun V, Nogales A, Pitet M, Calvet C (2008) Response of the grapevine rootstock Richter 110 to inoculation with native and selected arbuscular mycorrhizal fungi and growth performance in a replant vineyard. Mycorrhiza 18:211–216

    Article  PubMed  Google Scholar 

  • Castillo P, Nico AI, Azcón-Aguilar C, Del Río Rincón C, Calvet C, Jiménez-Díaz RM (2006) Protection of olive planting stocks against parasitism of root-knot nematodes by arbuscular mycorrhizal fungi. Plant Pathol 55:705–713

    Article  Google Scholar 

  • Chulan HA, Martin K (1992) The vesicular-arbuscular (VA) mycorrhiza and its effects on growth of vegetatively propagated Theobroma cacao. Plant Soil 144:227–233

    Article  Google Scholar 

  • Conversa G, Bonasia A, Lazzizera C, Elia A (2015) Influence of biochar mycorrhizal inoculation, and fertilizer rate on growth and flowering of Pelargonium (Pelargonium zonale L.) plants. Front Plant Sci 6:429

    PubMed  PubMed Central  Google Scholar 

  • Davies FT Jr, Davis TD, Kester DE (1994) Commercial importance of adventitious rooting to horticulture. In: Davis TD, Haissig BE (eds) Biology of adventitious root formation. Basic life sciences, vol 62. Springer, Boston, pp 53–59

    Chapter  Google Scholar 

  • Douds DD, Bécard G, Pfeffer PE, Doner LW (1995) Effect of vesicular–arbuscular mycorrhizal fungi on rooting of Sciadopitys verticillata Sieb & Zucc. cuttings. HortScience 30:133–134

    Article  Google Scholar 

  • Druege U, Zerche S, Kadner R (2004) Nitrogen and storage affected carbohydrate partitioning in high-light-adapted pelargonium cuttings in relation to survival and adventitious root formation under low light. Ann Bot 94:831–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Druege U, Xylaender M, Zerche S, von Alten H (2006) Rooting and vitality of poinsettia cuttings was increased by arbuscular mycorrhiza in the donor plants. Mycorrhiza 17:67–72

    Article  PubMed  Google Scholar 

  • Du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hort 196:3–14

    Article  CAS  Google Scholar 

  • Dubsky M, Sramek F, Vosatka M (2002) Inoculation of cyclamen (Cyclamen persicum) and poinsettia (Euphorbia pulcherrima) with arbuscular mycorrhizal fungi and Trichoderma harzianum. Rostl Vyroba 48:63–68

    Google Scholar 

  • Dugbley PW, Mansur I, Wasis B (2015) Susceptibility of vegetatively propagated Khaya anthotheca to arbuscular mycorrhizae fungi (AMF) soil inoculum infection. Sci Res 3:13–18

    Article  CAS  Google Scholar 

  • Earanna N, Mallikarjuniah RR, Bagyaraj DJ, Suresh CK (2001) Response of Coleus aromaticus to Glomus fasciculatum and other beneficial soil microflora. J Species Aromat Crops 10:141–143

    Google Scholar 

  • Edgerton MD (2009) Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol 149:7–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esch H, Hundeshagen B, Schneider-Poetsch HJ, Bothe H (1994) Demonstration of abscisic acid in spores andhyphae of the arbuscular-mycorrhizal fungus Glomus and in the N2-fixing cyanobacterium Anabaena variabilis. Plant Sci 99:9–16

    Article  CAS  Google Scholar 

  • Essahibi A, Benhiba L, Fouad MO, AitBabram M, Ghoulam C, Qaddoury A (2017) Improved rooting capacity and hardening efficiency of carob (Ceratonia siliqua L.) cuttings using arbuscular mycorrhizal fungi. Arch Biol Sci 69:291–298

    Article  Google Scholar 

  • Estaun V, Camprubi A, Calvet C (2003) Nursery and field response of Olive trees inoculated with two arbuscular mycorrhizal fungi, Glomus intraradices and Glomus mosseae. J Am Soc Hortic Sci 128:767–775

    Article  Google Scholar 

  • Ezekiel Amri (2015) Influence of arbuscular mycorrhizal fungi on rooting ability of Auxin treated stem cuttings of Dalbergia melanoxylon (Guill and Perr.). Res J Bot 10:88–97

    Article  CAS  Google Scholar 

  • Fatemeh B, Zaynab M (2014) Influence of mycorrhizal fungi and cutting type on rootings in Rosemarinus officinalis L. plants. Indian J Fundam Appl Life Sci 4:2921–2928

    Google Scholar 

  • Foo E, Heynen EMH, Reid JB (2015) Common and divergent shoot-root signalling in legume symbioses. New Phytol 210:643–656

    Article  PubMed  CAS  Google Scholar 

  • Forbes JC, Watson RD (1992) Plants in agriculture. Cambridge University Press, New York

    Google Scholar 

  • Gaion LA, Monteiro CC, Cruz FJR, Rossatto DR, LópezDíaz I, Carrera E, Lima JE, Peres LEP, Carvalho RF (2018) Constitutive gibberellin response in grafted tomato modulates root-to-shoot signaling under drought stress. J Plant Physiol 221:11–21

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Garrido JM, Ocampo JA (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot 53:1377–1386

    Article  CAS  PubMed  Google Scholar 

  • García-Garrido JM, Lendzemo V, Castellanos-Morales V, Steinkellner S, Vierheilig H (2009) Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi. Mycorrhiza 19:449–459

    Article  PubMed  Google Scholar 

  • Garmendia I, Mangas VJ (2012) Application of arbuscular mycorrhizal fungi on the production of cut flower roses under commercial-like conditions. Span J Agric Res 10:166–174

    Article  Google Scholar 

  • Gianinazzi-Pearson V (1996) Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis. Plant Cell 8:1871–1883

    Article  PubMed  PubMed Central  Google Scholar 

  • Gianinazzi-pearson V, Gianinazzi S (1992) Influence of intergeneric grafts between host and non-host legumes on formation of vesicular arbuscular mycorrhizal. New Phytol 120:505–508

    Article  Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157

    Article  CAS  PubMed  Google Scholar 

  • Hartmann HT, Kester DE, Davies FT, Geneve RL (2002) Plant propagation principles and practices, 7th edn. Prentice Hall, New Jersey, pp 367–374

    Google Scholar 

  • Herrera-Medina MJ, Steinkellner S, Vierheilig H, Ocampo-Bote JA, Garcia-Garrido JM (2007) Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol 175:554–564

    Article  CAS  PubMed  Google Scholar 

  • Hirsch AM, Fang Y, Asad S, Kapulnik Y (1997) The role of phytohormones in plant-microbe symbiosis. Plant Soil 194:171–184

    Article  CAS  Google Scholar 

  • Hooker JE, Munro M, Atkinson D (1992) Vesicular-arbuscular mycorrhizal fungi induced alteration in poplar root system morphology. Plant Soil 145:207–214

    Article  Google Scholar 

  • Janos DP, Schroeder MS, Schaffer B, Crane JH (2001) Inoculation with arbuscular mycorrhizal fungi enhances growth of Litchi chinensis Sonn. trees after propagation by air-layering. Plant Soil 233:85–94

    Article  CAS  Google Scholar 

  • Kadam MA, Giriyappanavar BS, Lakshman HC (2011) Selection of efficient arbuscular mycorrhizal fungi (AMF) for inoculation of Pedilanthes tithymaloides (L.) Poir. plants raised through stem cutting. Nat Environ Pollut Technol 10:133–135

    Google Scholar 

  • Kaldorf M, Ludwig-Müller J (2000) AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiol Plant 109:58–67

    Article  CAS  Google Scholar 

  • Karagiannidis N, Thomidis T, Panou-Filotheou E, Karagiannidou C (2012) Response of three mint and two oregano species to Glomus etunicatum inoculation. AJSC 6:164–169

    Google Scholar 

  • Kevers C, Hausman JF, Faivre-Rampant O, Evers D, Gaspar T (1997) Hormonal control of adventitious rooting: progress and questions. J Appl Bot 71:71–79

    CAS  Google Scholar 

  • Khade SW, Rodrigues BF (2009) Applications of arbuscular mycorrhizal fungi in agrosystems. Trop Subtrop Agroecosyst 10:337–354

    Google Scholar 

  • Khalil HA (2013) Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of grapevines rootstocks to salt stress. Asian J Crop Sci 5:393

    Article  Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  • Kumar HSY, Swamy GSK, Kanamadi VC, Prasadkumar, Sowmaya BN (2008) Effect of organics and chemicals on germination, growth and graft-take in mango. Asian J Hort 3:336–339

    Google Scholar 

  • Kumar P, Lucini L, Rouphael Y, Cardarelli C, Kalunke RM, Colla G (2015) Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato. Front Plant Sci 6:477

    PubMed  PubMed Central  Google Scholar 

  • Lakshmipathy R, Sumana DA, Balakrishna AN, Bagyaraj DJ, Kumar DP (2004) Evaluation, grafting success and field establishment of cashew rootstock as influenced by VAM fungi. Indian J Exp Biol 42:1132–1135

    CAS  PubMed  Google Scholar 

  • Landgraf R, Schaarschmidt S, Hause B (2012) Repeated leaf wounding alters the colonization of Medicago truncatula roots by beneficial and pathogenic microorganisms. Plant Cell Environ 35:1344–1357

    Article  CAS  PubMed  Google Scholar 

  • Larose G, Chênevert R, Moutoglis P, Gagné S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339

    Article  CAS  Google Scholar 

  • Leakey RRB, Newton AC, Dick JMP (1994) Capture of genetic variation by vegetative propagation: processes determining success. In: Leakey RRB, Newton AC (eds) Tropical trees: the potential for domestication and the rebuilding of genetic resources. HMSO, London, pp 72–83

    Google Scholar 

  • Lee JM (1994) Cultivation of grafted vegetables. I. Current status, grafting methods and benefits. Hortscience 29:235–239

    Article  Google Scholar 

  • Linderman RG, Call CA (1977) Enhanced rooting of woody plant cuttings by mycorrhizal fungi. J Am Soc Hortic Sci 102:629–632

    Google Scholar 

  • Liu A, Hamel C, Elmi A, Costa C, Ma B, Smith DL (2002) Concentrations of K, Ca and Mg in maize colonized by arbuscular mycorrhizal fungi under field conditions. Can J Soil Sci 82:271–278

    Article  CAS  Google Scholar 

  • Ludwig-Müller J, Schubert B, Pieper K (1995) Regulation of IBA synthetase by drought stress and abscisic acid. J Exp Bot 46:423–432

    Article  Google Scholar 

  • Ludwig-Müller J, Kaldorf M, Sutter EG, Epstein E (1997) Indole-3-butyric acid (IBA) is enhanced in young maize (Zea mays L.) roots colonized with the arbuscular mycorrhizal fungus Glomus intraradices. Plant Sci 125:153–162

    Article  Google Scholar 

  • Mala WJ, Kumari IS, Sumanasena HA, Nanayakkara CM (2010) Effective spore density of Glomus mosseae, arbuscular mycorrhiza (AM), for inoculation of rooted cuttings of Black Pepper (Piper nigrum Linn.). Trop Agric Res 21:189–197

    Article  Google Scholar 

  • Malik NSA, Nuñez A, McKeeve LC (2017) Mycorrhizal inoculation increases growth and induces changes in specific polyphenol levels in Olive saplings. J Agric Sci 9:2

    Google Scholar 

  • Martín-Rodríguez JA, León-Morcillo RJ, Vierheilig H, Ocampo-Bote JA, Ludwig-Müller J, García-Garrido JM (2011) Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi. New Phytol 190:193–205

    Article  PubMed  CAS  Google Scholar 

  • Mckey D, Elias M, Pujol B, Duputié A (2010) The evolutionary ecology of clonally propagated domesticated plants. New Phytol 186:318–332

    Article  PubMed  Google Scholar 

  • Megersa HG (2017) Propagation methods of selected horticultural crops by specialized organs: review. J Hortic 4:198

    Article  Google Scholar 

  • Meixner C, Ludwig-Müller J, Miersch O, Gresshoff P, Staehelin C, Vierheilig H (2005) Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts 1007. Planta 222:709–715

    Article  CAS  PubMed  Google Scholar 

  • Micallef SA, Shiaris MP, Colon-Carmona A (2009) Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J Exp Bot 60:1729–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miceli A, Romano C, Moncada A, Piazza G, Torta L, D’Anna F, Vetrano F (2016) Yield and quality of mini-watermelon as affected by grafting and mycorrhizal inoculum. J Agric Sci Technol 18:505–516

    Google Scholar 

  • Mishra DS, Thapa KS, Nimbolkar PK, Tripathi A, Singh SK (2017) Efficacy of different rooting media and wrapping material on air-layers in Litchi (Litchi chinensis Sonn.) cv. ‘Rose Scented’. IJCS 5:2004–2009

    Google Scholar 

  • Mora-Romero GA, Cervantes-Gámez RG, Galindo-Flores H, González-Ortíz MA, Félix-Gastélum R, Maldonado-Mendoza IE, Salinas Pérez R, León-Félix J, Martínez-Valenzuela MC, López-Meyer M (2015) Mycorrhiza-induced protection against pathogens is both genotype-specific and graft-transmissible. Symbiosis 66:55–64

    Article  CAS  Google Scholar 

  • Nadeem SM, Ahmadb M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Article  PubMed  Google Scholar 

  • Neeraja Gandhi K, Patil CP, Swamy GSK, Duragannavar MP, Patil PB (2010) The effect of AM fungi and bioformulations on softwood grafting in Jamun (Syzygium cuminii Skeels). Mycorrhiza News 22:6–11

    Google Scholar 

  • Nelson SD (1987) Rooting and subsequent growth of woody ornamental softwood cuttings treated with endomycorrhizal inoculum. J Am Soc Hortic Sci 112:263–266

    Google Scholar 

  • Oztekin GB, Tuzela Y, Tuzel IH (2013) Does mycorrhiza improve salinity tolerance in grafted plants? Sci Hort 149:55–60

    Article  CAS  Google Scholar 

  • Păcurar DI, Perrone I, Bellini C (2014) Auxin is a central player in the hormone cross-talk that control adventitious rooting. Physiol Plant 151:83–96

    Article  PubMed  CAS  Google Scholar 

  • Pina P, Errea P (2005) A review of new advances in mechanism of graft compatibility-incompatibility. Sci Hort 106:1–I1

    Article  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    Article  CAS  Google Scholar 

  • Porras Piedra A, Soriano Martín ML, Porras Soriano A, Fernández Izquierdo G (2005) Influence of arbuscular mycorrhizas on the growth rate of mist-propagated olive plantlets. Span J Agric Res 3:98–105

    Article  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcon-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    Article  CAS  PubMed  Google Scholar 

  • Preece JE (2003) A century of progress with vegetative propagation. Hortscience 38:1015–1025

    Article  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M et al (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hort 196:91–108

    Article  Google Scholar 

  • Roussel H, van Tuinen D, Franken P, Gianinazii S, Gianinazzi-Pearson V (2001) Signaling between arbuscular mycorrhizal fungi and plants: identification of a gene expressed during early interactions by differential RNA display analysis. Plant Soil 232:13–19

    Article  CAS  Google Scholar 

  • Sánchez-Blanco MJ, Ferrández T, Morales MA, Morte A, Alarcón JJ (2004) Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. J Plant Physiol 161:675–682

    Article  PubMed  Google Scholar 

  • Sangwan NS, Farooqi AHA, Shabih F, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Regul 34:3–21

    Article  CAS  Google Scholar 

  • Sbrana C, Giovannetti M, Vitagliano C (1994) The effect of mycorrhizal infection on survival and growth renewal of micro propagated fruit rootstocks. Mycorrhiza 5:153–156

    Article  Google Scholar 

  • Scagel CF (2001) Cultivar specific effects of mycorrhizal fungi on the rooting of miniature rose cuttings. J Environ Hortic 19:15–20

    Google Scholar 

  • Scagel CF (2004a) Changes in cutting composition during early stages of adventitious rooting of miniature Rose altered by inoculation with arbuscular mycorrhizal fungi. J Am Soc Hortic Sci 129:623–634

    Google Scholar 

  • Scagel CF (2004b) Enhanced rooting of Kinnikinnick cuttings using mycorrhizal fungi in rooting substrate. HortTechnology 14:355–363

    Article  Google Scholar 

  • Scagel CF, Reddy K, Armstrong JM (2003) Mycorrhizal fungi in rooting substrate influences the quantity and quality of roots on stem cuttings of Hick’s yew. HortTechnology 13:62–66

    Article  Google Scholar 

  • Schreiner RP (2003) Mycorrhizal colonization of grapevine rootstocks under field conditions. Am J Enol Vitic 54:143–149

    Google Scholar 

  • Sharma SD, Kumar P, Raj H, Bhardwaj SK (2009) Isolation of arbuscular mycorrhizal fungi and Azotobacter chroococcum from local litchi orchards and evaluation of their activity in the air-layers system. Sci Hort 123:117–123

    Article  Google Scholar 

  • Shu B, Liu L, Jue D, Wang Y, Wei Y, Shi S (2017) Effects of avocado (Persea americana Mill.) scion on arbuscular mycorrhizal and root hair development in rootstock. Arch Agron Soil Sci 63:1951–1962

    Article  Google Scholar 

  • Sidhoum W, Fortas Z (2013) Effect of arbuscular mycorrhizal fungi on growth of semi-woody olive cuttings of the variety “Sigoise” in Algeria. Am J Res Commun 1:244–257

    Google Scholar 

  • Silveira SV, Lorscheiter R, Barros IBI, Schwarz SF, Souza PVD (2006) Mentha piperita as a multiplying of arbuscular mycorrhizal fungi. Rev Bras Pl Med 8:91–97

    Google Scholar 

  • Singh S (2002) Role of mycorrhiza in plants raised from cuttings or as micropropagated plants, Part II: fruit trees; Part III: ornamentals and other plants. Mycorrhiza News 14:1–9

    Google Scholar 

  • Siqueira JO, Saggin-Junior OJ, Flores-Aylas WW, Guimarães PTG (1998) Arbuscular mycorrhizal inoculation and superphosphate application influence plant development and yield of coffee in Brazil. Mycorrhiza 7:293–300

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13

    Article  PubMed  Google Scholar 

  • Sohn BK, Kim KY, Chung SJ, Kim WS, Park SM, Kan JK, Rim YS, Cho JS, Kim TH, Lee JH (2003) Effect of the different timing of AMF inoculation on plant growth and flower quality of chrysanthemum. Sci Hort 98:173–183

    Article  Google Scholar 

  • Sonah H, Deshmukh RK, Singh VP, Gupta DK, Singh NK, Sharma TR (2011) Genomic resources in horticultural crops: status, utility and challenges. Biotechnol Adv 29:199–209

    Article  PubMed  Google Scholar 

  • Song F, Pan ZY, Bai FX, An JY, Liu JH, Guo WW, Bisseling T, Deng XX, Xiao SY (2015) The scion/rootstock genotypes and habitats affect arbuscular mycorrhizal fungal community in citrus. Front Microbiol 6:1372

    PubMed  PubMed Central  Google Scholar 

  • Steffens B, Rasmussen A (2016) The physiology of adventitious roots. Plant Physiol 170:603–617

    Article  CAS  PubMed  Google Scholar 

  • Tamasloukht MB, Séjalon-Delmas N, Kluever A, Jauneau A, Roux C, Bécard G, Franken P (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol 131:1468–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tejavathi DH, Antha P, Murthy SM, Nijagunaiah R (2011) Effect of AM fungal association with normal and micropropagated plants of Andrographis paniculata Nees on biomass, primary and secondary metabolites. Int Res J Plant Sci 2:338–348

    Google Scholar 

  • Thanuja TV, Ramakrishna VH, Sreenivasa MN (2002) Induction of rooting and root growth in black pepper cuttings (Piper nigrum L.) with the inoculation of arbuscular mycorrhizae. Sci Hort 92:339–346

    Article  Google Scholar 

  • Verkade SD, Hamilton DF (1987) Effect of endomycorrhizal inoculum on root initiation and development of Viburnum dentatum L. cuttings. J Environ Hort 5:80–81

    Google Scholar 

  • Washa W, Nyomora A, Lyaruu H (2012) Improving propagation success of D. melanoxylon (African blackwood) in tanzania (ii): rooting ability of stem and root cuttings of Dalbergia melanoxylon (African Blackwood) in response to rooting media sterilization in Tanzania. Tanz J Sci 38:43–53

    Google Scholar 

  • Williams A, Ridgway HJ, David AN (2013) Different arbuscular mycorrhizae and competition with an exotic grass affect the growth of Podocarpus cunninghamii Colenso cuttings. New Forests 44:183–195

    Article  Google Scholar 

  • Wimalarathne HGMC, Sangakkara UR, Sumanasena HA (2014) Effect of arbuscular mycorrhizal fungi (AMF) on shoot and root development of black pepper (Piper nigrum Linn.) rooted cuttings. Int Invent J Agric Soil Sci 2:105–111

    Google Scholar 

  • Yadav K, Aggarwal A, Singh N (2013) Arbuscular mycorrhizal fungi (AMF) induced acclimatization, growth enhancement and colchicine content of micropropagated Gloriosa superba L. plantlets. Ind Crop Prod 45:88–93

    Article  CAS  Google Scholar 

  • Yang Y, Song Y, Scheller HV, Ghosh A, Ban Y, Chen H, Tang M (2015) Community structure of arbuscular mycorrhizal fungi associated with Robinia pseudoacacia in uncontaminated and heavy metal contaminated soils. Soil Biol Biochem 86:146–158

    Article  CAS  Google Scholar 

  • Yetisir H, Sari N (2003) Effect of different rootstock on plant growth, yield and quality of watermelon. Aust J Exp Agric 43:1269–1274

    Article  Google Scholar 

  • Zai X, Qin P, Wan S, Zhao F, Wang G, Yan D, Zhou J (2007) Effects of arbuscular mycorrhizal fungi on the rooting and growth of beach plum (Prunus maritima) cuttings. J Hortic Sci Biotechnol 82:863–866

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koshila Ravi, R., Muthukumar, T. (2019). Perspectives on the Role of Arbuscular Mycorrhizal Fungi in the In Vivo Vegetative Plant Propagation. In: Giri, B., Prasad, R., Wu, QS., Varma, A. (eds) Biofertilizers for Sustainable Agriculture and Environment . Soil Biology, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-030-18933-4_5

Download citation

Publish with us

Policies and ethics