Skip to main content

On the Unique Functional Elasticity and Collagen Fiber Kinematics of Heart Valve Leaflets

  • Chapter
  • First Online:
Advances in Heart Valve Biomechanics

Abstract

With the growing prevalence of heart valve diseases, it is important to better understand the biomechanical behavior of normal and pathological heart valve tissues. Recent studies showed that heart valve leaflets exhibited a unique functionally elastic behavior, in which valvular tissues exhibited minimal hysteretic and creep behaviors under biaxial loading, yet allowed stress relaxation similar to other types of collagenous tissues. This unique behavior is in favor of heart valve function, enabling leaflets to bear peak physiological loading without time-dependent deformation. To explore the underlying micromechanical mechanisms, we used small angle X-ray scattering (SAXS) under biaxial stretch to explore the collagen fibril kinematics in stress relaxation and creep. We found that collagen fibril reorientation/realignment did not contribute to stress relaxation and creep. In stress relaxation, collagen fibril strain released largely during the first 20 min and the remaining collagen fibril strain stayed relatively constant in the remaining relaxation time. The overall reduction rate of the collagen fibril strain was much larger than the stress decay rate at the tissue level. When the leaflet tissue experienced negligible time-dependent deformation under constant load (negligible creep), the collagen fibril strain was maintained at a constant level during the time course. This difference in collagen fibril kinematics implies the mechanisms responsible for creep and stress relaxation in the leaflet tissue are functionally independent. We thus speculate some type of fibril-level “locking” mechanism exists in leaflet tissue that allows for stress release under constant strain condition, yet does not allow for continued straining under a constant stress. We speculate that the degenerated ECM components in diseased valvular tissues might cause changes in these quasi-elastic behaviors and thus contribute to malfunction of heart valves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schoen F, Edwards W. Valvular heart disease: general principles and stenosis. Cardiovasc Pathol. 2001;3:403–42.

    Google Scholar 

  2. Sacks MS, David Merryman W, Schmidt DE. On the biomechanics of heart valve function. J Biomech. 2009;42(12):1804–24.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sacks MS, Yoganathan AP. Heart valve function: a biomechanical perspective. Philos Trans R Soc B Biol Sci. 2007;362(1484):1369–91.

    Article  Google Scholar 

  4. Mendelson K, Schoen FJ. Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann Biomed Eng. 2006;34(12):1799–819.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Merryman WD, Engelmayr GC Jr, Liao J, Sacks MS. Defining biomechanical endpoints for tissue engineered heart valve leaflets from native leaflet properties. Prog Pediatr Cardiol. 2006;21(2):153–60.

    Article  Google Scholar 

  6. Brazile B, Wang B, Wang G, Bertucci R, Prabhu R, Patnaik SS, Butler JR, Claude A, Brinkman-Ferguson E, Williams LN, Liao J. On the bending properties of porcine mitral, tricuspid, aortic, and pulmonary valve leaflets. J Long-Term Eff Med Implants. 2015;25(1–2):41–53.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vesely I, Boughner D. Analysis of the bending behaviour of porcine xenograft leaflets and of natural aortic valve material: bending stiffness, neutral axis and shear measurements. J Biomech. 1989;22(6/7):655–71.

    Article  CAS  PubMed  Google Scholar 

  8. Mirnajafi A, Raymer J, Scott MJ, Sacks MS. The effects of collagen fiber orientation on the flexural properties of pericardial heterograft biomaterials. Biomaterials. 2005;26(7):795–804.

    Article  CAS  PubMed  Google Scholar 

  9. Christie GW, Barratt-Boyes BG. Mechanical properties of porcine pulmonary valve leaflets: how do they differ from aortic leaflets? Ann Thorac Surg. 1995;60:S195–S9.

    Article  CAS  PubMed  Google Scholar 

  10. Doehring TC, Kahelin M, Vesely I. Mesostructures of the aortic valve. J Heart Valve Dis. 2005;14(5):679–86.

    PubMed  Google Scholar 

  11. Vesely I. Reconstruction of loads in the fibrosa and ventricularis of porcine aortic valves. ASAIO J. 1996;42(5):M739–46.

    Article  CAS  PubMed  Google Scholar 

  12. Kunzelman KS, Cochran RP, Murphree SS, Ring WS, Verrier ED, Eberhart RC. Differential collagen distribution in the mitral valve and its influence on biomechanical behaviour. J Heart Valve Dis. 1993;2(2):236–44.

    CAS  PubMed  Google Scholar 

  13. Grande-Allen KJ, Liao J. The heterogeneous biomechanics and mechanobiology of the mitral valve: implications for tissue engineering. Curr Cardiol Rep. 2011;13(2):113–20.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Roberts WC. Morphologic features of the normal and abnormal mitral valve. Am J Cardiol. 1983;51(6):1005–28.

    Article  CAS  PubMed  Google Scholar 

  15. Anderson R, Becker A. Anatomy of the heart. Stuttgart, NY: Thieme; 1982.

    Google Scholar 

  16. Gross L, Kugel M. Topographic anatomy and histology of the valves in the human heart. Am J Pathol. 1931;7(5):445.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ho S. Anatomy of the mitral valve. Heart. 2002;88(Suppl 4):iv5–iv10.

    PubMed  PubMed Central  Google Scholar 

  18. Bezerra A, DiDio L, Prates J. Dimensions of the left atrioventricular valve and its components in normal human hearts. Cardioscience. 1992;3(4):241–4.

    CAS  PubMed  Google Scholar 

  19. Misfeld M, Sievers H-H. Heart valve macro-and microstructure. Philos Trans R Soc B Biol Sci. 2007;362(1484):1421–36.

    Article  Google Scholar 

  20. Thubrikar M, Klemchuk PP. The aortic valve. Boca Raton, FL: CRC Press; 1990.

    Google Scholar 

  21. Joyce EM, Liao J, Schoen FJ, Mayer JE Jr, Sacks MS. Functional collagen fiber architecture of the pulmonary heart valve cusp. Ann Thorac Surg. 2009;87(4):1240–9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS. Heart disease and stroke statistics—2013 update a report from the American Heart Association. Circulation. 2013;127(1):e6–e245.

    PubMed  Google Scholar 

  23. Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368(9540):1005–11.

    Article  PubMed  Google Scholar 

  24. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS. Heart disease and stroke statistics—2012 update a report from the American Heart Association. Circulation. 2012;125(1):e2–e220.

    Article  PubMed  Google Scholar 

  25. Nishimura RA. Aortic valve disease. Circulation. 2002;106(7):770–2.

    Article  PubMed  Google Scholar 

  26. Lilly LS. Pathophysiology of heart disease: a collaborative project of medical students and faculty. Philadelphia: Wolters Kluwer Health; 2012.

    Google Scholar 

  27. Takkenberg JJ, Rajamannan NM, Rosenhek R, Kumar AS, Carapetis JR, Yacoub MH. The need for a global perspective on heart valve disease epidemiology the SHVD working group on epidemiology of heart valve disease founding statement. J Heart Valve Dis. 2008;17(1):135.

    PubMed  Google Scholar 

  28. Peeters F, Meex SJR, Dweck MR, Aikawa E, Crijns H, Schurgers LJ, Kietselaer B. Calcific aortic valve stenosis: hard disease in the heart: a biomolecular approach towards diagnosis and treatment. Eur Heart J. 2018;39(28):2618–24.

    Article  PubMed  Google Scholar 

  29. Katsi V, Georgiopoulos G, Oikonomou D, Aggeli C, Grassos C, Papadopoulos DP, Thomopoulos C, Marketou M, Dimitriadis K, Toutouzas K, Nihoyannopoulos P, Tsioufis C, Tousoulis D. Aortic Stenosis, Aortic Regurgitation and Arterial Hypertension. Current Vascular Pharmacology 2018;16:1. https://doi.org/10.2174/1570161116666180101165306.

    Article  CAS  PubMed  Google Scholar 

  30. Grande-Allen KJ, Griffin BP, Calabro A, Ratliff NB, Cosgrove DM 3rd, Vesely I. Myxomatous mitral valve chordae. II: Selective elevation of glycosaminoglycan content. J Heart Valve Dis. 2001;10(3):325–32; discussion 32–3

    CAS  PubMed  Google Scholar 

  31. Stephens EH, Timek TA, Daughters GT, Kuo JJ, Patton AM, Baggett LS, Ingels NB, Miller DC, Grande-Allen KJ. Significant changes in mitral valve leaflet matrix composition and turnover with tachycardia-induced cardiomyopathy. Circulation. 2009;120(11 Suppl):S112–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Breuer CK, Mettler BA, Anthony T, Sales VL, Schoen FJ, Mayer JE. Application of tissue-engineering principles toward the development of a semilunar heart valve substitute. Tissue Eng. 2004;10(11–12):1725–36.

    Article  CAS  PubMed  Google Scholar 

  33. Schoen FJ. Evolving concepts of cardiac valve dynamics the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation. 2008;118(18):1864–80.

    Article  PubMed  Google Scholar 

  34. Rabkin-Aikawa E, Mayer JE Jr, Schoen FJ. Heart valve regeneration. Regenerative Medicine II. Berlin: Springer; 2005. p. 141–79.

    Book  Google Scholar 

  35. Katz A. Physiology of the heart. Philadelphia, PA: Wolters Kluwer Health; 2011.

    Google Scholar 

  36. Fung YC. Biomechanics: mechanical properties of living tissues. 2nd ed. New York: Springer; 1993. 568 p

    Book  Google Scholar 

  37. Provenzano P, Lakes R, Keenan T, Vanderby R Jr. Nonlinear ligament viscoelasticity. Ann Biomed Eng. 2001;29(10):908–14.

    Article  CAS  PubMed  Google Scholar 

  38. Thornton GM, Oliynyk A, Frank CB, Shrive NG. Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament. J Orthop Res. 1997;15(5):652–6.

    Article  CAS  PubMed  Google Scholar 

  39. Lakes RS, Vanderby R. Interrelation of creep and relaxation: a modeling approach for ligaments. J Biomech Eng. 1999;121(6):612–5.

    Article  CAS  PubMed  Google Scholar 

  40. Thornton GM, Frank CB, Shrive NG. Ligament creep behavior can be predicted from stress relaxation by incorporating fiber recruitment. J Rheol. 2001;45(2):493–507.

    Article  CAS  Google Scholar 

  41. May-Newman K, Yin FC. Biaxial mechanical behavior of excised porcine mitral valve leaflets. Am J Phys. 1995;269(4 Pt 2):H1319–27.

    CAS  Google Scholar 

  42. Grashow JS, Yoganathan AP, Sacks MS. Biaxial stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Ann Biomed Eng. 2006;34(2):315–25.

    Article  PubMed  Google Scholar 

  43. Kunzelman KS, Cochran RP. Stress/strain characteristics of porcine mitral valve tissue: parallel versus perpendicular collagen orientation. J Card Surg. 1992;7(1):71–8.

    Article  CAS  PubMed  Google Scholar 

  44. Liao J, Yang L, Grashow J, Sacks MS. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet. J Biomech Eng. 2007;129(1):78–87.

    Article  PubMed  Google Scholar 

  45. Grashow JS, Sacks MS, Liao J, Yoganathan AP. Planar biaxial creep and stress relaxation of the mitral valve anterior leaflet. Ann Biomed Eng. 2006;34(10):1509–18.

    Article  PubMed  Google Scholar 

  46. Sacks MS, He Z, Baijens L, Wanant S, Shah P, Sugimoto H, Yoganathan AP. Surface strains in the anterior leaflet of the functioning mitral valve. Ann Biomed Eng. 2002;30(10):1281–90.

    Article  CAS  PubMed  Google Scholar 

  47. Sacks MS, Enomoto Y, Graybill JR, Merryman WD, Zeeshan A, Yoganathan AP, Levy RJ, Gorman RC, Gorman JH III. In-vivo dynamic deformation of the mitral valve anterior leaflet. Ann Thorac Surg. 2006;82(4):1369–77.

    Article  PubMed  Google Scholar 

  48. Stella JA, Liao J, Sacks MS. Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet. J Biomech. 2007;40(14):3169–77.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pierlot CM, Moeller AD, Lee JM, Wells SM. Biaxial creep resistance and structural remodeling of the aortic and mitral valves in pregnancy. Ann Biomed Eng. 2015;43(8):1772–85.

    Article  PubMed  Google Scholar 

  50. Hodge AJ, Petruska JA. Recent studies with the electron microscope on ordered aggregates of the tropocollagen molecule. London: Academic Press; 1963.

    Google Scholar 

  51. Nimni ME. The molecular organization of collagen and its role in determining the biophysical properties of the connective tissues. Biorheology. 1980;17:51–82.

    Article  CAS  PubMed  Google Scholar 

  52. Silver FH, Freeman JW, Seehra GP. Collagen self-assembly and the development of tendon mechanical properties. J Biomech. 2003;36(10):1529–53.

    Article  PubMed  Google Scholar 

  53. Chapman JA, Hulmes DJS. Electron microscopy of the collagen fibril. In: Ruggeri A, Motto PM, editors. Ultrastructure of the connective tissue matrix. Boston: Martinus Nijhoff; 1984. p. 1–33.

    Google Scholar 

  54. Scott JE. Proteoglycan: collagen interactions in connective tissues. Ultrastructural, biochemical, functional and evolutionary aspects. Int J Biol Macromol. 1991;13(3):157–61.

    Article  CAS  PubMed  Google Scholar 

  55. Weber IT, Harrison RW, Iozzo RV. Model structure of decorin and implications for collagen fibrillogenesis. J Biol Chem. 1996;271(50):31767–70.

    Article  CAS  PubMed  Google Scholar 

  56. McBride DJ, Trelstad RL, Silver FH. Structural and mechanical assessment of developing chick tendon. Int J Biol Macromol. 1988;10:194–200.

    Article  CAS  Google Scholar 

  57. Kastelic J, Palley I, Baer E. A structural mechanical model for tendon crimping. J Biomech. 1980;13(10):887–93.

    Article  CAS  PubMed  Google Scholar 

  58. Silver FH, Kato YP, Ohno M, Wasserman AJ. Analysis of mammalian connective tissue: relationship between hierarchical structures and mechanical properties. J Long-Term Eff Med Implants. 1992;2(2–3):165–98.

    CAS  PubMed  Google Scholar 

  59. Fratzl P, Misof K, Zizak I, Rapp G, Amenitsch H, Bernstorff S. Fibrillar structure and mechanical properties of collagen. J Struct Biol. 1998;122(1–2):119–22.

    Article  CAS  PubMed  Google Scholar 

  60. Screen HR, Lee DA, Bader DL, Shelton JC. An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties. Proc Inst Mech Eng H. 2004;218(2):109–19.

    Article  CAS  PubMed  Google Scholar 

  61. Elliott DM, Robinson PS, Gimbel JA, Sarver JJ, Abboud JA, Iozzo RV, Soslowsky LJ. Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Ann Biomed Eng. 2003;31(5):599–605.

    Article  PubMed  Google Scholar 

  62. Scott JE. Supramolecular organization of extracellular matrix glycosaminoglycans, in vitro and in the tissues. FASEB J. 1992;6(9):2639–45.

    Article  CAS  PubMed  Google Scholar 

  63. Grande-Allen KJ, Griffin BP, Ratliff NB, Cosgrove DM, Vesely I. Glycosaminoglycan profiles of myxomatous mitral leaflets and chordae parallel the severity of mechanical alterations. J Am Coll Cardiol. 2003;42(2):271–7.

    Article  CAS  PubMed  Google Scholar 

  64. Barber JE, Kasper FK, Ratliff NB, Cosgrove DM, Griffin BP, Vesely I. Mechanical properties of myxomatous mitral valves. J Thorac Cardiovasc Surg. 2001;122(5):955–62.

    Article  CAS  PubMed  Google Scholar 

  65. Dahners LE, Lester GE, Caprise P. The pentapeptide NKISK affects collagen fibril interactions in a vertebrate tissue. J Orthop Res. 2000;18(4):532–6.

    Article  CAS  PubMed  Google Scholar 

  66. Nishimura M, Yan W, Mukudai Y, Nakamura S, Nakamasu K, Kawata M, Kawamoto T, Noshiro M, Hamada T, Kato Y. Role of chondroitin sulfate-hyaluronan interactions in the viscoelastic properties of extracellular matrices and fluids. Biochim Biophys Acta. 1998;1380(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  67. Liao J, Vesely I. A structural basis for the size-related mechanical properties of mitral valve chordae tendineae. J Biomech. 2003;36(8):1125–33.

    Article  PubMed  Google Scholar 

  68. Liao J, Vesely I. Skewness angle of interfibrillar proteoglycans increases with applied load on mitral valve chordae tendineae. J Biomech. 2007;40(2):390–8.

    Article  PubMed  Google Scholar 

  69. Liao J, Vesely I. Relationship between collagen fibrils, glycosaminoglycans, and stress relaxation in mitral valve chordae tendineae. Ann Biomed Eng. 2004;32(7):977–83.

    Article  PubMed  Google Scholar 

  70. Jeronimidis G, JFV V. Composite materials. In: Hukins DWL, editor. Connective. Tissue matrix. Weinheim: Verlag Chemie; 1984. p. 187–210.

    Google Scholar 

  71. Redaelli A, Vesentini S, Soncini M, Vena P, Mantero S, Montevecchi FM. Possible role of decorin glycosaminoglycans in fibril to fibril force transfer in relative mature tendons--a computational study from molecular to microstructural level. J Biomech. 2003;36(10):1555–69.

    Article  CAS  PubMed  Google Scholar 

  72. Vesentini S, Redaelli A, Montevecchi FM. Estimation of the binding force of the collagen molecule-decorin core protein complex in collagen fibril. J Biomech. 2005;38(3):433–43.

    Article  PubMed  Google Scholar 

  73. Cox HL. The elasticity and strength of paper and other fibrous materials. Br J Appl Phys. 1952;3:72–9.

    Article  Google Scholar 

  74. Fessel G, Snedeker JG. Equivalent stiffness after glycosaminoglycan depletion in tendon—an ultra-structural finite element model and corresponding experiments. J Theor Biol. 2011;268(1):77–83.

    Article  CAS  PubMed  Google Scholar 

  75. Rigozzi S, Muller R, Snedeker JG. Collagen fibril morphology and mechanical properties of the Achilles tendon in two inbred mouse strains. J Anat. 2010;216(6):724–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Biological Materials SFH. Structure, mechanical properties, and modeling of soft tissues. New York and London: New York University Press; 1987.

    Google Scholar 

  77. Billiar KL, Sacks MS. A method to quantify the fiber kinematics of planar tissues under biaxial stretch. J Biomech. 1997;30(7):753–6.

    Article  CAS  PubMed  Google Scholar 

  78. Gilbert TW, Sacks MS, Grashow JS, Woo SLY, Chancellor MB, Badylak SF. Fiber kinematics of small intestinal submucosa under uniaxial and biaxial stretch. J Biomech Eng. 2006;128(6):890–8.

    Article  PubMed  Google Scholar 

  79. Hilbert SL, Sword LC, Batchelder KF, Barrick MK, Ferrans VJ. Simultaneous assessment of bioprosthetic heart valve biomechanical properties and collagen crimp length. J Biomed Mater Res. 1996;31(4):503–9.

    Article  CAS  PubMed  Google Scholar 

  80. Hansen KA, Weiss JA, Barton JK. Recruitment of tendon crimp with applied tensile strain. J Biomech Eng. 2002;124(1):72–7.

    Article  PubMed  Google Scholar 

  81. Kronick PL, Buechler PR. Fiber orientation in calfskin by laser light scattering or X-ray diffraction and quantitative relation to mechanical properties. J Am Leather Chem Assoc. 1986;81:221–9.

    CAS  Google Scholar 

  82. Sacks MS, Smith DB, Hiester ED. A small angle light scattering device for planar connective tissue microstructural analysis. Ann Biomed Eng. 1997;25(4):678–89.

    Article  CAS  PubMed  Google Scholar 

  83. Farkasjahnke M, Synecek V. Small-angle X-ray diffraction studies on rat-tail tendon. Acta Physiol Acad Sci. 1965;28(1):1–17.

    CAS  Google Scholar 

  84. Bigi A, Incerti A, Leonardi L, Miccoli G, Re G, Roveri N. Role of the orientation of the collagen fibers on the mechanical properties of the carotid wall. Boll Soc Ital Biol Sper. 1980;56(4):380–4.

    CAS  PubMed  Google Scholar 

  85. Aspden RM, Bornstein NH, Hukins DW. Collagen organisation in the interspinous ligament and its relationship to tissue function. J Anat. 1987;155:141–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Sasaki N, Odajima S. Stress-strain curve and Young’s modulus of a collagen molecule as determined by the X-ray diffraction technique. J Biomech. 1996;29:655–8.

    Article  CAS  PubMed  Google Scholar 

  87. Folkhard W, Geercken W, Knorzer E, Mosler E, Nemetschek-Gansler H, Nemetschek T, Koch MH. Structural dynamic of native tendon collagen. J Mol Biol. 1987;193(2):405–7.

    Article  CAS  Google Scholar 

  88. Sasaki N, Odajima S. Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J Biomech. 1996;29(9):1131–6.

    Article  CAS  PubMed  Google Scholar 

  89. Sasaki N, Shukunami N, Matsushima N, Izumi Y. Time resolved X-ray diffraction from tendon collagen during creep using synchrotron radiation. J Biomech. 1999;32:285–92.

    Article  CAS  PubMed  Google Scholar 

  90. Purslow PP, Wess TJ, Hukins DW. Collagen orientation and molecular spacing during creep and stress-relaxation in soft connective tissues. J Exp Biol. 1998;201 .(Pt 1:135–42.

    CAS  PubMed  Google Scholar 

  91. Liao J, Yang L, Grashow J, Sacks MS. Molecular orientation of collagen in intact planar connective tissues under biaxial stretch. Acta Biomater. 2005;1(1):45–54.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the support from AHA BGIA-0565346, GRNT17150041, NIH 1R01EB022018-01, and UT STARS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liao, J., Sacks, M.S. (2018). On the Unique Functional Elasticity and Collagen Fiber Kinematics of Heart Valve Leaflets. In: Sacks, M., Liao, J. (eds) Advances in Heart Valve Biomechanics. Springer, Cham. https://doi.org/10.1007/978-3-030-01993-8_4

Download citation

Publish with us

Policies and ethics