Skip to main content

Alternative Methods to Derive Option Pricing Models

  • Chapter
  • First Online:
Financial Econometrics, Mathematics and Statistics

Abstract

The main purposes of this paper are: (1) to review three alternative methods for deriving option pricing models, (2) to discuss the relationship between binomial option pricing model and Black–Scholes model, (3) to compare Cox et al. method and Rendleman and Bartter method for deriving Black–Scholes model, (4) to discuss lognormal distribution method to derive Black–Scholes model, and (5) to show how the Black–Scholes model can be derived by stochastic calculus. This paper shows that the main methodologies used to derive the Black–Scholes model are: binomial distribution, lognormal distribution, and differential and integral calculus. If we assume risk neutrality, then we do not need stochastic calculus to derive the Black–Scholes model. However, the stochastic calculus approach for deriving the Black–Scholes model is still presented in this chapter. In sum, this paper can help statisticians and mathematicians understand how alternative methods can be used to derive the Black–Scholes option pricing model.

This chapter draws upon Lee et al. (2016) which was published in Review of Quantitative Finance and Accounting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this section, we follow the notations used by Cox et al. (1979)

  2. 2.

    To sell the call option means to write the call option. If a person writes a call option on stock A, then he or she is obliged to sell at exercise price X during the contract period.

  3. 3.

    Here, we distinguish udS and duS, and count them as two possible outcomes.

  4. 4.

    This uses the property that the variance of a variable Q can be calculated by: \(E(Q^{2} ) - \left[ {E(Q)} \right]^{2}\), where \(E( \cdot )\) denotes the expected value.

  5. 5.

    Here, Taylor series expansion is used: \(e^{x} = 1 + x + \frac{{x^{2} }}{2!} + \frac{{x^{3} }}{3!} + \cdots\).

    \(e^{r\Delta t} = 1 + r\Delta t\) and \(e^{2r\Delta t} = 1 + 2r\Delta t\) when higher powers of \(\Delta t^{2}\) are ignored. The solution to u and d implies that \(u = 1 + \sigma \sqrt {\Delta t} + \frac{1}{2}\sigma^{2} \Delta t\), \(d = 1 - \sigma \sqrt {\Delta t} + \frac{1}{2}\sigma^{2} \Delta t\). All of these expansions satisfy Eq. (21.19).

  6. 6.

    The details of program presentation for stock price, call option price, and also put option price using both binomial model and Black–Scholes model are shown in Chap. 18 in Lee et al. (2013a). The Excel VBA Code for binomialBS_OPM.xls can be found in Appendix 18A in Lee et al. (2013a). The readers can read them if interested. Due to space limit, we only present the illustrative decision trees for call options using binomial model and Black–Scholes model in the main text.

  7. 7.

    Please note that notation T used here is the number of periods rather than calendar time.

  8. 8.

    Please note that some of the variables used in this section are different from those used in Sect. 21.2.1 and Sect. 21.4.1.

  9. 9.

    We first solve equality \(S_{0} H^{{ +^{i} }} H^{{ -^{T - i} }} = X\). This yields \(i = \frac{{\ln (X/S_{0} ) - T\ln (H^{ - } )}}{{\ln H^{ + } - \ln H^{ - } }}\). To get a, the minimum integer value of i for which \(S_{0} H^{{ +^{i} }} H^{{ -^{T - i} }} > X\) will be satisfied, we should note a as: \(a = 1 + {\text{INT}}\left[ {\frac{{\ln (X/S_{0} ) - T\ln (H^{ - } )}}{{\ln H^{ + } - \ln H^{ - } }}} \right]\).

  10. 10.

    In Appendix, we will use de Moivre–Laplace Theorem to show that the best fit between the binomial and normal distributions occurs when the binomial probability (or pseudo probability in this case) is \(\frac{1}{2}\). In addition, we also present the Excel program.

  11. 11.

    Using Taylor expansion, we have \(e^{x} = 1 + x + \frac{{x^{2} }}{2!} + O(x^{2} )\).

  12. 12.

    Now that \(x = e^{y}\), then \({\text{d}}x = d(e^{y} ) = e^{y} {\text{d}}y = x{\text{d}}y\).

  13. 13.

    The second equality is obtained by substituting the PDF of normal distribution into \(\int_{{\ln ({\text{a}})}}^{\infty } {f(y)e^{y} {\text{d}}y}\) and does the appropriate manipulation.

  14. 14.

    Black and Scholes have used two alternative methods to derive this equation. In addition, the careful derivation of this equation can be found in Chap. 27 of Lee et al. (2013a), which was written by Professor A. G. Malliaris, Loyola University of Chicago. Beck (1993) has proposed an alternative way to derive this equation, and raised questions about the methods used by Black and Scholes. In the summary of his paper, he mentioned that the traditional derivation of the Black–Scholes formula is mathematically unsatisfactory. The hedge portfolio is not a hedge portfolio since it is neither self-financing nor riskless. Due to compensating inconsistencies, the final result obtained is nevertheless correct. In his paper, these inconsistencies, which abound in the literature, were pointed out and an alternative, more rigorous derivation avoiding these problems is presented.

  15. 15.

    The following procedure has closely related to Kutner (1988). Therefore, we strongly suggest the readers read his paper.

  16. 16.

    The solution is obtained as an application of the general Fourier integral. See Churchill (1963, pp. 154–155) for more details.

  17. 17.

    The lower limit exists since if \(u < 0,f(u) = 0\). Therefore, we require \(u + 2\eta \sqrt v\), i.e., \(\eta \ge - u/2\sqrt v\).

Bibliography

  • Alt-Sahalia., & Lo, Y. (1998), Nonparametric estimation of state-price density implicit asset prices. The Journal of Finance, 53(2), 499–547.

    Google Scholar 

  • Amin, K. I., & Jarrow, R. A. (1992). Pricing options on risky assets in a stochastic interest rate economy. Mathematical Finance, 2(4), 217–237.

    Google Scholar 

  • Amin, K. I., & Ng, V. K. (1993). Option valuation with systematic stochastic volatility. The Journal of Finance, 48(3), 881–910.

    Google Scholar 

  • Ash, R. B., & Doleans-Dade, C. (1999). Probability and measure theory (2nd ed.). Academic Press.

    Google Scholar 

  • Bailey, W., & Stulz, R. M. (1989). The pricing of stock index options in a general equilibrium model. Journal of Financial and Quantitative Analysis, 24(01), 1–12.

    Google Scholar 

  • Bakshi, G. S., & Chen, Z. (1997a). An alternative valuation model for contingent claims. Journal of Financial Economics, 44(1), 123–165.

    Google Scholar 

  • Bakshi, G. S., & Chen, Z. (1997b). Equilibrium valuation of foreign exchange claims. The Journal of Finance, 52(2), 799–826.

    Article  Google Scholar 

  • Bakshi, G., Cao, C., & Chen, Z. (1997). Empirical performance of alternative option pricing models. The Journal of Finance, 52(5), 2003–2049.

    Article  Google Scholar 

  • Bates, D. S. (1991). The crash of ’87: Was it expected? The evidence from options markets. The Journal of Finance, 46(3), 1009–1044.

    Article  Google Scholar 

  • Bates, D. S. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options. Review of Financial Studies, 9(1), 69–107.

    Article  Google Scholar 

  • Beck, T. M. (1993). Black–Scholes revisited: Some important details. Financial Review, 28(1), 77–90.

    Article  Google Scholar 

  • Beckers, S. (1980). The constant elasticity of variance model and its implications for option pricing. The Journal of Finance, 35(3), 661–673.

    Article  Google Scholar 

  • Benninga, S., & Czaczkes, B. (2000). Financial modeling. MIT press.

    Google Scholar 

  • Billingsley, P. (2008). Probability and measure (3rd ed.). Wiley.

    Google Scholar 

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. The Journal of Political Economy, 637–654.

    Google Scholar 

  • Buetow, G. W., & Albert, J. D. (1998). The pricing of embedded options in real estate lease contracts. Journal of Real Estate Research, 15(3), 253–266.

    Google Scholar 

  • Cakici, N., & Topyan, K. (2000). The GARCH option pricing model: A lattice approach. Journal of Computational Finance, 3(4), 71–85.

    Article  Google Scholar 

  • Carr, P., & Wu, L. (2004). Time-changed Lévy processes and option pricing. Journal of Financial Economics, 71(1), 113–141.

    Article  Google Scholar 

  • Chen, R. R., & Palmon, O. (2005). A non-parametric option pricing model: Theory and empirical evidence. Review of Quantitative Finance and Accounting, 24(2), 115–134.

    Article  Google Scholar 

  • Chen, R. R., Lee, C. F., & Lee, H. H. (2009). Empirical performance of the constant elasticity variance option pricing model. Review of Pacific Basin Financial Markets and Policies, 12(2), 177–217.

    Article  Google Scholar 

  • Churchill, R. V. (1963). Fourier series and boundary value problems (2nd ed.). McGraw-Hill Companies.

    Google Scholar 

  • Costabile, M., Leccadito, A., Massabó, I., & Russo, E. (2014). A reduced lattice model for option pricing under regime-switching. Review of Quantitative Finance and Accounting, 42(4), 667–690.

    Article  MATH  Google Scholar 

  • Cox, J. C., & Ross, S. A. (1976). The valuation of options for alternative stochastic processes. Journal of Financial Economics, 3(1), 145–166.

    Article  Google Scholar 

  • Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of Financial Economics, 7(3), 229–263.

    Article  MathSciNet  MATH  Google Scholar 

  • Davydov, D., & Linetsky, V. (2001). Pricing and hedging path-dependent options under the CEV process. Management Science, 47(7), 949–965.

    Article  MATH  Google Scholar 

  • Duan, J. C. (1995). The GARCH option pricing model. Mathematical Finance, 5(1), 13–32.

    Article  MathSciNet  MATH  Google Scholar 

  • Garven, J. R. (1986). A pedagogic note on the derivation of the Black–Scholes option pricing formula. Financial Review, 21(2), 337–348.

    Article  Google Scholar 

  • Geman, H., Madan, D. B., & Yor, M. (2001). Time changes for Lévy processes. Mathematical Finance, 11(1), 79–96.

    Article  MathSciNet  MATH  Google Scholar 

  • Grenadier, S. R. (1995). Valuing lease contracts: A real-options approach. Journal of Financial Economics, 38(3), 297–331.

    Article  Google Scholar 

  • Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6(2), 327–343.

    Article  MATH  MathSciNet  Google Scholar 

  • Heston, S. L., & Nandi, S. (2000). A closed-form GARCH option valuation model. Review of Financial Studies, 13(3), 585–625.

    Article  Google Scholar 

  • Hillegeist, S. A., Keating, E. K., Cram, D. P., & Lundstedt, K. G. (2004). Assessing the probability of bankruptcy. Review of Accounting Studies, 9(1), 5–34.

    Article  Google Scholar 

  • Hull, J. C. (2014). Options, futures, and other derivatives (9th ed.). Prentice Hall.

    Google Scholar 

  • Hull, J., & White, A. (1987). The pricing of options on assets with stochastic volatilities. The Journal of Finance, 42(2), 281–300.

    Article  MATH  Google Scholar 

  • Joshi, M. S. (2003). The concepts and practice of mathematical finance (Vol. 1). Cambridge University Press.

    Google Scholar 

  • Kou, S. G. (2002). A jump-diffusion model for option pricing. Management Science, 48(8), 1086–1101.

    Article  MATH  Google Scholar 

  • Kou, S. G., & Wang, H. (2004). Option pricing under a double exponential jump diffusion model. Management Science, 50(9), 1178–1192.

    Article  Google Scholar 

  • Kutner, G. W. (1988). Black–Scholes revisited: Some important details. Financial Review, 23(1), 95–104.

    Article  Google Scholar 

  • Lee, J. C. (2001). Using microsoft excel and decision trees to demonstrate the binomial option pricing model. Advances in Investment Analysis and Portfolio Management, 8, 303–329.

    Google Scholar 

  • Lee, C.-F., & Lin, C. S.-M. (2010). Two alternative binomial option pricing model approaches to derive Black–Scholes option pricing model. In Handbook of quantitative finance and risk management (pp. 409–419). Springer.

    Google Scholar 

  • Lee, J. C., Lee, C. F., & Wei, K. J. (1991). Binomial option pricing with stochastic parameters: A beta distribution approach. Review of Quantitative Finance and Accounting, 1(4), 435–448.

    Article  Google Scholar 

  • Lee, C. F., Wu, T. P., & Chen, R. R. (2004). The constant elasticity of variance models: New evidence from S&P 500 index options. Review of Pacific Basin Financial Markets and Policies, 7(2), 173–190.

    Article  Google Scholar 

  • Lee, C.-F., Finnerty, J., Lee, J., Lee, A. C., & Wort, D. (2013a). Security analysis, portfolio management, and financial derivatives. World Scientific.

    Google Scholar 

  • Lee, C.-F., Lee, J., & Lee, A. C. (2013b). Statistics for business and financial economics (3rd ed.). Springer.

    Google Scholar 

  • Lee, C. F., Chen, Y., & Lee, J. (2016). Alternative methods to derive option pricing models: Review and comparison. Review of Quantitative Finance and Accounting, 47(2), 417–451.

    Article  Google Scholar 

  • Lin, C. H., Lin, S. K., & Wu, A. C. (2014). Foreign exchange option pricing in the currency cycle with jump risks. Review of Quantitative Finance and Accounting, 1–35.

    Google Scholar 

  • Madan, D. B., Carr, P. P., & Chang, E. C. (1998). The variance gamma process and option pricing. European Finance Review, 2(1), 79–105.

    Article  MATH  Google Scholar 

  • Marcus, A. J., & Shaked, I. (1984). The valuation of FDIC deposit insurance using option-pricing estimates. Journal of Money, Credit and Banking, 446–460.

    Google Scholar 

  • Melino, A., & Turnbull, S. M. (1990). Pricing foreign currency options with stochastic volatility. Journal of Econometrics, 45(1), 239–265.

    Article  MATH  Google Scholar 

  • Melino, A., & Turnbull, S. M. (1995). Misspecification and the pricing and hedging of long-term foreign currency options. Journal of International Money and Finance, 14(3), 373–393.

    Article  Google Scholar 

  • Merton, R. C. (1973). Theory of rational option pricing. The Bell Journal of Economics and Management Science, 4(1), 141–183.

    Article  MathSciNet  MATH  Google Scholar 

  • Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. The Journal of Finance, 29(2), 449–470.

    Google Scholar 

  • Merton, R. C. (1977). An analytic derivation of the cost of deposit insurance and loan guarantees: An application of modern option pricing theory. Journal of Banking & Finance, 1(1), 3–11.

    Article  Google Scholar 

  • Merton, R. C. (1978). On the cost of deposit insurance when there are surveillance costs. Journal of Business, 439–452.

    Article  Google Scholar 

  • Psychoyios, D., Dotsis, G., & Markellos, R. N. (2010). A jump diffusion model for VIX volatility options and futures. Review of Quantitative Finance and Accounting, 35(3), 245–269.

    Article  Google Scholar 

  • Rendleman, R. J., & Bartter, B. J. (1979). Two-state option pricing. The Journal of Finance, 34(5), 1093–1110.

    Article  Google Scholar 

  • Rubinstein, M. (1994). Implied binomial trees. The Journal of Finance, 49(3), 771–818.

    Article  Google Scholar 

  • Scott, L. O. (1987). Option pricing when the variance changes randomly: Theory, estimation, and an application. Journal of Financial and Quantitative Analysis, 22(4), 419–438.

    Article  MathSciNet  Google Scholar 

  • Scott, L. O. (1997). Pricing stock options in a jump-diffusion model with stochastic volatility and interest rates: Applications of Fourier inversion methods. Mathematical Finance, 7(4), 413–426.

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, C. W., Jr. (1976). Option pricing: A review. Journal of Financial Economics, 3(1), 3–51.

    Article  Google Scholar 

  • Stein, E. M., & Stein, J. C. (1991). Stock price distributions with stochastic volatility: An analytic approach. Review of Financial Studies, 4(4), 727–752.

    Article  MATH  Google Scholar 

  • Wiggins, J. B. (1987). Option values under stochastic volatility: Theory and empirical estimates. Journal of Financial Economics, 19(2), 351–372.

    Article  Google Scholar 

  • Williams, J. T. (1991). Real estate development as an option. The Journal of Real Estate Finance and Economics, 4(2), 191–208.

    Article  Google Scholar 

  • Wu, C. C. (2006). The GARCH option pricing model: A modification of lattice approach. Review of Quantitative Finance and Accounting, 26(1), 55–66.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Few Lee .

Appendix: The Relationship Between Binomial Distribution and Normal Distribution

Appendix: The Relationship Between Binomial Distribution and Normal Distribution

In this appendix, we will use the de Moivre–Laplace Theorem to prove that the best fit between the binomial and normal distributions occurs when the binomial probability is \(\frac{1}{2}\).

de Moivre–Laplace Theorem

As n grows larger and approaches infinity, for k in the neighborhood of np we can approximate

$$\begin{aligned} \left( {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right)p^{k} q^{n - k} \simeq \frac{1}{{\sqrt {2\pi npq} }}e^{{ - \frac{{(k - np)^{2} }}{2npq}}} , \hfill \\ \quad p + q = 1,\;p,q > 0. \hfill \\ \end{aligned}$$
(21.120)

Proof

According to Stirling’s approximation (or Stirling’s formula) for factorials approximation, we can replace the factorial of large number n with the following:

$$n! \simeq n^{n} e^{ - n} \sqrt {2\pi n} \,{\text{as}}\,n \to \infty$$
(21.121)

Then, \(\left( {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right)p^{k} q^{n - k}\) can be approximated as shown in the following procedures.

$$\begin{aligned} \left( {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right)p^{k} q^{n - k} & = \frac{n!}{{k!\left( {n - k} \right)!}}p^{k} q^{n - k} \\ & \simeq \frac{{n^{n} e^{ - n} \sqrt {2\pi n} }}{{k^{k} e^{ - k} \sqrt {2\pi k} \left( {n - k} \right)^{n - k} e^{ - k} \sqrt {2\pi k} }}p^{k} q^{n - k} \\ & = \sqrt {\frac{n}{2\pi k(n - k)}} \left( {\frac{k}{np}} \right)^{ - k} \left( {\frac{n - k}{nq}} \right)^{{ - \left( {n - k} \right)}} \\ \end{aligned}$$
(21.122)

Let \(x = \frac{k - np}{{\sqrt {npq} }}\), we obtain:

$$\begin{aligned} & \sqrt {\frac{n}{{2\pi k\left( {n - k} \right)}}} \left( {\frac{k}{np}} \right)^{ - k} \left( {\frac{n - k}{nq}} \right)^{{ - \left( {n - k} \right)}} \\ & \quad = \sqrt {\frac{n}{{2\pi k\left( {n - k} \right)}}} \left( {1 + x\sqrt {\frac{q}{np}} } \right)^{ - k} \left( {1 - x\sqrt {\frac{p}{nq}} } \right)^{ - (n - k)} \\ & \quad = \sqrt {\frac{{n^{ - 1} }}{{2\pi \tfrac{k}{n}\tfrac{{\left( {n - k} \right)}}{n}}}} \left( {1 + x\sqrt {\frac{q}{np}} } \right)^{ - k} \left( {1 - x\sqrt {\frac{p}{nq}} } \right)^{{ - \left( {n - k} \right)}} \\ & \quad = \sqrt {\frac{{n^{ - 1} }}{{2\pi \tfrac{k}{n}\left( {1 - \tfrac{k}{n}} \right)}}} \left( {1 + x\sqrt {\frac{q}{np}} } \right)^{ - k} \left( {1 - x\sqrt {\frac{p}{nq}} } \right)^{{ - \left( {n - k} \right)}} \\ \end{aligned}$$
(21.123)

As \(k \to np\), we get \(\tfrac{k}{n} \to p\). Then, Eq. (21.123) can be approximated as:

$$\begin{aligned} & \sqrt {\frac{{n^{ - 1} }}{{2\pi \tfrac{k}{n}\left( {1 - \tfrac{k}{n}} \right)}}} \left( {1 + x\sqrt {\frac{q}{np}} } \right)^{ - k} \left( {1 - x\sqrt {\frac{p}{nq}} } \right)^{{ - \left( {n - k} \right)}} \\ & \simeq \sqrt {\frac{{n^{ - 1} }}{2\pi pq}} \left( {1 + x\sqrt {\frac{q}{np}} } \right)^{ - k} \left( {1 - x\sqrt {\frac{p}{nq}} } \right)^{{ - \left( {n - k} \right)}} \\ & = \sqrt {\frac{1}{2\pi npq}} \exp \left\{ {\ln \left[ {\left( {1 + x\sqrt {\frac{q}{np}} } \right)^{ - k} } \right]} \right. \\ & \left. {\quad + \ln \left[ {\left( {1 - x\sqrt {\frac{p}{nq}} } \right)^{{ - \left( {n - k} \right)}} } \right]} \right\} \\ & = \sqrt {\frac{1}{2\pi npq}} \exp \left\{ { - k\ln \left( {1 + x\sqrt {\frac{q}{np}} } \right)} \right. \\ & \left. {\quad - \left( {n - k} \right)\ln \left( {1 - x\sqrt {\frac{p}{nq}} } \right)} \right\} \\ & = \sqrt {\frac{1}{2\pi npq}} \exp \left\{ { - \left( {np + x\sqrt {npq} } \right)\ln \left( {1 + x\sqrt {\frac{q}{np}} } \right)} \right. \\ & \left. {\quad - \left( {nq - x\sqrt {npq} } \right)\ln \left( {1 - x\sqrt {\frac{p}{nq}} } \right)} \right\} \\ \end{aligned}$$
(21.124)

We are considering the term in exponential function, i.e.,

$$- \left( {np + x\sqrt {npq} } \right)\ln \left( {1 + x\sqrt {\frac{q}{np}} } \right) - \left( {nq - x\sqrt {npq} } \right)\ln \left( {1 - x\sqrt {\frac{p}{nq}} } \right)$$
(21.125)

Here, we are using the Taylor series expansions of functions \(\ln \left( {1 \pm x} \right)\):

$$\begin{aligned} \ln (1 + x) & = x - \frac{{x^{2} }}{2} + \frac{{x^{3} }}{3} + o\left( {x^{3} } \right) \\ \ln (1 - x) & = - x - \frac{{x^{2} }}{2} - \frac{{x^{3} }}{3} + o\left( {x^{3} } \right) \\ \end{aligned}$$

Then, we expand Eq. (21.125) with respect to x and obtain:

$$\begin{aligned} & - \left( {np + x\sqrt {npq} } \right)\left( {x\sqrt {\frac{q}{np}} - \frac{{x^{2} q}}{2np} + \frac{{x^{3} q^{{\tfrac{3}{2}}} }}{{3n^{{^{{\tfrac{3}{2}}} }} p^{{^{{\tfrac{3}{2}}} }} }} + o\left( {x^{3} } \right)} \right) \\ & - \left( {nq - x\sqrt {npq} } \right)\left( { - x\sqrt {\frac{p}{nq}} - \frac{{x^{2} p}}{2nq} - \frac{{x^{3} p^{{\tfrac{3}{2}}} }}{{3n^{{^{{\tfrac{3}{2}}} }} q^{{^{{\tfrac{3}{2}}} }} }} + o\left( {x^{3} } \right)} \right) \\ & \quad = - \left( {x\sqrt {npq} + x^{2} q - \frac{1}{2}x^{2} q - \frac{{x^{3} p^{{ - \tfrac{1}{2}}} q^{{\tfrac{3}{2}}} }}{2\sqrt n } + \frac{{x^{3} p^{{ - \tfrac{1}{2}}} q^{{\tfrac{3}{2}}} }}{3\sqrt n }} \right) \\ & \quad - \left( { - x\sqrt {npq} + x^{2} p - \frac{1}{2}x^{2} q + \frac{{x^{3} p^{{\tfrac{3}{2}}} q^{{ - \tfrac{1}{2}}} }}{2\sqrt n } - \frac{{x^{3} p^{{\tfrac{3}{2}}} q^{{ - \tfrac{1}{2}}} }}{3\sqrt n }} \right) \\ & \quad + o\left( {x^{3} } \right) \\ & \quad = - \frac{1}{2}x^{2} \left( {p + q} \right) - \frac{1}{{6\sqrt {npq} }}x^{3} \left( {p^{2} - q^{2} } \right) + o\left( {x^{3} } \right) \\ \end{aligned}$$
(21.126)

Since we have \(p + q = 1\) when we ignore the higher order of x, Eq. (21.126) can be simply approximated to:

$$- \frac{1}{2}x^{2} - \frac{1}{{6\sqrt {npq} }}x^{3} \left( {p - q} \right)$$
(21.127)

Then, we replace Eq. (21.127) in the exponential function in Eq. (21.124), and we obtain:

$$\begin{aligned} \left( {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right)p^{k} q^{n - k} & \simeq \frac{1}{{\sqrt {2\pi pq} }}\exp \left[ { - \frac{1}{2}x^{2} } \right. \\ & \quad \left. { - \frac{1}{{6\sqrt {npq} }}x^{3} \left( {p - q} \right)} \right] \\ \end{aligned}$$
(21.128)

Although \(- \frac{1}{{6\sqrt {npq} }}x^{3} \left( {p - q} \right) \to 0\) as \(n \to \infty\), the term \(- \frac{1}{{6\sqrt {npq} }}x^{3} \left( {p - q} \right)\) will be exactly zero if and only if \(p = q\). Under this condition,

$$\begin{aligned} \left( {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right)p^{k} q^{n - k} & \simeq \frac{1}{{\sqrt {2\pi pq} }}\exp \left( { - \frac{1}{2}x^{2} } \right) \\ & = \frac{1}{{\sqrt {2\pi pq} }}\exp \left[ { - \frac{{\left( {k - np} \right)^{2} }}{2npq}} \right]. \\ \end{aligned}$$

Thus, it is shown that the best fit between the binomial and normal distribution occurs when \(p = q = \frac{1}{2}\).

If \(p \ne q\), then there exists an additional term \(- \frac{1}{{6\sqrt {npq} }}x^{3} \left( {p - q} \right)\). It is obvious that \(\sqrt {pq} = \sqrt {p\left( {p - q} \right)}\) will reach maximum if and only if \(p = q = \frac{1}{2}\). Therefore, when n is fixed, if the difference between p and q becomes larger, the absolute value of an additional term \(- \frac{1}{{6\sqrt {npq} }}x^{3} \left( {p - q} \right)\) will be larger. This implies that the magnitude of absolute value of the difference between p and q is an important factor to make the approximation to normal distribution less precise. We use the following figures to demonstrate how the absolute number of differences between p and q affect the precision of using binomial distribution to approximate normal distribution.

From Figs. 21.5 and 21.6, we find that when \(p \ne q\), the absolute magnitude does affect the estimated continuous distribution as indicated by red solid curves. For example, when \(n = 30\), the red solid curve when \(p = 0.9\) is very much different from \(p = 0.5\). In other words, when \(p = 0.9\), the red solid curve is not as similar to the normal curve as \(p = 0.5\). If we increase n from 30 to 100, the solid red curve from \(p = 0.9\) is less different from the solid red curve when \(p = 0.5\). In sum, both the magnitude of n and p will affect the shape of using normal distribution to approximate binomial distribution.

Fig. 21.5
figure 5

Binomial distributions to approximate normal distributions \(\left( {n = 30} \right)\)

Fig. 21.6
figure 6

Binomial distributions to approximate normal distributions \(\left( {n = 100} \right)\)

From Eqs. (21.15) and (21.16) in the text, we can define the binomial OPM and the Black–Scholes OPM as follows:

$$C = SB_{1} (a;n,p^{\prime } ) - \frac{X}{{r^{n} }}B_{2} (a;n,p)$$
(21.15)
$$C = SN(d_{1} ) - Xe^{ - rT} N(d_{2} )$$
(21.16)

Both Cox et al. and Rendleman and Bartter tried to show the binomial cumulative functions of Eq. (21.15) will converge to the normal cumulative function of Eq. (21.16) when n approaches infinity. In this appendix, we have mathematically and graphically showed that the relative magnitude between p and q is the important factor to determine this approximation when n is constant. In addition, we also demonstrate the size of n which also affects the precision of this approximation process.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, CF., Chen, HY., Lee, J. (2019). Alternative Methods to Derive Option Pricing Models. In: Financial Econometrics, Mathematics and Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9429-8_21

Download citation

Publish with us

Policies and ethics